Skip to main content

Surfactant-enhanced Removal of Hydrophobic Oils from Source Zones

  • Chapter
Physicochemical Groundwater Remediation

Abstract

This research has demonstrated that the more hydrophobic the oil (e.g., the higher its molecular weight), the more hydrophobic the surfactant system must be to achieve desirable phase behavior. The oil hydrophobicity can be characterized by its equivalent alkane carbon number (EACN). A new approach is presented for estimating the EACN of multi-component hydrophobic nonaqueous phase liquids (NAPLs), which can be used to help guide surfactant selection. Results demonstrate that achieving middle phase microemulsions is more complicated for high EACN oils (e.g. hexadecane with an EACN of 16). An Aerosol-OT (AOT)/ Tween 80 system was identified in batch studies and evaluated in column studies. In less than five injected pore volumes, this surfactant system removed greater than 99% of residual hexadecane from a vertical glass bead column by both mobilization and supersolubilization mechanisms. Counter-flow liquid-liquid extraction conducted in porous hollow fiber membranes was shown to effectively separate hydrophobic oils from surfactant solutions, thereby regenerating the surfactant for reuse. This research thus demonstrates that surfactant enhanced remediation of hydrophobic oils is a viable technology, worthy of further development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Abe, M., Schechter, D., Schechter, R. S., Wade, W. H., Weerasooriya, U., and Yiv, S. (1986). Journal of Colloid and Interface Science, 114, 342.

    Article  CAS  Google Scholar 

  • Abe, M., Schechter, R. S., Sellia, R. D., Sheikh, B., and Wade, W. H. (1987). Journal of Dispersion Science and Technology, 8, 157.

    CAS  Google Scholar 

  • Baran, J. R., Pope, G.A., Wade, W.H., Weerasooriya, and V. Yapa, A. (1994). J. Colloid Interface Science, 168, 67.

    CAS  Google Scholar 

  • Barranco, F. T., and Dawson, H. E. (1999). “Influence of Aqueous pH on the Interfacial Properties of Coal Tar,” Environmental Science Technology, 33, 1598–1603.

    CAS  Google Scholar 

  • Bettahar, M., Schafer, G., and Baviere, M. (1999), “An Optimized Surfactant Formulation for the Remediation of Diesel Oil Polluted Sandy Aquifers,” Environmental Science and Technology, 33, 1269–1273

    Article  CAS  Google Scholar 

  • Bourrel, M., and Schecter, R. S. (1988). Microemulsions and Related Systems, Marcel Dekker Inc.: New York,; Vol. 30, Surfactant Science Series.

    Google Scholar 

  • Cummings, J. (1999). “Steam Enhanced Extraction-In Situ NAPL Recovery at the Southern California Edison Visalia Pole Yard,” Presented at EPA Innovative Clean-up Approaches Conference, Indian Lakes Resort, Bloomingdale, IL November 2–4.

    Google Scholar 

  • Dwarakanath, V., and Pope, G. A. (1998). “New Approach for Estimating Partition Coefficients between Nonaqueous Phase Liquids and Water”. Environ. Sci. Technol., 32, 1662–1666.

    Article  CAS  Google Scholar 

  • Edwards, D. A., Luthy, R. G., and Liu, Z. (1991). Environmental Science and Technology, 25, 127–133.

    Article  CAS  Google Scholar 

  • Ghoshal, S., Ramaswami, A., and Luthy, R. G. (1996) “Biodegradation of Napthalene from Coal Tar and Heptamethylnonane in Mixed Batch Systems,” Environmental Science Technology, 30, 1282–1291.

    CAS  Google Scholar 

  • Griffin, W. C. (1949). Journal of the Society of Cosmetic Chemists, 1, 311.

    Google Scholar 

  • Hasegawa, M., Sabatini, D. A. and Harwell, J. H. “Liquid-Liquid Extraction for Surfactant-Contaminant Separation.” Journal of Environmental Engineering Division-ASCE. 123(7), July 1997, 691–697.

    Google Scholar 

  • Heely, R. N., and Reed, R. L. (1974) Transactions of AIME 257, 491.

    Google Scholar 

  • Huh, C. (1979) J. Colloid and Interface Sci., 71, 408.

    Article  CAS  Google Scholar 

  • Jarosch, T. R. and B. B. Looney, “Enhanced Recovery of Organics Using Direct Energy Techniques,” Innovative Subsurface Remediation: Field Testing of Physical, Chemical and Characterization Technologies. ACS Symposium Series 725, American Chemical Society, Washington, DC, 24–35.

    Google Scholar 

  • Knox, R. C., Shiau, B. J., Sabatini, D. A. and Harwell, J. H. (1999). “Field Demonstration of Surfactant Enhanced Solubilization and Mobilization at Hill Air Force Base, UT.” Innovative Subsurface Remediation: Field Testing of Physical, Chemical and Characterization Technologies. ACS Symposium Series. In Press, Revised Paper Accepted October 15.

    Google Scholar 

  • Knox, R. C., Sabatini, D. A., Harwell, J. H., Brown, R. E., West, C. C., Blaha, F., and Griffin, S. (November–December 1997) “Surfactant Remediation Field Demonstration Using a Vertical Circulation Well,” Ground Water. 35(6), 948–953.

    Google Scholar 

  • Krebbs-Yuill, B., Harwell, J. H., Sabatini, D. A., and Knox, R. C. (1995), “Economic Considerations in Surfactant-Enhanced Pump-and-Treat” in Surfactant Enhanced Subsurface Remediation: Emerging Technologies. ACS Symposium Series 594, American Chemical Society, Washington DC, 265–278.

    Google Scholar 

  • Kunieda, H., and Shinoda, K. (1980) Journal of Colloid and Interface Sci., 75, 601

    CAS  Google Scholar 

  • Lipe, M., Sabatini, D. A., Hasegawa, M., and Harwell, J. H. (1996). “Micellar Enhanced Ultrafiltration and Air Stripping for Surfactant-Contaminant Separation and Surfactant Reuse.” Ground Water Monitoring and Remediation. 16(1), 85–92.

    CAS  Google Scholar 

  • Ortiz, E., Kraatz, M., and Luthy, R. G. (1999). “Organic Phase Resistance to Dissolution of Polycyclic Aromatic Hydrocarbon Compounds,” Environmental Science and Technology, 33, 235–242.

    Article  CAS  Google Scholar 

  • Pankow, J. F. and J. A. Cherry. (1996.). Dense Chlorinated Solvents, Waterloo Press, Portland, OR.

    Google Scholar 

  • Pennell, K. D. Abriola, L. M., and Weber W. J. (1993), “Surfactant-Enhanced Solubilization of Residual Dodecane in Soil Columns 1. Experimental Investigation”, Environmental Science and Technology, 27, 2332–2340.

    Article  CAS  Google Scholar 

  • Peters, C. A., and Luthy, R. G. (1993). Environmental Science and Technology, 27, 2831–2843.

    Article  CAS  Google Scholar 

  • Peters, C. A., and Luthy, R. G. (1994) “Semiempirical Thermodynamic Modeling of Liquid-Liquid Phase Equilibria: Coal Tar Dissolution in Water-Miscible Solvents,” Environmental Science and Technology, 28, 1331–1340.

    CAS  Google Scholar 

  • Rouse, J. D., Sabatini, D. A., and Harwell, J. H. (1993). “Minimizing Surfactant Losses Using Twin Head Anionic Surfactants in Subsurface Remediation.” Environmental Science and Technology, 27, 2072–2078.

    Article  CAS  Google Scholar 

  • Roy, S. B., Dzombak, D. A., and Ali, M. A. (1995) “Assessment of in situ solvent extraction for remediation of coal tar sites. Column Studies,” Water Environment Research, 67, 4–15.

    CAS  Google Scholar 

  • Sabatini, D. A, Knox, R. C., Harwell, J. H. and Wu, B. “Integrated Design Of Surfactant Enhanced DNAPL Remediation: Effective Supersolubilization and Gradient Systems.” Accepted, Journal of Contaminated Hydrology.

    Google Scholar 

  • Sabatini, D. A., Harwell, J. H. and Knox, R. C. (1999) “Surfactant Selection Criteria for Enhanced Subsurface Remediation.” In Innovative Subsurface Remediation: Field Testing of Physical, Chemical and Characterization Technologies. M. L. Brusseau, D. A. Sabatini, J. S. Gierke and M. D. Annable, eds. ACS Symposium Series 725, American Chemical Society, Washington, D.C., 8–23.

    Google Scholar 

  • Sabatini, D. A., Knox, R. C., Harwell, J. H., Soerens, T. S., Chen, L., Brown, R. E. and West, C. (November–December 1997) “Design of a Surfactant Remediation Field Demonstration Based on Laboratory and Modeling Studies.” Ground Water. 35(6), 954–963.

    Google Scholar 

  • Sabatini, D. A., Harwell, J. H., Hasegawa, M. and Knox, R. C. (1998) “Membrane Processes and Surfacant-Enhanced Subsurface Remediation: Results of a Field Demonstration.” Journal of Membrane Science. 151(1) 89–100.

    Article  Google Scholar 

  • Salager, J. L., Vasquez, E., Morgan, J. C., Schechter, R. S., and Wade, W. H. (1979). Society of Petroleum Engineering Journal, 19, 107.

    Google Scholar 

  • Salager, J. L., Morgan, J. C., Schecter, R. S. and Wade, W. H. (1979) “Optimum Formulation of Surfactant/Water/Oil Systems for Minimum Interfacial Tension or Phase Behavior”. Soc. Pet. Eng. J., 107.

    Google Scholar 

  • Shiau, B. J., Sabatini, D. A., and Harwell, J. H. (1994). “Solubilization and Mobilization of DNAPLs using Direct Food Additive (Edible) Surfactants.” Ground Water. 32(4), 561–569.

    Article  CAS  Google Scholar 

  • Sunwoo, C., and Wade, W. H. (1992). J. Dispersion Sci. Technol. 13, 49.

    Google Scholar 

  • Udell, K. (1998). “Application of In Situ Thermal Remediation Technologies for DNAPL Removal,” in Ground Water: Quality and Protection — Proceedings of the Ground Water Quality’ 98 Conference, Universitaet Tuebingen, German, September 1998, IAHS Publication 250, 367–374.

    Google Scholar 

  • Winsor, P. A. (1954). Solvent Properties of Amphiphilic Compounds, Butterworths, London.

    Google Scholar 

  • Wu, B., Harwell, J. H., Sabatini, D. A., and Bailey, J. D. (1999). “Alcohol-Free Diphenyloxide Disulfonate (DPDS) Middle Phase Microemulsion Systems,” Journal of Surfactants and Detergents.

    Google Scholar 

  • Zhichu, B. Zhenshu, Z. Fei, X. Yueying, Q. and Jiayong, Y. (1999). “Wettability, Oil Recovery, and Interfacial Tension with an SDBS-Dodecane-Kaolin System,” Journal of Colloid and Interface Science, 214, 368–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wu, B., Cheng, H., Childs, J.D., Sabatini, D.A. (2002). Surfactant-enhanced Removal of Hydrophobic Oils from Source Zones. In: Smith, J.A., Burns, S.E. (eds) Physicochemical Groundwater Remediation. Springer, Boston, MA. https://doi.org/10.1007/0-306-46928-6_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-46928-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46569-7

  • Online ISBN: 978-0-306-46928-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics