Skip to main content

Oil Pollution and Cyanobacteria

  • Chapter
The Ecology of Cyanobacteria

Summary

There is increasing evidence that ancient cyanobacteria were among the direct biogenic contributors to oil formation. This fact underlines the historical and ecological relations between these photosynthetic microorganisms and petroleum. Evidence that cyanobacteria are capable of hydrocarbon degradation is tentative, but preliminary studies indicate that some strains are capable of oxidizing aromatic and aliphatic oil constituents. Further, in cyanobacterial-dominated mats, the cyanobacteria live in natural association with hydrocarbon-degrading bacteria and fungi that occur in the cyanobacterial polysaccharide layers. Such mat associations flourish in oil-polluted coastal areas of subtropical regions like the Arabian Gulf. The combined activities of the cyanobacteria and the associated oil-degrading organotrophs appear to be crucial and effective in bioremediating such polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Al-Hasan RH, Al-Bader DA, Sorkhoh NA, Radwan SS (1998) Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria form oil-contaminated coasts of the Arabian Gulf. Mar Biol 130: 521–527

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Sorkhoh NA, Al-Bader D and Radwan SS (1994) Utilization of hydrocarbons by cyanobacteria from microbial mats on oily coasts of the Gulf. Appl Microbiol Biotechnol 41: 615–619

    CAS  Google Scholar 

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211: 132–138

    CAS  PubMed  Google Scholar 

  • Allison RK, Skipper HE, Reid MR, Short WA and Hogan GL (1953) Studies on the photosynthetic reaction I. The assimilation of acetate by Nostoc muscorum. J Biol Chem 204: 197–205

    CAS  PubMed  Google Scholar 

  • Anderson SL and McIntosh L (1991) Light-activated heterotrophic growth of the cyanobacterium Synechocystissp. strain PCC 6803: a blue light-requiring process. J Bacteriol 173: 2761–2767

    CAS  PubMed  Google Scholar 

  • Batterton J, Winters K and Van Baalen C (1978a) Anilines: selective toxicity to blue-green algae. Science 199: 1068–1070

    CAS  PubMed  Google Scholar 

  • Batterton J, Winters K and VanBaalen C (1978b) Sensitivity of three microalgae to crude oils and fuel oils. Marine Environ Res 1:31–41

    Article  CAS  Google Scholar 

  • Boon JJ and De Leeuw JW (1987) Organic geochemical aspects of cyanobacterial mats. In: Fay P and Van Baalen C (eds) The Cyanobacteria pp 471–492, Elsevier Science Publishers, Amsterdam, New York, Oxford

    Google Scholar 

  • Bottomley PJ and Van Baalen C (1978) Characteristics of heterotrophic growth in the blue-green alga Nostoc sp. strain Mac. J Gen Microbiol 107: 309–318

    CAS  Google Scholar 

  • Boulton CA and Ratledge C (1984) The physiology of hydrocarbon utilizing microorganisms. In: Wiesman A (ed. ) Topics in Fermentation and Enzyme Technology, Vol 9, pp 11–77, Ellis Horwood, Chichester, UK

    Google Scholar 

  • Biihler M and Schindler J (1984) Aliphatic hydrocarbons. In; Rehm H-J and Reed G (eds) Biotechnology-A Comprehensive Treatise in 8 Volumes, Vol 6a, pp 329–385, Verlag Chemie, Weinheim, Germany

    Google Scholar 

  • Carr NG and Pearce J (1966) Photobeterotropbism in blue-green algae. Biochem J 99: 28–29

    Google Scholar 

  • Catelani D, Sorlini C and Treccani V (1971) The metabolism of biphenyl by Pseudomonas putida. Experientia 27: 1173–1174

    CAS  PubMed  Google Scholar 

  • Cerniglia CE, Freeman JP, Althaus JR and Van Baalen C (1983) Metabolism and toxicity of 1-and 2-methylnaphthalene and their derivatives in cyanobacteria. Arch Microbiol 136: 177–183

    Article  CAS  Google Scholar 

  • Cerniglia CE, Freeman JP and Van Baalen C (1981) Biotransformation and toxicity of aniline and aniline derivatives in cyanobacteria. Arch Microbiol 130: 272–275

    Article  CAS  PubMed  Google Scholar 

  • Cemiglia CE and Gibson DT (1977) Metabolism of naphthalene by Cunninghamella elegans. Appl Environ Microbiol 34: 363–370

    Google Scholar 

  • Cerniglia CE, Gibson DT and Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Comm 88: 50–58

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Gibson DT and Van Baalen C (1980a) Oxidation of naphtalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Cerniglia CE, Lambert KJ, Miller DW and Freeman JP (1984) Transformation of 1-and 2-methylnaphthalene by Cunninghamella elegans. Appl Environ Microbiol 47: 111–118

    CAS  PubMed  Google Scholar 

  • Cerniglia CE, Van Baalen C and Gibson DT (1980b) Oxidation of biphenyl by the cyanobacterium Oscillatoria sp. strain JCM. Arch Microbiol 125: 203–207

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Van Baalen C and Gibson DT (1980c) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp strain JCM. J Gen Microbiol 116: 485–494

    CAS  Google Scholar 

  • Cobley JG, Zerweck E, Reyes R, Mody A, Seludo-Unson JR, Jaeger H, Weerasuriya S and Navankasattusas S (1993) Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coli into the chromatically adapting cyanobacterium Fremyella diplosiphon. Plasmids 30: 90–105

    CAS  Google Scholar 

  • Colwell RR and Walker JD (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. Crit Rev Microbiol 5: 423–445

    CAS  Google Scholar 

  • Cooney JJ, Silver SA and Beck EA (1985) Factors influencing hydrocarbon degradation in three freshwater lakes. Microb Ecol 11:127–137

    Article  CAS  Google Scholar 

  • Dodge RH, Cemiglia CE and Gibson DT (1979) Fungal metabolism of biphenyl. Biochem J 178: 223–230

    CAS  PubMed  Google Scholar 

  • Ellis BE (1977) Degradation of phenolic compounds by fresh-water algae. Plant Sci Lett 8: 213–216

    CAS  Google Scholar 

  • Fay P (1965) Heterotrophy and nitrogen fixation in Chlorogloea fritschii Mitra. J Gen Microbiol 39: 11–20

    CAS  PubMed  Google Scholar 

  • Fay P and Fogg GE (1962) Studies on nitrogen fixation by blue-green algae III. Growth and nitrogen fixation in Chlorogloea fritschii Mitra. Arch Mikrobiol 42: 310–321

    Article  CAS  PubMed  Google Scholar 

  • Fitzsimons AG and Smith RV (1984) The isolation and growth of axenic cultures of planktonic blue-green algae. Br Phycol J 19: 156–162

    Google Scholar 

  • Fusey P and Oudot J (1984) Relative influence of physical removal and biodegradation in the depuration of petroleum contaminated seashore sediments. Mar Pollut Bull 15: 136–141

    CAS  Google Scholar 

  • Gaur JP and Kumar HD (1981) Growth response of four microalgae to three crude oils and a furnace oil. Environ Pollut Ser A 25: 77–85

    Article  Google Scholar 

  • Gaur JP and Singh AK (1990) Growth, photosynthesis and nitrogen fixation of Anabaena doliolum exposed to Assam-crude extract. Bull Environ Contam Toxicol 44: 494–500

    Article  CAS  PubMed  Google Scholar 

  • Gibson DT (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed. ) Microbial Degradation of Organic Compounds, pp 181–251, Marcel Dekker, New York

    Google Scholar 

  • Gibson DT, Roberts RL, Wells MG and Kobal VM (1973) Oxidation of biphenyl by a Beijerinckiaspecies. Biochem Biophys Res Commun 50: 211–219

    Article  CAS  PubMed  Google Scholar 

  • Goma G, Pareilleux A and Durand G (1976) Specific hydrocarbon solubilization during growth of Candida lipolytica. J Ferment Technol 51: 616–621

    Google Scholar 

  • Gordon DC and Prouse NJ (1973) The effects of three oils on marine phytoplankton photosynthesis. Mar Biol 22: 329–333

    Article  Google Scholar 

  • Gothoskar SV, Benjamin T, Roller PP and Weisburger EK (1979) N-Formylation of an aromatic amine as a metabolic pathway. Xenobiotica 9: 533–537

    CAS  PubMed  Google Scholar 

  • Grimalt JO, De Wit R, Teixidor P and Albaiges J (1992) Lipid biogeochemistry of Phorrnidium and Microcoleus mats. Organic Geochem 19: 509–530

    Article  CAS  Google Scholar 

  • Harder R (1917) Ernährungsphysiologische Untersuchungen an Cyanophyceen, hauptsachlich dem endophytischen Nosroc punctiforme. Z Bot 9: 145–245

    Google Scholar 

  • Hoare DS, Hoare SL and Moore RB (1967) The photoassimilation of organic compounds by autotrophic blue-green algae. J Gen Microbiol 49: 351–370

    CAS  Google Scholar 

  • Hoare DS, Ingram M, Thurston EL and Walkup R (1971) Dark heterotrophic growth of an endophytic blue-green alga. Arch Mikrobiol 78: 310–321

    Article  CAS  Google Scholar 

  • Horowitz A and Atlas RM (1977) Continuous open flow-through system as a model for oil degradation in the Arctic Ocean. Appl Environ Microbiol 33: 647–653

    CAS  PubMed  Google Scholar 

  • Ingram LO, Calder JA, Van Baalen C, Plucker FE and Parker PL (1973) Role of reduced exogenous organic compounds in the physiology of the blue-green bacteria (algae): Photoheterotrophic growth of a heterotrophic blue-green bacterium. J Bact 114: 695–700

    CAS  PubMed  Google Scholar 

  • Jansson C, Debus RJ, Osiewcz HD, Gurevitz M and McIntosh L (1987) Construction of an obligate photoheterotrophic mutant of the cyanobacterium Synechocystis 6803. Plant Physiol 85: 1021–1025

    CAS  Google Scholar 

  • Jobson A, Cook FD and Westlake DWS (1972) Microbial utilization of crude oil. Appl Microbiol 23: 1082–1089

    CAS  PubMed  Google Scholar 

  • Jones DM, Douglas AG, Parkes RJ, Taylor J, Giger W and Schaffner C (1983) The recognition of biodegraded petroleum-derived aromatic hydrocarbons in recent marine sediments. Mar Pollut Bull 14: 103–108

    CAS  Google Scholar 

  • Jordan DC, McNicol PJ and Marshall MR (1978) Biological nitrogen fixation in the terrestrial environment of a high Arctic ecosystem. Can J Microbiol 24: 643–649

    CAS  PubMed  Google Scholar 

  • Josef-Espadellier F, Astier C, Evans EH and Carr NG (1978) Cyanobacteria grown under photoautotrophic, photoheterotrophic and heterotrophic regimes: sugar metabolism and carbon dioxide fixation. FEMS Microbiol Lett 4: 261–264

    Google Scholar 

  • Khoja TM and Whitton BA (1971) Heterotrophic growth of blue-green algae. Arch Mikrobiol 79: 280–282

    Article  Google Scholar 

  • Kiyohara T, Fujita Y, Hattori A and Watanabe A (1960) Heterotrophic culture of a blue-green alga, Tolypothrix tenuis. J Gen Appl Microbiol Tokyo 6: 176–182

    Google Scholar 

  • Klug MJ and Markovetz AJ (1967) Degradation of hydrocarbons by members of the genus Candida. II. Oxidationof n-alkanes and 1-alkanes by Candida lipolytica. J Bacteriol 93:1847–1852

    CAS  PubMed  Google Scholar 

  • Klug MJ and Markovetz AJ (1971) Utilization of aliphatic hydrocarbons by microorganisms. Adv Microb Physiol 5:1–43

    CAS  PubMed  Google Scholar 

  • Kuritz T and Wolk P (1995) Use of filamentous cyanbacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61: 234–238

    CAS  PubMed  Google Scholar 

  • Lee CC, Craig WK and Smith PJ (1974) Water-soluble hydrocarbons from crude oil. Bull Environ Contam Toxicol 12: 212–216

    Article  CAS  PubMed  Google Scholar 

  • Levi JD, Shenman JL and Ebbon GP (1979) Biomass from liquid n-alkanes. In: Rose AH (ed.) Economic Microbiology, Vol.4, Academic Press, London

    Google Scholar 

  • Malinski E, Witkowski A, Synak E, Szafranck J, Osterroht Ch and Pihlaja K (1988) Hydrocarbon geochemistry of siliciclastic microbial laminated deposits from Puk Bay, Polland. Organic Geochem 12: 81–88

    CAS  Google Scholar 

  • Matsumoto GI, Akiyama M, Watanuki K and Torii T (1990) Unusual distributions of long-chain n-alkanes and n-alkenes in Antarctic soil. Organic Geochem 15: 403–412

    CAS  Google Scholar 

  • Matsumoto GI and Watanuki K (1990) Geochemical features of hydrocarbons and fatty acids in sediments of the inland hydrothermal environments of Japan. Organic Geochem 15: 199–208

    CAS  Google Scholar 

  • McCann J, Choi E, Yamasaki E and Ames BN (1975) Detection of carcinogensas mutagens in the Salmonella microsome test: assay of 300 chemicals. Proc Natl Acad Sci USA 72: 5135–5139

    CAS  PubMed  Google Scholar 

  • Meyer T and Scheline RR (1976) The metabolism of biphenyl. II. Phenolic metabolites in the rat. Acta Pharacol Toxicol 39: 419–441

    CAS  Google Scholar 

  • Miller EC and Miller JA (1974) Biochemical mechanisms of chemical carcinogenesis. In: Bush H (ed.) Molecular Biology of Cancer, pp 377–402, Academic Press, Inc, New York

    Google Scholar 

  • Miller JS and Allen MM (1972) Carbon utilization patterns in the heterotrophic blue-green alga Chlorogloea fritschii. Arch Microbiol 86:1–12

    CAS  Google Scholar 

  • Morales-Loo MR and Goutx M (1996) Effects of water soluble fraction of the Mexican crude oil “Isthmus Cactus” on growth, cellular content of chlorophyll a and lipid composition of planktonic microalgae. Marine Biol 104: 503–509

    Google Scholar 

  • More JE, Williams MM and Smith AJ (1979) Features of organic growth substrate utilization by cyanobacteria In: Nichols JM (ed.) Proceedings of the Third International Symposium on Photosynthetic Prokaryotes, p B49, University of Liverpool, Oxford

    Google Scholar 

  • Nakahara T, Hisatsuka K and Minoda Y (1981) Effect of hydrocarbon emulsification on growth and respiration of microorganisms in hydrocarbon media. J Ferment Technol 59: 415–418

    CAS  Google Scholar 

  • Nmo ML (1985) Oxidation of aromatic hydrocarbons by marine cyanobacteria. Thesis, The University of Texas at Austin, Austin TX 78712

    Google Scholar 

  • Narro ML (1987) Petroleum toxicity and the oxidation of aromatic hydrocarbons. In: Fay P and Van Baalen C (eds) The Cyanobacteria, pp 493–511, Elsevier Science Publishers, Amsterdam, New York, Oxford

    Google Scholar 

  • O’Brien PY and Dixon PS (1976) The effects of oil and oil components on algae: a review. Br Phycol J 11: 115–142

    Google Scholar 

  • Oil in the Sea. Inputs, Fates and Effects (1985) National Research Council, National Academy Press, Washington DC

    Google Scholar 

  • Pearce J and Carr NG (1967) The metabolism of acetate by the blue-green alga Anabaena variabilis and Anacystis nidulans. J Gen Microbiol 49:301–313

    CAS  PubMed  Google Scholar 

  • Pearce J, Leach CK and Carr NG (1969) The incomplete tricarboxylic acid cycle in the blue-green alga Anabaena variabilis. J Gen Microbiol 55: 371–378

    CAS  PubMed  Google Scholar 

  • Pelroy RA and Bassham JA (1973) Efficiency of energy conversion of aerobic glucose metabolism in Aphanocapsa 67 14. J Bacteriol 115: 937–942

    CAS  PubMed  Google Scholar 

  • Pelroy RA, Rippka R and Stanier RY (1972) The metabolism of glucose by unicellular blue-green algae. Arch Mikrobiol 87: 303–322

    Article  CAS  PubMed  Google Scholar 

  • Peniguel G, Couderc R and Seyve C (1989) Les microalgues actuelles et fossiles-inlerets stratigraphique et petrolier. Bulletin-Centresde Recherche Exploration-ProductionElf-Aquitaine 13: 455–482

    Google Scholar 

  • Perry JJ (1984) Microbial metabolism of cyclicalkanes. In: Atlas RM (ed.) Petroleum Microbiology, pp 61–98, Macmillan Publ. Co. New York.

    Google Scholar 

  • Raboy B and Padan E (1978) Active transport of glucose and α-methlglucoside in the cyanobacterium Plectonema boryanum. J Biol Chem 253: 3287–3291

    CAS  PubMed  Google Scholar 

  • Raboy B, Padan E and Shilo M (1976) Heterotrophic capacities of Plectonema boryanum. Arch Microbiol 110: 77–85

    Article  CAS  PubMed  Google Scholar 

  • Radwan SS and Sorkhoh NA (1993) Lipids of n-alkane utilizing microorganisms and their application potential. Adv Appl Microbiol 39:29–90

    CAS  Google Scholar 

  • Radwan SS, Sorkhoh NA, Felzmann H and El-Desouky A (1996) Uptake and utilization of n-octacosane and n-nonacosane by Arthrobacter nicotianae KCC B35. J Appl Bacteriol 80: 370–374

    CAS  PubMed  Google Scholar 

  • Ramsay B, McCarthy I, Guerra-Santos L, Kapelli 0 and Fiechter A (1988) Biosurfactant production and diauxic growth of Rhodococcus aurantiacus when using n-alkanes as the carbon source. Can J Microbiol 34:1209–1212

    CAS  Google Scholar 

  • Rapp P, Bock H, Wray W and Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol 115: 491–503

    CAS  Google Scholar 

  • Rippka R (1972) Photoheterotrophy and chemoheterotrophy among unicellular blue-green algae. Arch Mikrobiol 87: 93–98

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61

    Google Scholar 

  • Robinson N, Eglinton G, Cranwell PA and Zeng YB (1989) Messel oil shale (Western Germany); assessment of depositional palaeoenvironment from the content of biological marker compounds. Chemical Geol 76:153–173

    CAS  Google Scholar 

  • Rosenberg M, Gutnick D and Rosenberg E (1980) Adherence of bacteria to hydrocarbons: A simple method for measuring cell surface hydrophobicity. FEMS Microbiol Lett 9: 29–33

    Article  CAS  Google Scholar 

  • Schenck PA and De Leeuw JW (1982) Molecular organic geochemistry. In: Hutzinger O (ed.) Handbook of Environmental Chemistry, Vol. 1B, pp 111–129, Springer Verlag, Berlin

    Google Scholar 

  • Schouten S, Schoell M, Rijpstra WIP, Damste JSS and de Leeuw JW (1997) Amolecular stable carbon isotope study of organic matter in immature Miocene Monterey sediments, Pismo basin. Geochim et Cosmochim Acta 61(10): 2065–2082

    CAS  Google Scholar 

  • Schroeder E and Rehm HJ (1981) Degradationoflongchain n-alkanes by Chlorococcales. Eur J Appl Microbiol Biotechnol 12: 36–38

    CAS  Google Scholar 

  • Shiea J, Brassel SC and Ward DM (1990) Mid-chain branched mono-and dimethyl alkanes in hot spring cyanobacterial mats:a direct biogenic source from branched alkanes in ancient sediments? Organic Geochem 15: 223–231

    Article  CAS  Google Scholar 

  • Shiea J, Brassel SC and Ward DM (1991) Comparative analysis of extractable lipids in hot spring cyanobacterial mats and their component photosynthetic bacteria. OrganicGeochem 17:309–319

    CAS  Google Scholar 

  • Sikkema J, DeBont JAM and Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59: 201–222

    CAS  PubMed  Google Scholar 

  • Singer ME and Finnerty WR (1984) Microbial metabolism of straight chain and branched alkanes. In: Atlas RM (ed.) Petroleum Microbiology pp 1–60, Macmillan Pub. Co, NewYork

    Google Scholar 

  • Singh AK and Gaur JP (1988) Effect of Assam crude on photosynthesis and associated electron transport system in Anabaena doliolum. Bull Environ Contam Toxicol 41: 776–780

    Article  CAS  PubMed  Google Scholar 

  • Smith AJ (1982) Modes of cyanobacterial carbon metabolism. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, Chapter 3, pp 47–85, University of California Press, Berkeley

    Google Scholar 

  • Smith AJ, London J and Stanier RY (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol 94: 972–983

    CAS  PubMed  Google Scholar 

  • Smith R and Rosazza J (1974) Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch Biochem Biophys 161:551–558

    Article  CAS  PubMed  Google Scholar 

  • Sorkhoh NA, Al-Hasan RH, Khanafer M and Radwan SS (1995) Establishment of oil-degrading bacteria associated with cyanobacteria in oil-polluted soil. J Appl Bacteriol 78:194–199

    CAS  PubMed  Google Scholar 

  • Sorkhoh N, Al-Hasan R, Radwan S and Hopner T (1992) Self-cleaning of the Gulf. Nature (London) 359:109

    Article  Google Scholar 

  • Soto C, Hellebust JA, Hutchinson TC and Sawa T (1975) Effect of naphthalene and aqueous crude oil extracts on the green flagellate Chlamydomonas angulosa. I. Growth. Can J Bot 53: 109–117

    CAS  Google Scholar 

  • Thiel V, MerzPreiss M, Reitner J, Michaelis W (1997) Biomarker studies on microbial carbonates: Extractable lipids of a calcifying cyanobacterial mat (Everglades, USA). Facies 36: 163–172

    Google Scholar 

  • Vandermeulen JH and Ahem TP (1976) Effect of petroleum hydrocarbons on the algal physiology: review and progress report. In: Lockwood APM (ed.) Effects of Pollution on Aquatic Organisms, pp 107–125, Cambridge University Press, London

    Google Scholar 

  • Vermass WFJ, Williams JGK, Rutherford AW, Mathis P and Amtzen CJ (1986) Genetically engineered mutant of the cyanobacterium Synechocystis 6803 lacks the photosystem II chlorophyll binding protein CP-47. Proc Natl Acad Sci USA 83: 9476–9477

    Google Scholar 

  • Walker JD, Colwell RR and Petrakis L (1976) Biodegradation rates of componentsof petroleum. Can J Microbiol 22:1209–1213

    CAS  PubMed  Google Scholar 

  • Walker JD, Colwell RR, Vaituzis Z and Meyer SA (1975) Petroleum-degrading achlorophyllous alga Prototheca zopfi. Nature (London) 254: 423–424

    CAS  Google Scholar 

  • White AW and Shilo M (1975) Heterotrophic growth of the filamentous blue-green alga Plectonema boryanum. Arch Mikrobiol 102: 123–127

    CAS  Google Scholar 

  • Wiebkin P, Fry JR, Jones CA, Lowing R and Bridges JW (1976) Themetabolism of biphenyl by isolated viablerat hepatocytes. Xenobiotica 6: 725–743

    CAS  PubMed  Google Scholar 

  • Williams LA and Reimers C (1983) Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes; preliminary report. Geology (Boulder) 11: 267–269

    Google Scholar 

  • Willingham TO, Nagy B, Nagy LN, Krinsley DH and Mossman DH (1985) Uranium-bearing stratiform organic matter in paleoplacers of the lower Huronian Supergroup, Elliot Lake-Blind River region, Canada. Can J Earth Sci 22:1930–1944

    CAS  PubMed  Google Scholar 

  • Winters K, Batterton JC, O’Donnell R and Van Baalen C (1977) Fuel oils: Chemical characterization and toxicity to microalgae. In: Giam CS (ed.) Pollutant Effects on Marine Organisms,pp 167–189, Lexington Books, DC Health, Lexington MA

    Google Scholar 

  • Winters K, O’Donnell R, Batterton JC and Van Baalen C (1976) Water-soluble components of four fuel oil: chemical characterization and effects on growth of microalgae. Mar Biol 36: 269–276

    Article  CAS  Google Scholar 

  • Wodzinski RS and Coyle JE (1974) Physical state of phenanthrene for utilization by bacteria. Appl Microbiol 27:1081–1084

    CAS  PubMed  Google Scholar 

  • Wolk CP and Shaffer PW (1976) Heterotrophic micro-and macrocultures of nitrogen-fixing cyanobacterium. Arch Mikrobiol 110: 145–147

    CAS  Google Scholar 

  • Yano I, Furukawa Y and Kusunose M (1971) Fatty acid composition of Arthrobacter simplex grown on hydrocarbons. Occurrence of α-hydroxy-fatty acids. EurJBiochem 23:220–228

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Radwan, S.S., Al-Hasan, R.H. (2000). Oil Pollution and Cyanobacteria. In: Whitton, B.A., Potts, M. (eds) The Ecology of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/0-306-46855-7_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-46855-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4735-4

  • Online ISBN: 978-0-306-46855-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics