Skip to main content

Molecular Identification of O2 Sensors and O2-Sensitive Potassium Channels in the Pulmonary Circulation

  • Chapter
Oxygen Sensing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 475))

Abstract

Small, muscular pulmonary arteries (PAs) constrict within seconds of the onset of alveolar hypoxia, diverting blood flow to better-ventilated lobes, thereby matching ventilation to perfusion and optimizing systemic PO2. This hypoxic pulmonary vasoconstriction (HPV) is enhanced by endothelial derived vasoconstrictors, such as endothelin, and inhibited by endothelial derived nitric oxide. However, the essence of the response is intrinsic to PA smooth muscle cells in resistance arteries (PASMCs). HPV is initiated by inhibition of the Kv channels in PASMCs which set the membrane potential (BM). It is currently uncertain whether this reflects an initial inhibitory effect of hypoxia on the K+ channels or an initial release of intracellular Ca2+, which then inhibits K+ channels. In cither scenario, the resulting depolarization activates L-type, voltage gated Ca2+ channels, which raises cytosolic calcium levels [Ca+], and causes vasoconstriction. Nine families of Kv channels are recognized from cloning studies (Kv1–Kv9), each with subtypes (i.e. Kv1.1–1.6). The contribution of an individual Kv channel to the whole-cell current (IK) is difficult to determine pharmacologically because Kv channel inhibitors arc nonspecific. Furthermore, the PASMC’s IK, is an ensemble, reflecting activity of several channels. The K+ channels which set BM, and inhibition of which initiates HPV, conduct an outward current which is slowly inactivating, and which is blocked by the Kv inhibitor 4-aminopyridine (4-AP) but not by inhibitors of Ca+-or ATP-sensitive K+ channels. Using anti-Kv antibodies to immunolocalize and inhibit Kv channels, we showed that the PASMC contains numerous types of Kv channels from the Kv1and Kv2 families., Furthermore Kv1.5 and Kv2.1 may be important in determining the BM and play a role as effectors of HPV in PASMCs. While the Kv channels in PASMCs are the “effectors” of HPV, it is uncertain whether they are intrinsically O2-sensitive or arc under the control of an “O2 sensor”. Certain Kv channels are rich in cysteine, and respond to the local redox environment, tending to open when oxidized and close when reduced. Candidate sensors vary the PASMC redox potential in proportion to O2. These include Nicotinamide Adenine Dinucleotide Phosphate Oxidase, (NADPH oxidase) and the cytosolic ratio of reduced/oxidized redox couples (i.e. glutathione GSH/GSSG), as controlled by electron flux in the mitochondrial electron transport chain (ETC). Using a mouse that lacks the gp91phox component of NADPH oxidase, we have recently shown that loss of the gp91phox-containing NADPH oxidase as a source of activated oxygen species does not impair HPV. However, inhibition of complex 1 of the mitochondrial electron transport chain mimics hypoxia in that it inhibits IK, reduces the production of activated O2 species and causes vasoconstriction. We hypothesize that a redox O2 sensor, perhaps in the mitochondrion, senses O2 through changes in the accumulation of freely diffusible electron donors. Changes in the ratio of reduced/oxidized redox couples, such as NADH/NAD+ and glutathione (GSH/GSSG) can reduce or oxidize the K+ channels, resulting in alterations of PA tone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adda, S., Fleischmann, B., Freedman, B., Yu, M.,, DW,, H. and Kotlikoff, M., 1996, Expression and function of voltage dependent potassium channel genes in human airway smooth muscle, J Biol Chem271: 13239–13243.

    Google Scholar 

  2. Arai, H., Hori, S., Aramori, I., Ohkubo, H. and Nakanishi, S., 1990, Cloning and expression of a cDNA encoding an endothelin receptor, Nature 348: 730–732.

    Google Scholar 

  3. Archer, S., Eaton, J., Nelson, D., Kelly, P., Peterson, D. and Weir, E., 1988a, Oxygen radicals and antioxidant enzymes alter pulmonary vascular reactivity in the rat lung, J. Appl. Physiol. 66: 102–11.

    Google Scholar 

  4. Archer, S., Huang, J., Henry, T., Peterson, D. and Weir, E., 1993a, Aredox-based O2 sensor in rat pulmonary vasculature, Circ Res 73: 1100–1112.

    Google Scholar 

  5. Archer, S., Huang, J., Post, J., Hume, J. and Weir, E., 1993b, t-butyl hydroperoxide and glutathione modulate an outward K+ current in rat pulmonary vascular smooth muscle cells, Circulation 88: I-143.

    Google Scholar 

  6. Archer, S., McMurtry, I. and Weir, E., 1988b, Mechanisms of acute hypoxic and hyperoxic changes in pulmonary vascular reactivity, in Weir, E.K. and Reeves, J.T. 241–289

    Google Scholar 

  7. Archer, S., Nelson, D., Eaton, J. and Weir, E., 1986a, Changes in glutathione status parallel changes in pulmonary vascular reactivity, Proc. Int. Union Physiol. Sci. 16: 448.

    Google Scholar 

  8. Archer, S., Tolins, J., Raij, L. and Weir, E., 1989a, Hypoxic pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium derived relaxing factor, Biochem BiophysResComm164: 1198–1205.

    Google Scholar 

  9. Archer, S., Will, J. and Weir, E., 1986b, Redox status in the control of pulmonary vascular tone, Herz 11: 127–141.

    Google Scholar 

  10. Archer, S., Yankovich, R., Chesler, E. and Weir, E., 1985, Comparative effects of nisoldipine, nifedipine and bepridil on experimental pulmonary hypertension, J. Pharmacol Exp Ther. 233: 12–17.

    Google Scholar 

  11. Archer, S. L., Huang, J., Hampl, V., Nelson, D. P., Shultz, P. J. and Weir, E. K., 1994, Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent proteinkinase, Proc. Natl. Acad. Sci. USA 91: 7583–7587.

    Google Scholar 

  12. Archer, S. L., Huang, J., Henry, T., Peterson, D. and Weir, E. K., 1993c, A redox based oxygen sensor in rat pulmonary vasculature, Circ. Res. 73:1100–1112.

    Google Scholar 

  13. Archer, S. L., Huang, J. M. C, Reeve, H. L., Hampl, V., Tolarova, S., Michelakis, E. D. and Weir, E. K., 1996, Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia, Circ Res 78: 431–442.

    Google Scholar 

  14. Archer, S. L., Reeve, H. L., Michelakis, E., Puttagunta, L., Waite, R., Nelson, D. P., Dinauer, M. C. and Weir, E. K.., 1999, O2-sensing is preserved inmicelacking the 91 PHOX subunit of NADPH oxidase, Proc. Natl. Acad. Sci. 96: 7944–7949.

    Google Scholar 

  15. Archer, S. L., Souil, E., Dinh-Xuan, A. T., Schremmer, B., Mercier, J. C., El Yaagoubi, A., Nguyen-Huu, L., Reeve, H. L. and Hampl, V., 1998, Molecular identification of the role of voltage-gated K+ channels, kv1.5 and kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes, J Clin Invest 101: 2319–30.

    Google Scholar 

  16. Archer, S. L., Tolins, J. P., Reye, L. and Weir, E. K., 1989b, Hypoxic pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium derived relaxing factor, Biochem.Biophys.Res. Comm. 164: 1198–1205.

    Google Scholar 

  17. Bouchard, R. and Fedida, D., 1995, Closed-and open-state binding of 4-aminopyridine to the cloned human potassium channel Kv q.5, J. Pharm. Exp. Ther. 275: 864–876.

    Google Scholar 

  18. Boveris, A. and Chance, B., 1973, The mitochondrialgeneration of hydrogen peroxide, Biochem. J. 134: 707–716.

    Google Scholar 

  19. Brashers, V. L., Peach, M. J. and Rose, C. E., 1988, Augmentation of hypoxic pulmonary vasoconstriction in the isolated perfused rat lung by in vitro antagonists of endothelium-dependent relaxation, J Clin Invest 82: 1495–1502.

    Google Scholar 

  20. Buescher, P., Perse, D., Pillai, R., Litt, M., Mitchell, M. and Sylvester, J. T., 1991, Energy state and vasomotor tone in hypoxic pig lungs, J. Appl Physiol 70: 1874–1881.

    Google Scholar 

  21. Chandy, K. G. and Gutman, G. A., 1993, Nomenclature for mammalian potassium channel genes, Trends Pharmacol. 14: 434–440.

    Google Scholar 

  22. Chang, J. K., Moore, P., Fineman, J. R., Soifer, S. J.and Heymann, M. A., 1992, K+ channel pulmonary vasodilation in fetallambs: role of endothelium-derived nitric oxide, J Appl Physiol 73: 188–94.

    Google Scholar 

  23. Clapp, L. and Gurney, A., 1991, Outward currents in rabbit pulmonary artery cells disassociated with a new technique, Exp Physiol 76: 667–693.

    Google Scholar 

  24. Clapp, L. H. and Gurney, A. M., 1992, ATP-sensitive K+ channels regulate resting potential of pulmonary arterial smooth muscle cells, Am J Physiol 262: H916–20.

    Google Scholar 

  25. Cross, A., Henderson, L., Jones, O., Delpiano, M., Hentschel, J. and Acker, H., 1990, Involvement of anNAD(P)H oxidase as a pO2 sensor protein in the rat carotid body, Biochem J 272: 743–747.

    Google Scholar 

  26. Cross, A. and Jones, O., 1986, The effect of the inhibitor diphenylene iodonium on the superoxide generating system of neutrophils, Biochem. J. 237: 111–116.

    Google Scholar 

  27. Dart, C. and Standen, N. B.,1995, Activation of ATP-dependent K+ channels by hypoxia in smooth muscle cells isolated from the pig coronary artery, J. Physiol 483: 29–39.

    Google Scholar 

  28. Dascal, N., Doupnik, C. A., Ivanina, T., Bausch, S., Wang, W., Lin, C., Garvey, J., Chavkin, C., Lester, H. A. and Davidson, N., 1995, Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail, Proc Nail Acad Sci USA 92: 6758–62.

    Google Scholar 

  29. Dascal, N., Schreibmayer, W., Lim, N. F., Wang, W., Chavkin, C., Di Magno, L., Labarca, C., Kieffer, B. L., Gaveriaux-Ruff, C., Trollinger, D. and et al., 1993, Atrial G protein-activated K+ channel: expression cloning and molecular properties, Proc Natl Acad Sci USA 90: 10235–9.

    Google Scholar 

  30. Daut, J., Maier-Rudolph, W., von Beckerath,, Mehrke, G., Gunther, K. and Goedel-Meinen, L., 1990, Hypoxic dilatation of coronary arteries is mediated by ATP-sensitive potassium channels, Science 247: 1341–1344.

    Google Scholar 

  31. Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T. and MacKinnon, R., 1998, The structure of the potassium channel: Molecular basis of K+ conduction and selectivity, Science 280: 69–77.

    Google Scholar 

  32. Duchen, M. and Biscoe, T., 1992a, Mitochondrial function in type 1 cells isolated from rabbit arterial chemoreceptors, J Physiol 450: 13–31.

    Google Scholar 

  33. Duchen, M. R. and Biscoe, T. J., 1992b, Relative mitochondrial membrane potential and [Ca2+], in type I cells isolated from the rabbit carotid body, J. Physiol 450: 33–61.

    Google Scholar 

  34. Duprat, F., Guillemare, E., Romey, G., Fink, M., Lesage, F., Lazdunski, M. and Honore, E., 1995, Susceptibility of cloned K+ channels to reactive oxygen species, Proc Natl Acad Sci USA 92: 11796–800.

    Google Scholar 

  35. Evans, A., Osipenko, O. and Gurney, A., 1996, Properties of a novel K+ current that is active at resting potential in rabbit pulmonary artery smooth muscle cells, J Physiol 496: 407–420.

    Google Scholar 

  36. Fisher, A. B. and Dodia, C., 1981, Lung as a model for evaluation of critical intracellular PO2 and PCO, Am. J. Physiol. 241: E47–E50.

    Google Scholar 

  37. Franco-Obregon, A. and Lopez-Barneo, J., 1996, Differential oxygen sensitivity of calcium channels in rabbit smooth muscle cells of conduit and resistance pulmonary arteries, J Physiol 491.2: 511–518.

    Google Scholar 

  38. Freeman, B. A. and Crapo, J. D., 1981, Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria, J. Biol. Chem. 256: 10986–10992.

    Google Scholar 

  39. Garcia, M. L., Garcia-Calvo, M., Hidalgo, P., Lee, A. and McKinnon, R., 1994, Purification and characterization of three inhibitors of voltage-depenent K+ channels from Leiurus quinquestriatus var. hebraeus venom, Biochemistry 33: 6834–6839.

    Google Scholar 

  40. Gasser, R., Klein, W. and Kickenweiz, E., 1993, Vasodilative response to hypoxia and simulated ischemia is mediated by ATP-sensitive K+ channels in guinea pig thoracic aorta, Angiology 44: 228–43.

    Google Scholar 

  41. Gatley, J. S. and Sheratt, H. S. A., 1976, Relation of binding of diphenylene[125I] iodonium to mitochondria to the extent of inhibition of oxygen uptake, Biochem. J. 158: 307–315.

    Google Scholar 

  42. Gatley, S. and Sherratt, H., 1976, The effects of diphenyleneiodonium on mitochondrial reactions, Biochem J 158: 307–315.

    Google Scholar 

  43. Gebremedhin, D., Bonnet, P., Greene, A. S., England, S. K., Rusch, N. J., Lombard, J. H. and Harder, D. R., 1994, Hypoxia increases the activity of Ca+-sensitive K+ channels in cat cerebral arterial muscle cell membranes, Pflügers Arch. 428: 621–630.

    Google Scholar 

  44. Grimminger, F., Weissmann, N., Spriestersbach, R., Becker, E., Rosseau, S. and Seeger, W., 1995, Effects of NADPH oxidase inhibitors on hypoxic vasoconstriction in bufferperfused rabbit lungs. Lung Cell Mol Physiol 12: L747–L752.

    Google Scholar 

  45. Grissmer, S., Nguyen, A. N., Aiyar, J., Hanson, D. C., Mather, R. J., Gutman, G. A., Karmilowicz, M. J., Auperin, D. D. and Chandy, K. G., 1994, Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv 1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines, J. Pharm. Exp. Ther. 45

    Google Scholar 

  46. Groves, B. M., Reeves, J. T., Sutton, J. R., Wagner, P. D., Cymerman, A., Malconian, M. K., Rock, P. B., Young, P. M. and Houston, C. S., 1987, Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen, J. Appl. Physiol. 63: 521–530.

    Google Scholar 

  47. Hampl, V., Weir, E. K. and Archer, S. L., 1994, Endothelium-derived nitric oxide is less important for basal tone regulation in the pulmonary than the renal circulation of the adult rat, J Vasc Med Biol 5: 22–30.

    Google Scholar 

  48. Hasunuma, K., Rodman, D. and McMurtry, I., 1991, Effects of K+ channel blockers on vascular tone in the perfused rat lung, Am Rev Respir Dis 144: 884–887.

    Google Scholar 

  49. Heinemann, S. H., Rettig, J., Graack, H. R. and Pongs, O., 1996, Functional characterization of Kv channel beta-subunits from rat brain, J Physiol (Lond) 493: 625–33.

    Google Scholar 

  50. Jensen, K., Mico, A., Czartolomna, J., Latham, L. and Voelkel, N., 1992, Rapid onset of hypoxic vasoconstriction in isolated lungs, J Appl Physiol 72: 2018–2023.

    Google Scholar 

  51. Jones, S. A., Hancock, J. T., Jones, O. T., Neubauer, A. and Topley, N., 1995, The expression of NADPH oxidase components in human glomerular mesangial cells: detection of protein and mRNA for p47phox, p67phox, and p22phox, J Am Soc Nephrol 5: 1483–91.

    Google Scholar 

  52. Kato, M. and Staub, N., 1966, Response of small pulmonary arteries to unilobar alveolar hypoxia and hypercapnia, Circ. Res. 19: 426–440.

    Google Scholar 

  53. Kuo, S., Saad, A., Koong, A., Hahn, G. and Giaccia, A., 1993, Potassium-channel activation inresponse tolow doses of γ-irradiation involves reactive oxygen intermediates in nonexcitatorycells, Proc Natl Acad Sci 90: 908–912.

    Google Scholar 

  54. Lee, S., Park, M., So, I. and Earm, Y., 1994, NADH and NAD modulates Ca2+-activated K+ channels in small pulmonary arterial smooth muscle cells of the rabbit, Pflugers Arch 427: 378–380.

    Google Scholar 

  55. Lloyd, T. C., 1966, PO2-dependent pulmonary vasoconstriction caused by procaine, J. Appl. Physiol. 21: 1439–1442.

    Google Scholar 

  56. Lopez-Barneo, J., Lopez-Lopez, J., Urena, J. and Gonzalez, C., 1988, Chemotransduction in the carotid body: K+ current modulated by PO2 in type 1 chemoreceptor cells, Science 242: 580–582.

    Google Scholar 

  57. Madden, J., Dawson, C. and Harder, D., 1985, Hypoxia-induced activation in small isolated pulmonary arteries from the cat, J Appl Physiol 59: 113–118.

    Google Scholar 

  58. Madden, J., Vadula, M. and Kurup, V., 1992, Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells, Am J Physiol 263: L384–L393.

    Google Scholar 

  59. Marshall, C., Mamary, A., Verhoeven, A. and Marshall, B., 1996, Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction, Am J Reap Cell Mol Biol 15: 633–644.

    Google Scholar 

  60. McMurtry, I., 1985, Bay K8644 potentiates and A23187 inhibits hypoxic vasoconstriction in rat lungs, Am J Physiol 249: H741–H746.

    Google Scholar 

  61. McMurtry, I., Davidson, B., Reeves, J. and Grover, R., 1976, Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs, Circ Res 38: 99–104.

    Google Scholar 

  62. Mills, E. and Jobsis, F. F., 1972, Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension, J. Neurophsiol. 35: 405–428.

    Google Scholar 

  63. Mohazzab-H, K., Fayngersh, R. and Kaminski, P., 1995, Potential role of NADPH oxidoreductase-derived reactive O2 species in calf pulmonary arterial PO2-elicited responses, Am J Physiol 269: L637–L644.

    Google Scholar 

  64. Mohazzab-H, K. and Wolin, M.,1994, Properties of a superoxide anion-generating microsomal NADH oxidoreductase, a potential pulmonary artery PO2 sensor, Am J Physiol 267:L823–L831.

    Google Scholar 

  65. Mulligan, E., Lahiri, S. and Storey, B. T., 1981, Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation, J. Appl. Physiol. 51: 438–446.

    Google Scholar 

  66. Mulligan, E. and Lahriri, S.,1981, Dependence of carotid chemoreceptor stimulation by metabolic agents on PaO2 and Pa CO2, J. Appl. Physiol. 50: 884–891.

    Google Scholar 

  67. Nelson, M., Patlak, J., Worley, J. and Standen, N., 1990, Calcium channels, potassium channels, and voltage dependence of arterial muscle tone., Am J Physiol 259: C3–C18.

    Google Scholar 

  68. Nelson, M. T. and Brayden, J. E., 1993, Regulation of arterial tone by calcium-dependent K+ channels and ATP-sensitive K+ channels, Cardiovasc Drugs Ther 3: 605–10.

    Google Scholar 

  69. Obeso, A., Almaraz., L. and Gonzalez, C., 1988, Effects of cyanide and uncouplers on chemoreceptor activity and ATP content of the cat carotid body, Brain Research 481: 250–257.

    Google Scholar 

  70. Oparil, S., Chen, S. J., Meng, Q. C., Elton, T. S., Yano, M. and Chen, Y. F., 1995, Endothelm-A receptor antagonist prevents acute hypoxia-induced pulmonary hypertension in the rat. Am. J. Physiol. 12: L95–L100.

    Google Scholar 

  71. Overturf, K. E., Russell, S. N., Carl, A., Vogalis, F., Hart, P. J., Hume, J. R., Sanders, K. M. and Horowitz, B., 1994, Cloning and characterization of a Kvl.5 delayed rectifier K+ channelfrom vascular and visceral smooth muscles, Am J Physiol 267: C1231–8.

    Google Scholar 

  72. Ovetsky, R., Sprague, R., Stephenson, A., Dahms, T. and Lonigro, A., 1987, Inhibition of leukotriene synthesis does not alter the pulmonary pressor response to alveolar hypoxia, Am. Rev. Resp. Dis. 135: A127 (abstract).

    Google Scholar 

  73. Paky, A., Michael, J., Burke-Wolin, T. and Wolin, M., 1993, Endogenous production of superoxidc by rabbit lungs: effects of hypoxia or metabolic inhibitors, J Appl Physiol 74: 2868–2874.

    Google Scholar 

  74. Patel, A. J., Lazdunski, M. and Honore, E., 1997, Kv2.l/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes, Embo J 16: 6615–25.

    Google Scholar 

  75. Polock, J. D., Williams, D. A., Gifford, M. A. C., Li, L. L., Du, X., Fisherman, J., Orkin, S. H., Doerschuk, C. M. and Dinauer, M. C., 1995, Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production, Nature Genetics 9: 202–209.

    Google Scholar 

  76. Post, J., Hume, J., Archer, S. and Weir, E., 1992, Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction., Am J Physiol 262: C882–C890.

    Google Scholar 

  77. Post, J., Weir, E., Archer, S. and Hume, J., 1993, Redox regulation of K+ channels and hypoxic pulmonary vasoconstriction. In Ion Flux in Pulmonary Vascular Control. Edited by Weir, E. K., Hume, J. R. and Reeves, J. T. Plenum Press: New York. 189–204

    Google Scholar 

  78. Post, J. M., Gelband, C. H. and Hume, J. R., 1995, [Ca2+]i inhibition of K+ channels in canine pulmonary artery: Novel mechanism for hypoxia-induced membrane depolarization, Circ Res 77: 131–139.

    Google Scholar 

  79. Radeke, H. H., Cross, A. R., Hancock, J. T., Jones, O. T., Nakamura, M., Kaever, V. and Resell, K., 1991, Functional expression of NADPH oxidase components (alpha-and beta-subunits of cytochrome b558 and 45-kDa flavoprotein) by intrinsic human glomerular mesangial cells, J Biol Chem 266: 21025–9.

    Google Scholar 

  80. Reeve, H. L., Weir, E. K., Nelson, D. P., Peterson, D. A. and Archer, S. L., 1995, Opposing Effects of Oxidants and Antioxidants on K+ Channel Activity and Tone in Vascular Tissue, Exp. Physiol. 80: 825–834.

    Google Scholar 

  81. Rounds, S. and McMurtry, I., 1981, Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs, Circ. Res. 48: 393–400.

    Google Scholar 

  82. Ruppersberg, J., Stocker, M., Pongs, O., Heinemann, S., Frank, R. and Koenen, M., 1991, Regulation of fast inactivation of cloned mammalian 1K(A) channels by cysteine oxidation. Nature 352: 711–714.

    Google Scholar 

  83. Salkoff, L. and Jegla, T., 1995, Surfing the DNA databases for K+ channels nets yet more diversity, Neuron 15: 489–92.

    Google Scholar 

  84. Sheehan, D., Sylvester, J. and Sham, J., 1994, 4-aminopyridinc sensitive, delayed rectifier potassium (K+) current is the major K+ current controlling resting membrane potential in porcine pulmonary vascular smooth muscle, Am J C C Med 149: A293.

    Google Scholar 

  85. Shi, G., Kleinklaus, A. K., Marrion, N. V. and Trimmer, J. S., 1994, Properties of Kv2.1 K+ channels expressed in transfected mammalian cells, J Biol Chem 269: 23204–11.

    Google Scholar 

  86. Shieh, C. C. and Kirsch, G. E., 1994, Mutational analysis of ion conduction and drug binding sites in the inner mouth of voltage-gated K+ channels, Biophys J 67: 2316–25.

    Google Scholar 

  87. Shirai, M., Ninomiya, I. and Sada, K., 1991, Constrictor response of small pulmonary arteries to acute pulmonary hypertension during left atrial pressure elevation, Jap J Physiol 41: 129–142.

    Google Scholar 

  88. Smirnov, S., Robertson, T., Ward, J. and Aaronson, P., 1994, Chronic hypoxia is associated with reduced delayed rectifier K+ current in rat pulmonary artery muscle cells, Am J Physiol 266: H365–H370.

    Google Scholar 

  89. Stuehr, D., Fasehun, O., Kwon, N., Gross, S., Gonzalez, J., Levi, R. and Nathan, C., 1991, Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenylenciodonium and its analogs, FASEB J 5: 98–103.

    Google Scholar 

  90. Taglialatela, M., Drewe, J. A. and Brown, A. M., 1993, Barium blockade of a clonal potassium channel and its regulation by a critical pore residue, Mol Pharmacol 44: 180–90.

    Google Scholar 

  91. Takimoto, K.., Fomina, A. F., Gealy, R., Trimmer, J. S. and Levitan, E. S., 1993, Dexamethasone rapidly induces Kvl.5 K+ channel gene transcription and expression in clonal pituitary cells, Neuron 11:359–369.

    Google Scholar 

  92. Thomas, H. M. I., Carson, R. C., Fried, E. D. and Novitch, R. S., 1991, Inhibition of hypoxic pulmonary vasoconstriction by diphenyleneiodonium, Biochem Pharmacol. 42: R9–12.

    Google Scholar 

  93. Tolins, M., Weir, E., Chesler, E., Nelson, D. and From, A., 1986, Pulmonary vascular tone is increased by a voltage-dependent calcium channel potentiator,. J Appl Physiol 60: 942–948.

    Google Scholar 

  94. Trimmer, J. S., 1993, Expression of Kv2.1 delayed rectifier K+ channel isoforms in the developing rat brain, FEBS Lett 324: 205–10.

    Google Scholar 

  95. Tristani-Firouzi, M., Reeve, H. L., Tolarova, S., Weir, E. K. and Archer, S. L., 1996, Oxygen-induced constriction of the rabbit ductus arteriosus occurs via inhibition of a 4-aminopyridinesensitive potassium channel, J. Clin. Investigation 98: 1959–1965.

    Google Scholar 

  96. Umeki, S., 1994, Activation factors of neutrophil NADPH oxidase complex, Life Sciences 55:1–13.

    Google Scholar 

  97. Voelkel, N., 1986, Mechanisms of hypoxic pulmonary vasoconstriction, Am.Rev. Resp. Dis. 133: 1186–1195.

    Google Scholar 

  98. Voelkel, N. F., Gerber, J. G., McMurtry, I. F., Nies, A. S. and Reeves, J. T., 1981, Release of vasodilator prostaglandin, PGI2, from isolated rat lung during vasoconstriction, Circ Res 48:207–213.

    Google Scholar 

  99. von Euler, U. and Liljestrand, G., 1946, Observations on the pulmonary arterial blood pressure in the cat, Acta Physiol Scand 12: 301–320.

    Google Scholar 

  100. Wang, D., Youngson, C., Wong, V., Yeger, H., Dinauer, M. C., Vega-Saenz Miera, E., Rudy, B. and Cutz, E., 1996, NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines, Proc Natl Acad Sci USA 93: 13182–7.

    Google Scholar 

  101. Weir, E. K. and Archer, S. L., 1995, The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels, FASEB 9: 183–189.

    Google Scholar 

  102. Weir, E. K., Dinauer, M., Nelson, D. and Archer, S., 1996, Hypoxic pulmonary vasoconstriction is unchanged in NAPH-oxidase “knock-out” mice. FASEB Meeting Washington, D.C., (Abstract 572)

    Google Scholar 

  103. Weir, E. K., McMurtry, I. P., Tucker, A., Reeves, J. T. and Grover, R. P., 1976, Prostaglandin synthetase inhibitors do not decrease hypoxic pulmonary vasoconstriction, J. Appl. Physiol. 41:714–718.

    Google Scholar 

  104. Weir, E. K., Wyatt, C. N., Reeve, J., Huang, J., Archer, S. L. and Peers, C., 1994, Diphenyleneiodonium inhibits both potassium and calcium currents in isolated pulmonary artery smooth muscle cells, J Appl Physiol 76: 2611–2615.

    Google Scholar 

  105. West, J., 1991, Control of Ventilation. In Physiological Basis of Medical Practice. Edited by West, J. Williams & Wilkins: Baltimore, MD. 579–603

    Google Scholar 

  106. Xu, J., Yu, W., Jan, Y. N., Jan, L. Y. and Li, M., 1995, Assembly of voltage-gated potassium channels. Conserved hydrophilic motifs determine subfamily-specific interactions between the alpha-subunits, J Biol Chem 270: 24761–8.

    Google Scholar 

  107. Yang, T., Kupershmidt, S. and Roden, D. M., 1995, Anti-minK. antisense decreases the amplitude of the rapidly activating cardiac delayed rectifier K+ current, Circ. Res. 77: 1246–1253.

    Google Scholar 

  108. Young, T., Lundquist, L., Chesler, E. and Weir, E., 1983, Comparative effects of nifedipine, verapamil, and diltiazem on experimental pulmonary hypertension, Am J Cardiol 51: 195–200.

    Google Scholar 

  109. Youngson, C., Nurse, C, Yeger, H., Curnutte, J. T., Vollmer, C., Wong, V. and Cutz, H., 1997, Immunocytochemical localization of O2-sensing protein (NADPHoxidase) in chemoreceptor cells, Micro. Res. Tech. 37: 101–106.

    Google Scholar 

  110. Yuan, X.-J., 1995a, Voltage gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary artery myocytes, Circ Research 77: 370–378.

    Google Scholar 

  111. Yuan, X.-J., Aldinger, A., Orens, J., Conte, J. and Rubin, L., 1996, Dysfunctional voltage-gated potassium channels in the pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension, Circulation 94: 1–49.

    Google Scholar 

  112. Yuan, X.-J., Goldman, W., Tod, M., Rubin, L. and Blaustein, M., 1993, Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes, Am J Physiol 264: L116–L12.V

    Google Scholar 

  113. Yuan, X.-J., Tod, M. L., Rubin, L. J. and Blaustein, M. P., 1994, Deoxyglucose and reduced glutathionc mimic effects of hypoxia on K+ and Ca2+ conductances in pulmonary artery cells, Am J Physiol 267: L52–L63.

    Google Scholar 

  114. Yuan, X. J., 1995b, Voltage-gated K+ currents regulate resing membrane potential and [Ca2+]i in pulmonary arterial myocytes, Circ. Res. 77: 370–378.

    Google Scholar 

  115. Yuan, X. J., Tod, M. L., Rubin, L. J. and Blaustein, M. P., 1995, Inhibition of cytochrome P-450 reduces voltage-gated K+ currents in pulmonary arterial myocytes, Am J Physiol 268: C259–70.

    Google Scholar 

  116. Yuan, X. J., Wang, J., Juliaszova, M., Golovina, V. A. and Rubin, L. J., 1998, Molecular basis and function of voltage-gated channels in pulmonary arterial smooth muscle cells. Am J Physiol 274: L621–35.

    Google Scholar 

  117. Zou, A. P., Fleming, J. T., Falck, J. R., Jacobs, E. R., Gcbremedhin, D., Harder, D. R. and Roman, R. J., 1996a, 20-HETE is an endogenous inhibitor of the large-conductance channel in renal arterioles, Am J Physiol 270: R228–37.

    Google Scholar 

  118. Zou, A. P., Fleming, J. T., Falck, J. R., Jacobs, E. R., Gebremedhin, D., Harder, D. R. and Roman, R. J., 1996b, Stereospecific effects of epoxyeicosatrienoic acids on renal vascular tone and K(+)-channel activity, Am J Physiol 270: F822–32.

    Google Scholar 

  119. Zulueta, J., Yu, F.-S., Hertig, I. A., Thannickal, V. J. and Hassoun, P. M., 1995, Release of hydrogen peroxide in response to hypoxia-reoxygenation: role of NAD(P)Hoxidase-like enzyme in endothelial cell plasma membrane, Am. J. Respir. Cell Mol. Biol. 12:41–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

A, S.L., W, E.K., R, H.L., M, E. (2002). Molecular Identification of O2 Sensors and O2-Sensitive Potassium Channels in the Pulmonary Circulation. In: Lahiri, S., Prabhakar, N.R., Forster, R.E. (eds) Oxygen Sensing. Advances in Experimental Medicine and Biology, vol 475. Springer, Boston, MA. https://doi.org/10.1007/0-306-46825-5_21

Download citation

  • DOI: https://doi.org/10.1007/0-306-46825-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46367-9

  • Online ISBN: 978-0-306-46825-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics