Skip to main content

Nickel Containing CO Dehydrogenases and Hydrogenases

  • Chapter
Enzyme-Catalyzed Electron and Radical Transfer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 35))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Adams, M. W., 1990, The structure and mechanism of iron-hydrogenases, Biochim. Biophys. Acta. 1020(2):115–145.

    Article  CAS  PubMed  Google Scholar 

  • Adams, M. W., Eccleston, E., and Howard, J. B., 1989, Iron-sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurianum, Proc. Natl. Acad. Sci. USA 86(13):4932–4936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albracht, S. P. J., 1994, Nickel hydrogenases: In search of the active site, Biochim. Biophys. Acta. 1188(3):167–204.

    Article  PubMed  Google Scholar 

  • Amara, P., Volbeda, A., Fontecilla-Camps, J. C., and Field, M. J., 1999, A Hybrid Density Functional Theory/Molecular Mechanics Study of Nickel-Iron Hydrogenase: Investigation of the Active Site Redox States, J. Am. Chem. Soc. 121(18):4468–4477.

    Article  CAS  Google Scholar 

  • Anderson, M. E., DeRose, V. J., Hoffman, B. M., and Lindahl, P. A., 1993, Identification of a cyanide binding site in CO dehydrogenase from Clostridium thermoaceticum using EPR and ENDOR spectroscopies, J. Am, Chem. Soc. 115:12204–12205.

    Article  CAS  Google Scholar 

  • Aono, S., Nakajima, H., Saito, K., and Okada, M., 1996, A novel heme protein that acts as a carbon monoxide-dependent transcriptional activator in Rhodospirillum rubrum, Biochem. Biophys. Res. Commun. 228(3):752–756.

    Article  CAS  PubMed  Google Scholar 

  • Bagley, K. A., Duin, E. C., Roseboom, W., Albracht, S. P. J., and Woodruff, W. H., 1995, Infrared-detectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum, Biochem. 34(16):5527–5535.

    Article  CAS  Google Scholar 

  • Bagyinka, C., Whitehead, J. P., and Maroney, M. J., 1993, An X-ray absorption spectroscopic study of nickel redox chemistry in hydrogenase, J. Am. Chem. Soc. 115:3576–3585.

    Article  CAS  Google Scholar 

  • Barondeau, D. P., and Lindahl, P. A., 1997, Methylation of carbon monoxide dehydrogenase from Clostridium thermoaceticum and mechanism of acetyl coenzyme A synthesis, J. Am. Chem. Soc. 119(17):3959–3970.

    Article  CAS  Google Scholar 

  • Bartholomew, G. W., and Alexander, M., 1979, Appl. Environ. Microbiol. 37:932–937.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butt, J. N., Filipiak, M., and Hagen, W. R., 1997, Direct electrochemistry of Megasphaera elsdenii iron hydrogenaseóDefinition of the enzymeís catalytic operating potential and quantitation of the catalytic behaviour over a continuous potential range, Eur. J. Biochem. 245(1):116–122.

    Article  CAS  PubMed  Google Scholar 

  • Chabriere, E., Charon, M.-H., Volbeda, A., Pieulle, L., Hatchikian, E. C., and Fontecilla-Camps, J.-C., 1999, Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate, Nat. Struct. Biol. 6(2):182–190.

    Article  CAS  PubMed  Google Scholar 

  • Conrad, R., Ed. 1995, Soil microbial processes involved in production and consumption of atmospheric trace gases. Advances in microbial ecology. New York, Plenum Press.

    Google Scholar 

  • de Lacey, A. L., Hatchikian, E. C., Volbeda, A., Frey, M., Fontecilla Camps, J. C., and Fernandez, V. M., 1997, Infrared spectroelectrochemical characterization of the [NiFe] hydrogenaseof Desulfovibrio gigas, J. Am. Chem. Soc. 119(31):7181–7189.

    Article  Google Scholar 

  • DeRose, V. J., Telser, J., Anderson, M. E., Lindahl, P. A., and Hoffman, B. M., 1998, A multinuclear ENDOR study of the C-cluster in CO dehydrogenase from Clostridium thermoaceticum: Evidence for HxO and histidine coordination to the [Fe4S4] center, J. Am. Chem. Soc. 120(34):8767–8776.

    Article  CAS  Google Scholar 

  • Diekert, G., Hansch, M., and Conrad, R., 1984, Acetate synthesis from 2 CO2 in acetogenic bacteria: is carbon monoxide an intermediate?, Arch. Microbiol. 138:224–228.

    Article  CAS  Google Scholar 

  • Dole, F., Fournel, A., Magro, V., Hatchikian, E. C., Bertrand, P., and Guigliarelli, B., 1997, Nature and electronic structure of the NióX dinuclear center of Desulfovibrio gigas hydrogenase. Implications for the enzymatic mechanism, Biochem. 36(25):7847–7854.

    Article  CAS  Google Scholar 

  • Dore, J., Morvan, B., Rieu-Lesme, F., Goderel, I., Gouet, P., and Pochart, P., 1995, Most probable number enumeration of H2-utilizing acetogenic bacteria from the digestive tract of animals and man, FEMS Microbiol. Lett. 130(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  • Eitinger, T., and Friedrich, B., 1997, Microbial nickel transport and incorporation into hydrogenases. Transition Metals in Microbial Metabolism. G. Winkelmann and C. Carrano. London, Harwood Academic Publishers: 235–256.

    Google Scholar 

  • Fan, C., Gorst, C. M., Ragsdale, S. W., and Hoffman, B. M., 1991, Characterization of the Nió FeóC complex formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR, Biochem. 30:431–435.

    Article  CAS  Google Scholar 

  • Farmer, P. J., Reibenspies, J. H., Lindahl, P. A., and Darensbourg, M. Y., 1993, J. Am. Chem. Soc. 115:4665–4574.

    Article  CAS  Google Scholar 

  • Fontecilla-Camps, J.-C., and Ragsdale, S. W., 1999, Nickel-iron-sulfur active sites: hydrogenase and CO dehydrogenase. Advances in Inorganic Chemistry. A. G. Sykes and R. Cammack. San Diego, Academic Press, Inc. 47:283–333.

    Google Scholar 

  • Fox, J. D., He, Y. P., Shelver, D., Roberts, G. P., and Ludden, P. W., 1996, Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum, J. Bacteriol. 178(21):6200–6208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcin, E., Vernede, X., Hatchikian, E., Volbeda, A., Frey, M., and Fontecilla-Camps, J., 1999, The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center, Structure 7(5):557–566.

    Article  CAS  PubMed  Google Scholar 

  • Geierstanger, B. H., Prasch, T., Griesinger, C., Hartmann, G., Buurman, G., and Thauer, R. K., 1998, Catalytic mechanism of the metal-free hydrogenase from methanogenic archaea: Reversed stereospecificity of the catalytic and noncatalytic reaction, Angew. Chem. Int. Ed. 37(23):3300–3303.

    Article  CAS  Google Scholar 

  • Goldman, C. M., and Mascharak, P. K., 1995, Reactions of H2 with the Nickel Site(s) of the [FeNi] and [FeNiSe] Hydrogenases: What do the Model Complexes Suggest?, Comment Inorg. Chem. 18:1–25.

    Article  CAS  Google Scholar 

  • Grahame, D. A., and Demoll, E., 1995, Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri, Biochem. 34(14):4617–4624.

    Article  CAS  Google Scholar 

  • Guerlesquin, F., Dolla, A., and Bruschi, M., 1994, Involvement of electrostatic interactions in cytochrome c complex formations, Biochimie 76(6):515–23.

    Article  CAS  PubMed  Google Scholar 

  • Guest, J. R., 1981, Partial replacement of succinate dehydrogenase function by phage-and plasmid-specified fumarate reductase in Escherichia coli, J. Gen. Microbiol. 122:171–179.

    CAS  PubMed  Google Scholar 

  • Happe, R. P., Roseboom, W., and Albracht, S. P., 1999, Pre-steady-state kinetics of the reactions of [NiFe]-hydrogenase from Chromatium vinosum with H2 and CO, Eur. J. Biochem. 259(3):602–8.

    Article  CAS  PubMed  Google Scholar 

  • Happe, R. P., Roseboom, W., Pierik, A. J., Albracht, S. P. J., and Bagley, K. A., 1997, Biological activation of hydrogen, Nature 385(6612):126–126.

    Article  CAS  PubMed  Google Scholar 

  • Heo, J., Staples, C. R., and Ludden, P. W., 1999, Rhodospirillum rubrum CO dehydrogenase. Part 2. Spectroscopic investigation and assignment of spin-spin coupling signals, J. Am. Chem. Soc.: in press.

    Google Scholar 

  • Higuchi, Y., Ogata, H., Miki, K., Yasuoka, N., and Yagi, T., 1999, Removal of the bridging ligand atom at the NióFe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 A resolution [In Process Citation], Structure Fold. Des. 7(5):549–56.

    Article  CAS  PubMed  Google Scholar 

  • Higuchi, Y., Yagi, T., and Yasuoka, N., 1997, Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis, Structure 5:1671–1680.

    Article  CAS  PubMed  Google Scholar 

  • Hirst, J., Sucheta, A., Ackrell, B. A. C., and Armstrong, F. A., 1996, Electrocatalytic Voltammetry of Succinate Dehydrogenase: Direct Quantification of the Catalytic Properties of a Complex Electron-Transport Enzyme, J. Am. Chem. Soc. 118(21):5031–5038.

    Article  CAS  Google Scholar 

  • Holm, L., and Sander, C., 1999, Protein folds and families: sequence and structure alignments, Nucleic Acids Res. 27(1):244–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, H. F., Koch, S. A., Popescu, C. V., and Munck, E., 1997, Chemistry of iron thiolate complexes with CN-and CO. Models for the [Fe(CO)(CN)2)] structural unit in NióFe hydrogenase enzymes, J. Am. Chem. Soc. 119(35):8371–8372.

    Article  CAS  Google Scholar 

  • Hsu, T., Daniel, S. L., Lux, M. F., and Drake, H. L., 1990, Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions, J. Bacteriol. 172(1):212–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, T., Lux, M. F., and Drake, H. L., 1990, Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum, J. Bacteriol. 172:5901–5907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Z. G., Spangler, N. J., Anderson, M. E., Xia, J. Q., Ludden, P. W., Lindahl, P. A., and Münck, E., 1996, Nature of the C-cluster in Ni-containing carbon monoxide dehydrogenases, J. Am. Chem. Soc. 118(4):830–845.

    Article  CAS  Google Scholar 

  • Huber, C., and Wachtershauser, G., 1997, Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions [see comments], Science 276(5310): 245–7.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, B. E., Bhupathiraju, V. K., Tanner, R. S., Woese, C. R., and McInerney, M. J., 1999, Syntrophus aciditrophicus sp. nov., A new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms [In Process Citation], Arch. Microbial. 171(2):107–14.

    Article  CAS  Google Scholar 

  • Kr^ger, A., 1978, Biochim. Biophys. Acta. 505:129–145.

    Article  Google Scholar 

  • Kruger, H.-J., and Holm, R. H., 1990, J. Am. Chem. Soc. 112:2955–2963.

    Article  CAS  Google Scholar 

  • Kumar, M., Lu, W.-P., Liu, L., and Ragsdale, S. W., 1993, Kinetic evidence that CO dehydrogenase catalyzes the oxidation of CO and the synthesis of acetyl-CoA at separate metal centers, J. Am. Chem. Soc. 115:11646–11647.

    Article  CAS  Google Scholar 

  • Kumar, M., Lu, W.-P., and Ragsdale, S. W., 1994, Binding of carbon disufide to the site of acetyl-CoA synthesis by the nickel-iron-sulfur protein, CO dehydrogenase, from Clostridium thermoaceticum, Biochem. 33:9769–9777.

    Article  CAS  Google Scholar 

  • Kumar, M., and Ragsdale, S. W., 1992, Characterization of the CO binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum by infrared spectroscopy, J. Am. Chem. Soc. 114:8713–8715.

    Article  CAS  Google Scholar 

  • Lai, C. H., Lee, W. Z., Miller, M. L., Reibenspies, J. H., Darensbourg, D. J., and Darensbourg, M. Y., 1998, Responses of the Fe(CN)(2)(CO) unit to electronic changes as related to its role in [NiFe]hydrogenase, J. Am. Chem. Soc. 120(39):10103–10114.

    Article  CAS  Google Scholar 

  • Lenz, O., and Friedrich, B., 1998, A novel multicomponent regulatory system mediates H-2 sensing in Alcaligenes eutrophus, Proc. Natl. Acad. Sci. USA 95(21):12474–12479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liaw, W. F., Horng, Y. C., Ou, D. S., Ching, C. Y., Lee, G. H., and Peng, S. M., 1997, Distorted square planar Ni(II)-chalcogenolate carbonyl complexes [Ni(CO)(SPh)(n)(SePh)(3-n)]-(-) (n=0, 1, 2): Relevance to the nickel site in CO dehydrogenases and [NiFeSe] hydrogenase, J. Am. Chem. Soc. 119(39):9299–9300.

    Article  CAS  Google Scholar 

  • Lindahl, P. A., Münck, E., and Ragsdale, S. W., 1990, CO dehydrogenase from Clostridium thermoaceticum: EPR and electrochemical studies in CO2 and argon atmospheres, J. Biol. Chem. 265:3873–3879.

    CAS  PubMed  Google Scholar 

  • Lindahl, P. A., Ragsdale, S. W., and M,nck, E., 1990, M^ssbauer studies of CO dehydrogenase from Clostridium thermoaceticum, J. Biol. Chem. 265:3880–3888.

    CAS  PubMed  Google Scholar 

  • Maklashina, E., Berthold, D. A., and Cecchini, G., 1998, Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth, J. Bacteriol. 180(22):5989–5996.

    CAS  Google Scholar 

  • Maroney, M. J., Davidson, G., Allan, C. B., and Figlar, J., 1998, The structure and function of nickel sites in metalloproteins, Structure and Bonding 92:1–65.

    Article  CAS  Google Scholar 

  • Maynard, E. L., and Lindahl, P. A., 1999, Kinetic mechanism of acetyl-CoA synthesis catalyzed by CO dehydrogenase/acetyl-CoA synthase: preliminary evidence for a molecular tunnel, J. Biol. Inorg. Chem. 74:227.

    Google Scholar 

  • Menon, S., and Ragsdale, S. W., 1996, Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis, Biochem. 35(37):12119–12125.

    Article  CAS  Google Scholar 

  • Menon, S., and Ragsdale, S. W., 1997, Mechanism of the Clostridium thermoaceticum pyru-vate:ferredoxin oxidoreductase: Evidence for the common catalytic intermediacy of the hydroxyethylthiamine pyropyrosphate radical, Biochem. 36:8484–8494.

    Article  CAS  Google Scholar 

  • Menon, S., and Ragsdale, S. W., 1998, Role of the [4Feó4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetyl-CoA synthesis Biochem. 37(16):5689–5698.

    Article  CAS  Google Scholar 

  • Menon, S., and Ragsdale, S. W., 1999, The role of an iron-sulfur cluster in an enzymatic methylation reaction: methylation of CO dehydrogenase/acetyl-CoA synthase by the methylated corrinoid iron-sulfur protein, J. Biol. Chem. 274(17):11513–11518.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, O., 1985, Microbial gas metabolism, mechanistic, metabolic, and biotechnological aspects. P. R. K. and D. C. S. London, Academic press: 131–151.

    Google Scholar 

  • Montet, Y., Amara, P., Volbeda, A., Vernede, X., Hatchikian, E. C., Field, M. J., Frey, M., and Fontecilla-Camps, J. C., 1997, Gas access to the active site of NióFe hydrogenases probed by X-ray crystallography and molecular dynamics [letter], Nat. Struct. Biol. 4(7):523–526.

    Article  CAS  PubMed  Google Scholar 

  • Montet, Y., Garcin, E., Volbeda, A., Hatchikian, E. C., Frey, M., and Fontecilla-Camps, J. C., 1998, Structural basis for the catalytic mechanism of NiFe hydrogenase, Pure and Applied Chemistry 70(1):25–31.

    Article  CAS  Google Scholar 

  • Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E., and Fontecilla-Camps, J. C., 1999, Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center, Structure 7(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  • Odom, J. M., and Peck, H. D., Jr., 1984, Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio, Annu. Rev. Microbiol. 38:551–592.

    Article  CAS  PubMed  Google Scholar 

  • Olah, G. A., Hartz, N., Rasul, G., and Prokash, G. K. S., 1995, Electrophilic substitution of methane revisited, J. Am. Chem. Soc. 117: 1336–1343.

    Article  CAS  Google Scholar 

  • Pavlov, M., Siegbahn, P. E. M., Blomberg, M. R. A., and Crabtree, R. H., 1998, Mechanism of HóH activation by nickel-iron hydrogenase, J. Am. Chem. Soc. 120(3):548–555.

    Article  CAS  Google Scholar 

  • Pershad, H. R., Duff, J. L., Heering, H. A., Duin, E. C., Albracht, S. P., and Armstrong, F. A., 1999, Catalytic electron transport in chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H(+)/H(2) value [In Process Citation], Biochem. 38(28):8992–8999.

    Article  CAS  Google Scholar 

  • Peters, J. W., Lanzilotta, W. N., Lemon, B. J., and Seefeldt, L. C., 1998, X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution, Science 282(5395):1853–1858.

    Article  CAS  PubMed  Google Scholar 

  • Pierik, A. J., Hulstein, M., Hagen, W. R., and Albracht, S. P., 1998, A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases, Eur. J. Biochem. 258(2):572–578.

    Article  CAS  PubMed  Google Scholar 

  • Pierik, A. J., Schmelz, M., Lenz, O., Friedrich, B., and Albracht, S. P. J., 1998, Characterization of the active site of a hydrogen sensor from Alcaligenes eutrophus, FEBS Lett. 438(3):231–235.

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale, S. W., 1997,The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won, BioFactors 9:1–9.

    Google Scholar 

  • Ragsdale, S. W., Clark, J. E., Ljungdahl, L. G., Lundie, L. L., and Drake, H. L., 1983, Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum a nickel, iron-sulfur protein, J. Biol. Chem. 258: 2364–2369.

    CAS  PubMed  Google Scholar 

  • Ragsdale, S. W., Kumar, M., Seravalli, J., Qiu, D., and Spiro, T. G., 1996, Anaerobic carbon monoxide dehydrogenase. Microbial Growth on C1 compounds. M. E. Lidstrom and F. R. Tabita. Dordecht, Kluwer Publications: 191–196.

    Chapter  Google Scholar 

  • Ragsdale, S. W., Kumar, M., Zhao, S., Menon, S., Seravalli, J., and Doukov, T., 1998, Discovery Of A Bio-Organometallic Reaction Sequence Involving Vitamin B12 And Nickel/Iron-Sulfur Clusters. Vitamin B 12 and B 12 -Proteins. B. Krautler. Weinheim, Germany, Wiley-VCH: 167–177.

    Google Scholar 

  • Ragsdale, S. W., Lindahl, P. A., and M,nck, E., 1987, M^ssbauer, EPR, and optical studies of the corrinoid/FeóS protein involved in the synthesis of acetyl-CoA by Clostridium thermoaceticum, J. Biol. Chem. 262:14289–14297.

    CAS  PubMed  Google Scholar 

  • Ragsdale, S. W., and Ljungdahl, L. G., 1984, Hydrogenase from Acetobacterium woodii, Arch. Microbiol. 139:361–365.

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale, S. W., Ljungdahl, L. G., and DerVartanian, D. V., 1982, EPR evidence for nickel substrate interaction in carbon monoxide dehydrogenase from Clostridium thermoaceticum, Biochem. Biophys. Res. Commun. 108: 658–663.

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale, S. W., and Riordan, C. G., 1996, The Role Of Nickel In Acetyl-CoA Synthesis By The Bifunctional Enzyme CO Dehydrogenase/Acetyl-CoA Synthase: Enzymology And Model Chemistry, J. Bioinorganic Chemistry 1: 489–493.

    CAS  Google Scholar 

  • Ragsdale, S. W., and Wood, H. G., 1985, Acetate biosynthesis by acetogenic bacteria: evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis, J. Biol. Chem. 260: 3970–3977.

    CAS  PubMed  Google Scholar 

  • Ragsdale, S. W., Wood, H. G., and Antholine, W. E., 1985, Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum, Proc. Natl. Acad. Sci. USA 82:6811–6814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeve, J. N., Nolling, J., Morgan, R. M., and Smith, D. R., 1997, Methanogenesis: Genes, genomes, and whoís on first?, J. Bacteriol. 179(19):5975–5986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, L. M., and Lindahl, P. A., 1994, Analysis of oxidative titrations of Desulfovibrio gigas hydrogenase; Implications for the catalytic mechanism, Biochem. 33: 14339–14350.

    Article  CAS  Google Scholar 

  • Rousset, M., Montet, Y., Guigliarelli, B., Forget, N., Asso, M., Bertrand, P., FontecillaCamps, J. C., and Hatchikian, E. C., 1998, [3Feó4S] to [4Feó4S] cluster conversion in Desul-fovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis, Proc. Natl. Acad. Sci. USA 95(20):11625–11630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, M. J., Daia, D. E., and Hall, A. J., 1998, The emergence of life from FeS bubbles at alkaline hot springs in an acid ocean. Thermophiles: The keys to molecular evolution and the origin of life? M. W. W. Adams, L. G. Ljungdahl, and J. Wiegel. Washington, D.C., Taylor and Francis.

    Google Scholar 

  • Russell, W. K., Stalhandske, C. M. V., Xia, J. Q., Scott, R. A., and Lindahl, P. A., 1998, Spectroscopic, redox, and structural characterization of the Ni-labile and nonlabile forms of the acetyl-CoA synthase active. Site of carbon monoxide dehydrogenase, J. Am. Chem. Soc. 120(30):7502–7510.

    Article  CAS  Google Scholar 

  • Schulman, M., Ghambeer, R. K., Ljungdahl, L. G., and Wood, H. G., 1973, Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2, J. Biol. Chem. 248: 6255–6261.

    CAS  PubMed  Google Scholar 

  • Seravalli, J., Kumar, M., Lu, W.-P., and Ragsdale, S. W., 1997, Mechanism of carbon monoxide oxidation by the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum: Kinetic characterization of the intermediates, Biochem. 36: 11241–11251.

    Article  CAS  Google Scholar 

  • Seravalli, J., Kumar, M., Lu, W. P., and Ragsdale, S. W., 1995, Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions, Biochem. 34(24):7879–7888.

    Article  CAS  Google Scholar 

  • Seravalli, J., and Ragsdale, S. W., 2000, Channeling of Carbon Monoxide During Anaerobic Carbon Dioxide Fixation, Biochemistry 39: 1274–1277.

    Article  CAS  PubMed  Google Scholar 

  • Shanmugasundaram, T., Ragsdale, S. W., and Wood, H. G., 1988, Role of carbon monoxide dehydrogenase in acetate synthesis by the acetogenic bacterium, Acetobacterium woodii, BioFactors 1:147–152.

    CAS  PubMed  Google Scholar 

  • Shelver, D., Kerby, R. L., He, Y. P., and Roberts, G. P., 1997, CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein, Proc. Natl. Acad. Sci. USA 94(21):11216–11220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorgenfrei, O., Klein, A., and Albracht, S. P. J., 1993, FEBS Lett. 332: 291–297.

    Article  CAS  PubMed  Google Scholar 

  • Staples, C. R., Heo, J., Spangler, N. J., Kerby, R. L., Roberts, G. P., and Ludden, P. W., 1999, Rhodospirillum rubrum CO dehydrogenase. Part 1. Spectroscopic studies of CODH variant C531A indicate the presence of a binuclear [FeNi] Cluster, J. Am. Chem. Soc.: in press.

    Google Scholar 

  • Stephenson, M., and Stickland, L. H., 1931, XXVII. Hydrogenase: a bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme, Biochem. J. 25 (205–214).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thauer, R. K., 1998, Biochemistry of methanogenesis: a tribute to Marjory Stephenson, Microbiology Uk 144: 2377–2406.

    Article  CAS  Google Scholar 

  • Van der Zwaan, J. W., Albracht, S. P. J., Fontijn, R. D., and Slater, E. C., 1985, Monovalent nickel in hydrogenase from Chromatium vinosum. Light sensitivity and evidence for direct interaction with hydrogen, FEBS Lett. 179: 271–277.

    Article  PubMed  Google Scholar 

  • Verhagen, M. F., Wolbert, R. B., and Hagen, W. R., 1994, Cytochrome c553 from Desulfovibrio vulgaris (Hildenborough). Electrochemical properties and electron transfer with hydrogenase, Eur. J. Biochem. 221(2):821–829.

    Article  CAS  PubMed  Google Scholar 

  • Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V., and Snyder, S. H., 1993, Carbon monoxide: a putative neural messenger, Science 259: 381–384.

    Article  CAS  PubMed  Google Scholar 

  • Volbeda, A., Charon, M. H., Piras, C., Hatchikian, E. C., Frey, M., and Fontecilla-Camps, J. C., 1995, Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas, Nature 373(6515):580–587.

    Article  CAS  PubMed  Google Scholar 

  • Volbeda, A., Garcia, E., Piras, C., deLacey, A. L., Fernandez, V. M., Hatchikian, E. C., Frey, M., and FontecillaCamps, J. C., 1996, Structure of the [NiFe] hydrogenase active site: Evidence for biologically uncommon Fe ligands, J. Am. Chem. Soc. 118(51):12989–12996.

    Article  CAS  Google Scholar 

  • Whitehead, J. P., Gurbiel, R. J., Bagyinka, C., Hoffman, B. M., and Maroney, M. J., 1993, J. Am. Chem. Soc. 115: 5629–5635.

    Article  CAS  Google Scholar 

  • Williams, R. J. P., 1995, Purpose of proton pathways, Nature 376:643.

    Article  CAS  PubMed  Google Scholar 

  • Wolin, M. J., and Miller, T. L., 1994, Acetogenesis from CO2 in the human colonic ecosystem. Acetogenesis. H. L. Drake. New York, Chapman and Hall: 365–385.

    Chapter  Google Scholar 

  • Yagi, T., 1959, Enzymic oxidation of carbon monoxide, Biochim. Biophys. Acta. 30: 194–195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Ragsdale, S.W. (2000). Nickel Containing CO Dehydrogenases and Hydrogenases. In: Holzenburg, A., Scrutton, N.S. (eds) Enzyme-Catalyzed Electron and Radical Transfer. Subcellular Biochemistry, vol 35. Springer, Boston, MA. https://doi.org/10.1007/0-306-46828-X_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-46828-X_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46399-0

  • Online ISBN: 978-0-306-46828-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics