Skip to main content

Cyanobacterial Responses to UV-Radiation

  • Chapter
The Ecology of Cyanobacteria

Summary

The influence of ultraviolet radiation (UVR) on microbial populations is the subject of intense investigation.One reason is the awareness of how decreasing regional ozone levels in the stratosphere result in an increase of the UVB flux that reaches the Earth’s surface. and the fact that microbial populations and species may show a more immediate and greater measurable sensitivity to small increases in UVR than the larger macrophytes and metazoa.Some cyanobacteria. representing probably the oldest oxygenic inhabitants of the planet. evolved various methods (or complex strategies) for coping with present levels of UVR. and possibly with the higher levels of UVR which occurred in the early Precambrian and which may occur in the future. invaded a large number of extreme environments (or remain as relicts of similar Precambrian habitats), including shallow waters and exposed terrestrial surfaces. As a consequence they must often cope with high solar irradiance in which UVR can be the most inhibitory region of the spectrum. Cyanobacteria evolved different strategies to counter the effects of UVR. The best understood of these include the development of sunscreen pigments that envelope the cell and function even when cells are at rest, the synthesis of compounds such as mycosporine-like amino acids (the true value of which is still not certain), development of efficient systems for repair of damaged DNA and for replacement of UVR-damaged compounds, and implementation of directed gliding motility for escaping the diurnally high intensities of solar irradiance when soft microbial mats or sediments are present. This review considers the various specific effects of UVR on cyanobacteria and their compensating responses, with particular emphasis on the reactions which occur, or are likely to occur, in natural habitats today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams N L and Schick JM (1996) Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchin Strongylocentrotus droebachiensis. Photochem Photobiol 64: 149–158

    CAS  Google Scholar 

  • Arpin N, Favre-Bomvin J and Thivend S (1977) Structure la mycosporine-2, nouvelle molecule, isolee de Botrytis cynerea. Tetrahedron Lett 10: 819–820

    Google Scholar 

  • Asato Y (1972) Isolation and characterization of ultraviolet light-sensitive mutants of the blue-green alga Anacystis nidulans J Bacteriol 110: 1058–1064

    CAS  PubMed  Google Scholar 

  • Bebout BM and Garcia-Pichel F (1995) UVB-induced vertical migrations of cyanobacteria in a microbial mat. Appl Environ Microbiol 61: 4215–4222

    CAS  Google Scholar 

  • Ben-Amotz A, Shaish A and Avron M (1989) Mode of action of the massively accumulated á-carotene of Dunaliella burdawil in protecting the alga against damage by excess irradiation. Plant Physiol 91: 1040–1043

    CAS  Google Scholar 

  • Bernillon J, Parusssine E, Letoublon R, Favre-Bonvin J and Arpin N (1990) Flavin-mediated photolysis of mycosponnes. Phytochem 29: 81–84

    Article  CAS  Google Scholar 

  • Bhattacharjee SK and David KAV (1977) Unusual resistance to ultraviolet light in dark phase of blue-green bacterium Anacystis nidulans. Nature 265: 183–184

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee SK, Mathur M, Rane SS and David KAV (1987) UV-sensitivity of cyanobacterium Anacystis nidulans PartI. Evidence for photosystem II (PSII) as a lethal target and constitutive nature of a dark repair system against damage to PSII. Indian J Exper Biol 25: 832–836

    CAS  Google Scholar 

  • Bjorn LO and Murphy TM (198.5) Computer calculation of solar ultraviolet radiation at ground level. Physiol Veg 23: 555–561

    Google Scholar 

  • Blakefield MK and Harris DO (1994) Delay of cell differentiation in Anabaena aequalis caused by UV-B radiation and the role of photoreactivation and excision repair. Photochem Photobiol 59: 204–208

    CAS  PubMed  Google Scholar 

  • Bohm GA, Pfleiderer W, Boger P and Scherer S (1995) Structure of a novel oligosaccharide-mycosporine-amino-acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J Biol Chem 270: 8536–8539

    CAS  PubMed  Google Scholar 

  • Booth CR and Morrow JH (1997) The penetration of UV into natural waters. Photochem Photobiol 65: 254–257

    Google Scholar 

  • Bothwell ML, Sherbot DMJ and Pollock CM (1994) Ecosystem response to solar ultraviolet-B radiation: influence of trophic level interactions. Science 265: 97–100

    CAS  Google Scholar 

  • Bothwell ML, Sherbot D, Roberge AC and Daley RJ (1993) Influence of natural ultraviolet radiation on lotic periphytic diatom community growth, biomass accrual, and species composition: short-term versus long-term effects. J Phycol 29: 24–35

    Google Scholar 

  • Braune W and Dohler G (1996) 15N-uptake, influenced by UV-B radiation, and pattern of amino acid pools during akinete germination in Anabaena variabilis (Cyanobacteria). J Basic Microbiol 36: 2199–227

    Google Scholar 

  • Brenowitz S and Castenholz RW (1997) Long-term effects of UV and visible irradiance on natural populations of a scytonemin-containing cyanobacterium ( Calothrix sp.) FEMS Microbiol Ecol 24: 343–352

    CAS  Google Scholar 

  • Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9: 1551–1558

    CAS  PubMed  Google Scholar 

  • Buckley CE and Houghton JA (1976) A study of the effects of near UV radiation on the pigmentation of the blue-green alga Gloeocapsa alpicola. Arch Microbiol 107: 93–97

    Article  CAS  PubMed  Google Scholar 

  • Büdel B, Karsten U and Garcia-Pichel F (1997) Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives in exposed, rock-inhabiting cyanobacterial lichens Oecologia 112: 165–172

    Google Scholar 

  • Carr NG and Wyman M (1986) Cyanobacteria: their biology in relation to oceanic picoplankton. In: Platt T and Li WKW (eds) Photosynthetic picoplankton, pp 159–204. Can Bull Fish Aquat Sci 214

    Google Scholar 

  • Carreto J I, DeMarco SG and Lutz VA (1989) UV-absorbing pigments in the dinoflagellates Alexandrium excavatum and Prorocentrum micans: Effects of light intensity. In: Okaichi T, Anderson DM and Nemoto T (eds) Red Tides: Biology, Environmental Science and Toxicology, pp 333–336.New York, Elsevier

    Google Scholar 

  • Castenholz RW (1968) The behavior of Oscillatoria terebriformis in hot springs. J Phycol 4: 132–139

    Google Scholar 

  • Castenholz RW (1972) Low temperature acclimation and survival in thermophilic Oscillatoria terebrifomis. In: Desikachary TV (ed) Toaxonomy and Biology of Blue-green Algae, pp 406–418. University of Madras, India

    Google Scholar 

  • Castenholz RW (1994) Microbial mat research: the recent past and new perspectives. In: Stal LJ and Caumette P (eds) Microbial Mats, pp 3–18, NATO ASI Series, Vol. 35, Springer-Verlag, Berlin

    Google Scholar 

  • Castenholz RW, Jørgensen BB, D’Amelio E and Bauld J (1991) Photosynthetic and behavioral versatility of the cyanobacterium Oscillatoria boryana in a sulfide-rich microbial mat. FEMS Microbiol Ecol 86: 43–58

    Article  CAS  Google Scholar 

  • Chitnis PR and Nelson N (1991) Molecular cloning of the genes encoding two chaperone proteins of the cyanobacterium Synechocystis sp PCC 6803. J Biol Chem 266: 58–65

    CAS  PubMed  Google Scholar 

  • Clayton RK (1970) Light and Living Matter. McGraw-Hill, New York

    Google Scholar 

  • Close TJ and Lammers PJ (1993) An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins. Plant Physiol 101: 773–779

    Article  CAS  PubMed  Google Scholar 

  • Collier JL and Grossman AR (1992) Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: not all bleaching is the same. J Bacteriol 174: 4718–4726

    CAS  PubMed  Google Scholar 

  • Craig E, Gambill B and Nelson R (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57: 402–414

    CAS  PubMed  Google Scholar 

  • Cullen JJ and Neale PJ (1994) Ultraviolet radiation, ozone depletion and marine photosynthesis. Photosynth Res 39: 303–320

    Article  CAS  Google Scholar 

  • Cullen JJ, Neale PJ and Lesser MP (1992) Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258: 646–650

    CAS  Google Scholar 

  • Des Marais DJ (1995) The biogeochemistry of hypersaline microbial mats. Adv Microbiol Ecol 14: 251–274

    Google Scholar 

  • Diffey BL, Green AT, Loftus MJ, Johnson GJ and Lee PS (1995) A portable instrument for measuring ground reflectance in the ultraviolet. Photochem Photobiol 61: 68–70

    CAS  Google Scholar 

  • Dodds WK and Castenholz RW (1988) The biological effects of nitrate fertilization and water replacement in an oligotrophic cold water pond. Hydrobiologia 162: 141–146

    Article  CAS  Google Scholar 

  • Dohler G, Bierman I and Zink J (1998) Impact of UV-B radiation pp photosynthetic assimilation of C bicarbonate and inorganic N-compounds by cyanobacteria. Zeit Naturforsch 41: 426–432

    Google Scholar 

  • Donkor VA, Amewowor DHAK and Hader D-P (1993) Effects of tropical solar radiation on the velocity and photophobic behavior of filamentous gliding cyanobacteria. Acta Protozoologica 32: 67–72

    Google Scholar 

  • Dunlap WC and Chaker BE (1986) Identification and quantification of near UV absorbing compounds (S-320) in a hermatipic scleractinian. Coral Reefs 5: 155–159

    Article  CAS  Google Scholar 

  • Dunlap WC and Shick JM (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 34: 418–430

    Article  Google Scholar 

  • Dunlap WC and Yamamoto Y (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comp Biochem Physiol B 112: 105–114

    Google Scholar 

  • Eguchi M, Oketa T, Miyamoto N, Maeda H and Kawai A (1996) Occurrence of viable photoautotrophic picoplankton in the aphotic zone of Lake Biwa, Japan. J Plankton Res 18: 539–550

    Google Scholar 

  • Ehling-Schulz M, Bilger W and Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179: 1940–1945

    CAS  PubMed  Google Scholar 

  • Eker EPM, Kooiman P, Hessels JKC and Yasui A(1990) DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J Biol Chem 265: 8009–8015

    CAS  PubMed  Google Scholar 

  • Favre-Bomvin J, Arpin N and Brevard C (1976) Structure de la mycosporine (P310). Can J Chem 54: 1105–1113

    Google Scholar 

  • Favre-Bomvin J, Bernillon J, Salin N and Arpin N (1987) Biosynthesis of mycosporines mycosporine glutaminol in Trichotecium roseum. Phytochemistry 26: 2509–2514

    Google Scholar 

  • Frederick JE, Snell HE and Haywood EK (1989) Solar ultraviolet radiation at the earth’s surface. Photochem. Photobiol. 50: 443–450

    CAS  Google Scholar 

  • Fridovich I(1975) Superoxide dismutases. Ann Rev Biochem 44: 147–159

    CAS  PubMed  Google Scholar 

  • Friedmann EI and Ocampo R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the Anctarctic desert ecosystem. Science 193: 1247–1249

    Google Scholar 

  • Garcia-Pichel F (1992) Ultraviolet-absorbing substances in cyanobacteria and their role as sunscreens. PhD Thesis, Department of Biology, University of Oregon, Eugene

    Google Scholar 

  • Garcia-Pichel F (1994) A model for internal shelf-shading in planktonic microorganism and its implications for the usefulness of sunscreens. Limnol Oceanogr 39: 1704–1717

    Google Scholar 

  • Garcia-Pichel F (1996) The absorption of ultraviolet radiation by microalgae: simple optics and photobiological implications. Scientia Marina 60: 73–79

    CAS  Google Scholar 

  • Garcia-Pichel F (1998) Solar ultraviolet and the evolutionary history of cyanobacteria. Origins of Life Evol Biosphere 28: 321–347

    CAS  Google Scholar 

  • Garcia-Pichel F and Bebout BM (1996) The penetration of ultraviolet radiation into shallow water sediments: high exposure for photosynthetic communities. Mar Ecol Progress Ser 131: 257–262

    Google Scholar 

  • Garcia-Pichel F and Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32: 774–782

    Article  Google Scholar 

  • Garcia-Pichel F and Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27: 395–409

    Article  CAS  Google Scholar 

  • Garcia-Pichel F and Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity.Appl Environ Microbiol 59: 163–169

    CAS  PubMed  Google Scholar 

  • Garcia-Pichel F and Castenholz RW (1994) On the significance of solar ultraviolet radiation for the ecology of microbial mats. In: Stal LJ and Caumette P (eds) Microbial Mats. Structure, Development and Environmental Significance, pp 77–84, NATO ASI Series, Vol. 35, Springer-Verlag. Berlin

    Google Scholar 

  • Garcia-Pichel F, Sherry ND and Castenholz RW (1992) Evidence for a UV sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis spp. Photochem Photobiol 56: 17–23

    CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Wingard CE and Castenholz RW (1993) Evidence regarding the UV-sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl Environ Microbiol 59: 170–176

    CAS  PubMed  Google Scholar 

  • Gautier C, He G and Yang S (1994) Role of clouds and ozone on spectral ultraviolet B radiation and biologically active UV dose over Antarctica. In: Weiler CS and Penhale PA (eds) Ultraviolet Radiation in Antarctica: Measurements and Biological Effects. Vol 62, pp 83–91, American Geophysical Union. Washington. DC

    Google Scholar 

  • Golden SS (1994) Light-responsive gene expression and the biochemistry of the photosystem II reaction center. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 693–714. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Goodwin TW (1980) The Biochemistry of the Carotenoids, Vol.I Plants. (2nd ed) Chapman and Hall, London

    Google Scholar 

  • Grether T, Maier J, Karsten U, Garcia-Pichel F and Ninnemann H (1996) UV-light induction of biosynthesis of pteridine glycosides of cyanobacteria from microbial mats (Abstract). UV/Blue Light: Perception and Responses in Plants and Microorganism, Marburg (Germany)

    Google Scholar 

  • Hader D-P (1984) Effects of UV-B on motility and photoorientation in the cyanobacterium, Phormidium uncinatum. Arch Microbiol 140: 34–39

    Google Scholar 

  • Hader D-P and Tevini M (1987) General Photobiology. Pergamon Press, Oxford

    Google Scholar 

  • Hader D-P, Watanabe M and Furuya M (1986) Inhibition of motility in the cyanobacterium, Phormidium uncinatum, by solar and monochromatic UV irradiation. Plant Cell Physiol 27: 887–894

    Google Scholar 

  • Hader D-P, Worrest RC, Kumar HD and Smith RC (1995) Effects of increased solar ultraviolet radiation on aquatic ecosystems. Ambio 24: 174–180

    Google Scholar 

  • Hagen C, Braune W and Bjørn LO (1994) Functional aspects of secondary carotenoids in Haematococcus lacustris (Volvocales). III. Action as a “sunshade”. J Phycol 30: 241–248.

    Article  CAS  Google Scholar 

  • Harm W (1980) Biological Effects of Ultraviolet Radiation. Cambridge University Press Cambridge

    Google Scholar 

  • Helbling EW, Villafañe V and Holm-Hansen O (1994) Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing. In: Weiler CS and Penhale PA (eds) Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, Vol. 62, pp 207–227. American Geophysical Union, Washington, DC

    Google Scholar 

  • Hirosawa T and Miyachi S (1983) Effect of long-wavelength ultraviolet (UV-A) radiation on the growth of Anacystis nidulans. Plant Sci Lett 28: 291–298

    CAS  Google Scholar 

  • Holm-Hansen 0, Lubin D and Heibling EW (1993) Ultraviolet radiation and its effects on organisms in aquatic environments. In: Young AR, Bjom LO, Moan J, and Nultsch W (eds) Environmental UV Photobiology, pp 379–425. Plenum Press, New York

    Google Scholar 

  • Ito S and Hirata Y (1977) Isolation and identification of a mycosporine from the zooanthid Palythoa tuberculosa. Tetrahedron Lett 28: 2429–2430

    Google Scholar 

  • Jaag O (1945) Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beitr. Kryptogamenflora Schweiz (Mat Flore Cryptog Suisse) 9(3)

    Google Scholar 

  • Jagger J (1967) Introduction to Research in Ultraviolet Photobiology. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Jagger J (1985) Solar-UV Actions on Living Cells. Praeger, New York

    Google Scholar 

  • Javor BJ and Castenholz RW (1981) Laminated microbial mats, Laguna Guerrero Negro, Mexico. Geomicrobiol J 2: 237–273

    CAS  Google Scholar 

  • Javor BJ and Castenholz RW (1984) Productivity studies of microbial mats, Laguna Guerrero Negro, Mexico. In: Cohen Y, Halvorson H and Castenholz RW (eds) Microbial Mats: Stromatolites, pp 149–170, Alan R. Liss, Inc, New York

    Google Scholar 

  • Jeffrey WH and Mitchell DL (1997) Mechanisms of UV-induced DNA damage and response in marine microorganisms. Photochem Photobiol 65: 260–263

    Google Scholar 

  • Jeffrey WH, Pledger RJ, Aas P, Hager S, Coffin RB, Von Haven R and Mitchell DL (1996) Diel and depth profiles of DNA photodamage in bacterioplankton exposed to ambient solar ultraviolet radiation. Mar Ecol Prog Ser 137: 283–291

    CAS  Google Scholar 

  • Jørgensen BB and Des Marais DJ (1988) Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. Limnol Oceanogr 33: 99–113

    PubMed  Google Scholar 

  • Karentz D, McEuen FS, Land MC and Dunlap WC (1991) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108: 157–166

    Article  CAS  Google Scholar 

  • Karsten U and Garcia-Pichel F (1996) Carotenoids and mycosporine-like amino acids in members of the genus Microcoleus (Cyanobacteria): a chemosystematic study. System Appl Microbiol 19: 285–294

    Google Scholar 

  • Kasting JF, Holland HD and Kump LR (1992) Atmospheric evolution: the rise of oxygen. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, a Multidisciplinary Study, pp 159–168. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Kirk JT (1994) Optics of UV-B radiation in natural waters. Arch Hydrobiol Beih Ergebn Limnol 43: 1–16

    Google Scholar 

  • Kirk JTO (1983) Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Koller LR (1965) Ultraviolet Radiation. J Wiley and Sons, New York

    Google Scholar 

  • Kollias N, Sayre RM, Zeise L and Chedekel MR (1991) Photoprotection by melanin. J Photochem Photobiol B: Biol 9: 135–160

    CAS  Google Scholar 

  • Koyama Y and Hashimoto H (1993) Spectroscopic studies of carotenoids in photosynthetic systems. In: Young A and Britton G (eds) Carotenoids in Photosynthesis, pp 327–408. Chapman and Hall, London

    Google Scholar 

  • Krinsky NI (1979) Carotenoid protection against oxidation. Pure and Appl Chem 51: 649–660

    CAS  Google Scholar 

  • Kruschel C and Castenholz RW (1998) The effect of solar UV and visible irradiance on the vertical movements of cyanobacteria in microbial mats of hypersaline waters. FEMS Microbiol Ecol 27: 53–72

    CAS  Google Scholar 

  • Kulandaivelu G, Gheeta V and Periyanan S (1989) Inhibition of energy transfer reactions in cyanobacteria by different ultraviolet radiation. In: Singhal GS (ed) Photosynthesis, Molecular Biology and Bioenergetics, pp 305–313, Springer-Verlag. New York

    Google Scholar 

  • Kiihl M and Jørgensen BB (1994) The light field of microbenthic communities: radiance distribution and microscale optics of sandy coastal sediments. Limnol Oceanogr 39: 1368–1398

    Google Scholar 

  • Kumar A, Tyagi M, Srinivas G, Singh N, Kumar HD, Sinha RP and Hader DP (1996) UVB shielding role of FeCl3 and certain cyanobacterial pigments. Photochem Photobiol 64: 321–325

    CAS  Google Scholar 

  • Kumar D and Kumar HD (1990) Nature of UV resistance in the cyanobacterium Nostoc linckia. Curr Science 59: 412–414

    Google Scholar 

  • Laurion I, Vincent WF and Lean DRS (1997) Underwater ultraviolet radiation: development of spectral models for northern high latitude lakes. Photochem Photobiol 65: 107–114

    CAS  Google Scholar 

  • Lemmerman E (1910) Algen I. Kryptogarnenflora der Mark Brandenburg. Leipzig: 1–259

    Google Scholar 

  • Levine E and Thiel T (1987) UV-inducible DNA repair in the cyanobacteria Anabaena spp. J Bacteriol 169: 3988–3993

    CAS  PubMed  Google Scholar 

  • Liu SC, McKeen SA and Madronich S (1991) Effects of anthropogenic aerosols on biologically active ultraviolet radiation. Geophys Res Lett 99: 2265–2268

    Google Scholar 

  • Loa, K and Glazer, AN (1996) Ultraviolet-B photodestruction of a light-harvesting complex. Proc Natl Acad Sci USA 93: 5258–5263

    Google Scholar 

  • Matsunaga T, Burgess JG, Yamada N, Komatsu K, Yoshida S and Wachi Y (1993) An ultraviolet (UV-A) compound bioptenn glycoside from the marine planktonik cyanobacterium Oscillatoria sp. Appl Microbiol and Biotechnol 39: 250–253

    CAS  Google Scholar 

  • Mazor G, Kidron GJ, Vonshak A and Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21: 121–130

    CAS  Google Scholar 

  • Miller SR, Wingard CE and Castenholz RW (1999) Effects of visible light and UV radiation on photosynthesis in a population of a hot spring cyanobacterium, a Synechococcus sp., subjected to high temperature stress. Appl Environ Microbiol 64: 3893–3899

    Google Scholar 

  • Milot-Roy V and Vincent WF (1994) UV radiation effects on photosynthesis: the importance of near-surface thermoclines in a subarctic lake. Arch Hydrobiol Beih Ergbn Limnol 43: 171–184

    Google Scholar 

  • Mitchell DL and Karentz D (1993) The induction and repair of DNA photodamage in the environment. In: Young, AR, Bjom LO, Moan J and Nultsch W (eds) Environmental UV PhotoBiology, pp 345–377. Plenum Press, New York

    Google Scholar 

  • Morowitz HJ (1950) Absorption effects in volume irradiation of microorganism. Science 111: 229–230

    CAS  PubMed  Google Scholar 

  • Moms SAC and Subden RE (1974) Effects of ultraviolet radiation on carotenoid containing and albino strains of Neurospora crassa. Mutation Res 22: 105–109

    Google Scholar 

  • Musil CF and Bhagwandin N (1992) The SUN program for computation of solar ultraviolet spectral irradiances: solar exposure limits in South Africa. South African J Sci 88: 406–410

    Google Scholar 

  • Nageli C (1849) Gattungen einzelliger Algen, physiologisch und systematisch bearbeitet. Neue Denkschrift Allg Schweiz Natur Ges 10: 1–138

    Google Scholar 

  • Nägeli C and Schwenderer S (1877) Das Mikroskop. Willhelm Engelmann Verlag, Leipzig

    Google Scholar 

  • Nakamura H, Kobayashi J and Hirata Y (1981) Isolation and structure of a 330 nm UV-absorbing substance, Asterina-330 from the starfish Asterinapectinifera. Chem Lett: 1413–1414

    Google Scholar 

  • Neale PJ, Lesser MP and Cullen JJ (1994) Effects of ultraviolet radiation on the photosynthesis of phytoplankton in the vicinity of McMurdo Station, Antarctica. In: Weiler, CS and Penhale PA (eds) Ultraviolet Radiation in Antarctica: Measurements and Biological Effects. Vol 62, pp 125–142, American Geophysical Union, Washington, DC

    Google Scholar 

  • Newton JW, Tyler DD and Slodki MD (1979) Affect of ultraviolet-B radiation on blue-green algae (Cyanobacteria), possible biological indicators of stratospheric ozone depletion. Appl Environ Microbiol 37: 1137–1141

    CAS  PubMed  Google Scholar 

  • Nicholson JM, Stolz JF and Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45: 343–364

    Article  Google Scholar 

  • Nicholson P, Osborn RW and Howe CJ (1987) Induction of protein synthesis in response to ultraviolet light, nalidixic acid and heat shock in the cyanobacterium Phormidium laminosum. FEBS Lett 221: 110–114

    Article  CAS  Google Scholar 

  • Nicholson P, Varley JPA and Howe CJ (1991) A comparison of stress responses in the cyanobacterium Phormidium laminosum. FEMS Microbiol Lett 78: 109–114

    Article  CAS  Google Scholar 

  • Nienow, JA and Friedmann, EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann, EI (ed) Antarctic Microbiology, pp 343–412, Wiley-Liss, New York

    Google Scholar 

  • O’Brien PA and Houghton JA (1982) Photoreactivation and excision repair on UV induced pyrimidine dimers in the unicellular cyanobacterium Gloeocapsa alpicola (Synechocystis PCC 6803). Photochem Photobiol 35: 359–364

    Google Scholar 

  • Ohki K, Watanabe M and Fujita Y (1982) Action of near UV and blue light on the photocontrol of phycobilin formation; a complementary chromatic adaptation. Plant Cell Physiol 23: 651–656

    CAS  Google Scholar 

  • Oren A (1997) Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol J 14: 231–240

    CAS  Google Scholar 

  • Owttrim GW and Coleman JR (1989) Regulation of expression and nucleotide sequence of the Anabaena variabilis recA gene. J Bacteriol 171: 5713–5719

    CAS  PubMed  Google Scholar 

  • Paerl HW, Tucker J and Bland PT (1983) Carotenoid enhancement and its role in maintaining blue-green algal (Microcystis aeruginosa) surface blooms. Limnol Ocean 28: 847–857

    CAS  Google Scholar 

  • Pentecost A (1984) Effects of sedimentation and light intensity on mat-forming Oscillatoriaceae with particular reference to Microcoleus lyngbyaceus Gomont. J Gen Microbiol 130: 983–990

    Google Scholar 

  • Pentecost A (1993) Field relationships between scytonemin density, growth and irradiance in cyanobacteria occurring in low illumination regimes. Microb Ecol 26: 101–110

    Article  Google Scholar 

  • Piazena H and Hader D-P (1994) Penetration of solar UV radiation in coastal lagoons of the Southern Baltic sea and its effect on phytoplankton communities. Photochem Photobiol 60: 463–469

    CAS  Google Scholar 

  • Pierson BK, Oesterle A and Murphy GL (1987) Pigments, light penetration and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts. FEMS Microbiol Ecol 45: 365–376

    Article  CAS  Google Scholar 

  • Postius C, Ernst A, Kenter U and Boger P (1996) Persistence and genetic diversity among strains of phycoerythrin-rich cyanobacteria from the picoplankton of Lake Constance. J Plankton Res 18: 1159–1166

    Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58(4): 755–805

    CAS  PubMed  Google Scholar 

  • Prezelin, B. B., N. P. Boucher and R. C. Smith (1994). Marine primary production under the influence of the Antarctic ozone hole: Icecolors’90. In: Weiler CS and Penhale PA (eds) Ultraviolet Radiation in Antarctica: Measurement and Biological Effects. Vol 62, pp 159–186. American Geophysical Union, Washington, DC

    Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia-Pichel F and Castenholz RW (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49: 825–829

    Article  CAS  PubMed  Google Scholar 

  • Ramsing NB and Prufert-Bebout L (1994) Motility of Microcoleus chthonoplastes subjected to different light intensities quantified by digital image analysis. In: Stal LJ and Caumette P (eds) Microbial Mats. Structure, Development and Environmental Significance, pp 183–191, NATO ASI Series, Vol35, Springer-Verlag, Berlin

    Google Scholar 

  • Renger G, Volker M, Eckert HJ, Fromme R, Hohm-Veit S and Gräber P (1989) On the mechanism of photosystem II deterioration by UV-B irradiation. Photochem Photobiol 49: 97–105

    CAS  Google Scholar 

  • Revsbech NP, Jørgensen BB, Blackburn TH and Cohen Y (1983) Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnol Oceanogr 28: 1062–1074

    Google Scholar 

  • Richardson LL and Castenholz RW (1987) Diel vertical movements of the cyanobacterium Oscillatoria terebriformis in a sulfide-rich hot spring mat. Appl Environ Microbiol 53: 2142–2150

    PubMed  Google Scholar 

  • Robinson, N. (1966). Solar Radiation. Elsevier, Amsterdam

    Google Scholar 

  • Roos JC and Vincent WF (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J.

    Google Scholar 

  • Roy, CR, Gies HP, Tomlinson DW and Lugg DL (1994) Effects of ozone depletion on the ultraviolet radiation environment at the Australian stations in Antarctica. In: Weiler, CS and Penhale PA (eds) Ultraviolet Radiation in Antarctica: Measurements and Biological Effects Vol 62, pp 1–15, American Geophysical Union, Washington, DC

    Google Scholar 

  • Sanders B (1993) Stress proteins in aquatic organisms: an environmental perspective. Crit Rev Toxicol 23: 49–75

    CAS  PubMed  Google Scholar 

  • Sandmann G, Kuhn S, and Boger P (1998) Evaluation of structurally different carotenoids in Escherichia coli transformants as protectants against UV-B radiation. Appl Environ Microbiol 64: 1972–1974.

    CAS  PubMed  Google Scholar 

  • Sass L, Spetea C, Máté Z, Nagy F and Vass I (1997) Repair of UV-B induced damage of photosystem II via de novo synthesis of the D1 and D2 reaction centre subunits in Synechocystis sp. PCC 6803. Photosyn Res 54: 55–62

    CAS  Google Scholar 

  • Satoh K (1998) Creation of photo-tolerant mutants of a cyanobacterium, Synechocystis sp. PCC 6803, by in vitro random mutagenesis of the psbA gene. In Satoh K and Murata N (eds) Stress Responses of Photosynthetic Organisms, pp 3–14. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Satoh K and Murata N (eds) (1998) Stress Responses of Photosynthetic Organisms. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Scherer S, Chen TW and Boger P (1988) A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiol 88: 1055–1057

    CAS  Google Scholar 

  • Scully NM, McQueen DJ, Lean DRS and Cooper WJ (1996) Hydrogen peroxide formation: the interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43-75°N gradient. Limnol Oceanogr 41: 540–548

    CAS  Google Scholar 

  • Shibata H, Katsuya B and Ochiai H (1991) Near-UV irradiation induces shock proteins in Anacystis nidulans R-2; possible role of active oxygen. Plant Cell Physiol 32: 771–776

    CAS  Google Scholar 

  • Shibata H, Noda T, Ogura Y, Suginaga K, Matsui Y, Ozoe Y, Sawa Y and Kona Y (1996) A soluble form of pro-oxidant lumazine isolated from cyanobacterial cells generates superoxide anion under near-UV irradiation. Biochim Biophys Acta 1274: 129–134

    Google Scholar 

  • Shibata K (1969) Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef. Plant Cell Physiol 10: 325–335

    CAS  Google Scholar 

  • Singh PK (1975) Photoreactivation of UV-irradiated blue-green algae and algal virus LPP-1. Arch Microbiol 103: 297–302

    Article  CAS  PubMed  Google Scholar 

  • Sinha RP, Lebert M, Kumar A, Kumar HD and Hader D-P (1995) Spectroscopic and biochemical analyses of UV effects on phycobiliproteins of Anabaena sp. and Nostoc carmium. Botanica Acta 108: 87–92

    CAS  Google Scholar 

  • Sivalingam PM, Ikawa T, Yokohama Y and Nisizawa K (1974) Distribution of a 334 UV-absorbing substance in algae with special regard of its possible physiological roles. Bot Mar 19: 9–29

    Google Scholar 

  • Smith RC and Baker KS (1981) Optical properties of the clearest natural seawaters. Appl Optics 20: 177–184

    Google Scholar 

  • Takahashi A, Takeda K and Ohnishi T (1991) Light-induced anthocyanin reduces the extent of damage to DNA in UV-irradiated Centaurea cyanus cells in culture. Plant Cell Physiol 32: 541–547

    CAS  Google Scholar 

  • Takano S, Nakahashi A, Uemura D and Hirata Y (1979) Isolation and structure of a 334 nm absorbing substance, porphyra-334, from the red alga Porphyra tenera Kjellman. Chem Lett: 419–420

    Google Scholar 

  • Tang EPY, Tremblay R and Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat formers adapted to low temperature? J Phycol 33: 171–181

    Article  Google Scholar 

  • Tsujino I, Yabe K and Sekikawa I (1980) Isolation and structure of a new amino acid, shinorine, from the red alga Chondrus yendoi. Bot Mar 23: 65–68

    CAS  Google Scholar 

  • Tyagi R, Srinivas G, Vyas D, Kumar A and Kumar HD (1992) Differential effect of ultraviolet-B radiation on certain metabolic processes in a chromatically adapting Nostoc. Photochem Photobiol 55: 401–407

    CAS  PubMed  Google Scholar 

  • Van Baalen C (1969) The effects of ultraviolet radiation on a coccoid blue-green alga: survival, photosynthesis and photoreactivation. Plant Physiol 43: 1689–1695

    Google Scholar 

  • Van Liere L and Walsby AE (1982) Interactions of cyanobacteria with light. In: Carr NG and Whitton BA (eds), The Biology of Cyanobacteria, pp 9–45. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Vincent WF (1988) Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Vincent WF and Quesada A (1994) Ultraviolet radiation effects on cyanobacteria: implications for Antarctic microbial ecosystems. In: Weiler CS and Penhale PA (eds) Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, pp 111–124. Antarctic Res Series Vol 62, Am Geophys Union, Washington DC

    Google Scholar 

  • Vincent WF and Roy S (1993) Solar ultraviolet-B radiation and aquatic primary production: damage, protection and recovery. Environ Rev 1: 1–12

    CAS  Google Scholar 

  • Vincent WF, Castenholz RW, Downes MT and Howard-Williams C (1993) Antarctic cyanobacteria: light, nutrients, and photosynthesis in the microbial mat environment. J Phycol 29: 745–755

    Article  Google Scholar 

  • Vinebrooke RD and Leavitt PR (1996) Effects of ultraviolet radiation on periphyton in an alpine lake. Limnol Oceanogr 41: 1035–1040

    CAS  Google Scholar 

  • Vosjan JH and Pauptit E (1992) Penetration of photosynthetically available light (PAR), UV-a and UV-b in Admiralty bay, King George Is., Antarctica. Circumpolar J 1–2: 50–58

    Google Scholar 

  • Wachi Y, Burgess JG, Iwamoto K, Yamada N, Nakamura N and Matsunaga T (1995) Effect of ultraviolet-A (UV-A) on growth, photosynthetic activity and production of biopterin glucoside by the marine UV-A resistant cyanobacterium Oscillatoria sp. Biochim Biophys Acta 1244: 165–168

    PubMed  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58: 94–144

    CAS  PubMed  Google Scholar 

  • Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. Adv Microbial Ecol 13: 327–370

    Google Scholar 

  • Whale GF and Walsby AE (1984) Motility of the cyanobacterium Microcoleus chthonoplastes in mud. Brit Phycol J 19: 117–123

    Google Scholar 

  • Whitelam GC and Codd GA (1986) Damaging effects of light on microorganisms. In: Herbert RA and Codd GA (eds) Microbes in Extreme Environments, pp 129–169. Academic Press, London

    Google Scholar 

  • Whitton, BA and M Potts (1982) Marine littoral. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria pp 512–542. Blackwell Scientific Publishers, Oxford

    Google Scholar 

  • Wickstrom CE and Castenholz RW (1978) Association of Pleurocapsa and Calothrix (Cyanophyta) in a thermal stream. J Phycol 14: 84–88

    Google Scholar 

  • Wingard CE, Schiller JR and Castenholz RW (1997) Evidence regarding the possible role of c-phycoerythrin in ultraviolet-B tolerance in a thermophilic cyanobacterium. Photochem Photobiol 65: 833–842

    CAS  Google Scholar 

  • Yopp JH, Albright G and Miller DM (1979) Effects of antibiotics and ultravioletradiation on the halophilicblue-green alga, Aphanothcce halophytica. Botanica Marina 22: 167–272

    Google Scholar 

  • Young AR, Bjom LO, Moan J and Nultsch W (eds) (1993) Environmental UV Photobiology. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Castenholz, R.W., Garcia-Pichel, F. (2000). Cyanobacterial Responses to UV-Radiation. In: Whitton, B.A., Potts, M. (eds) The Ecology of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/0-306-46855-7_21

Download citation

  • DOI: https://doi.org/10.1007/0-306-46855-7_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4735-4

  • Online ISBN: 978-0-306-46855-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics