Skip to main content

Intracellular Pathways Linking Hypoxia to Activation of c-fos and AP-1

  • Chapter
Oxygen Sensing

Abstract

Organisms respond to hypoxia through detection of blood oxygen levels by sensors at peripheral chemoreceptors and by receptors in certain key cells of the body. The pathways over which peripheral chemoreccptor signals are transmitted to respiratory muscles arc well established. However, the intracellular pathways that transmit hypoxic stimulus to gene activation are just being identified. Using anti-sense c-fos strategy, we have shown that c-fos is essential for the activation of activator protein-1 transcription factor complex (AP-1) and subsequent stimulation of downstream genes such as tyrosine hydroxylase (TH; Mishra et al. 1998). The purpose of the present study was to identify intracellular pathways that link hypoxia to activation of c-fos. The results of the present study show that hypoxia causes Ca2+ influx through L-type voltage gated Ca2- channels and that hypoxia-induccd c-fos gene expression is Ca2+/calmodulm dependent. We also demonstrate that hypoxia activates the extracellular-regulated kinase (ERK) and p38, but not JNK. Further, phosphorylation of ERK is essential for c-fos activation via SRE cis-element. Further characterization of nuclear signalling pathways provides evidence for the involvement of Src, a non receptor protein tyrosine kinase, and Ras, a small G protein, in the hypoxia-induced c-fos gene expression. These results suggest a possible role for non-receptor protein tyrosine kinases in propagating signals from G-protein coupled receptors to the activation of immediate early genes such as c-fos during hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bright, G.R., Agani, F.H., Haque, U., Overholt, J.L., and Prabhakar, N.R. Heterogeneity in cytosolic calcium responses to hypoxia in carotid body cells. Brain Res. 706: 297–302, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M.T., and Cooper, J.A. Regulation, substrates and functions of src. Biochim. Biophys Acta 7: 121–149, 1996.

    Google Scholar 

  • Curran, T., Gordon, M.B., Rubino, K.L. and Sambucetti, L.C. Isolation and characterization of the c-fos (rat) cDNA and analysis of post translational modification in vitro. Oncogene 2: 79–84, 1987.

    CAS  PubMed  Google Scholar 

  • Egea, J., Espinet, C., and Cornelia, J.X. Calcium influx activates extracellular-regulated kinase/mitogen activated protein kinase pathway through a calmodulin sensitive mechanism in PC12 cells. J. Biol. Chem. 274: 75–85, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Enslen, H., Tokumitsu, H., Astork, P.J.S., Davis, R.J., and Sodering, T.R. Regulation of mitogen-activated protein kinases by calcium/calmodulin-dependent protein kinase cascade. Proc. Natl. Acad. Sci. USA. 93: 10803–10808, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Feig, L.A., and Cooper, G.M. Inhibition of NIH 3T3 cells proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8: 3235–3243, 1988.

    CAS  PubMed  Google Scholar 

  • Finkbeiner, S., and Greenberg, ME. Ca2+ dependent routes to Ras: Mechanisms for neuronal survival, differentiation, and plasticity? Neuron 16: 233–236, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Finkbeiner, S., and Greenberg, M.E. Ca2+ channel-regulated neuronal gene expression. J. Neurobiol. 37: 171–189, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Gizang-Ginsberg, E., and Ziff, E.B. Fos family members successively occupy the tyrosine hydorxylase gene AP-1 site after nerve growth factor or epidermal growth factor stimulation and can repress transcription. Mol. Endocrinol. 8: 249–262, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Huxhiu, M.A., Strohl, K.P., and Cherniack, N.S. The N-methyl-D-aspartate receptor pathway is involved in hypoxia-induccd c-fos protein expression in the rat nucleus of the solitary tract. J. Auton. Nerv. Syst. 55: 65–68, 1995.

    Google Scholar 

  • Herman, W. H., and Simonson, M.S. Nuclear signalling by endothelin-1. A Ras pathway for activation of the c-fos serum response element. J. Biol. Chem. 270: 11654–11661, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, G.K. Overholt, J.L., Bright, G.R., Hui, K.Y., Lu, H., Gratzl, M., and Prabhakar, N.R. Release of dopamine and norepinephrine by hypoxia from PC12 cells. Am. J. Physiol. 274: C1592–C1600, 1998.

    CAS  PubMed  Google Scholar 

  • Matthews, R.P., Guthrie, C.R., Wailes, L.M., Zhao, X., Means, A.R. and McKnight, G.S. Calcium/calmodulin-dependent protein kinase type I I and IV differentially regulate CREB-dependent gene expression. Mol. Cell. Biol. 14: 6107–6116, 1994

    CAS  PubMed  Google Scholar 

  • Mcreggor, G.R., Mogg, A.E., Burke, J.F., and Caskey, C.T. Histochemical staining of clonal mammalian cell lines expressing E.coli 1-galactosidase indicates heterogeneous expression of the bacterial gene. Somatic Cell Mol. Genet. 1 3: 253–265, 1987.

    Google Scholar 

  • Mishra, R., Adhikary, G., Simonson, M.S., Cherniack, N.S., and Prabhakar, N.R. Role of c-fos in hypoxia-induced AP-1 cis-element activity and tyrosine hydroxylase gene expression. Mol. Brain Res. 59: 74–83, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay, D., Tsiokas, L., Zhou, X., Foster, D., Brugge, J.S. and Sukhatme, V.P. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 375: 577–581, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, V.R., Albert, H.P., Elsholtz, L.I., Lu. W., Rosenfield, M.G. Activation of cell specific expression of hormone and prolactin genes by a common transcription factor. Science 239: 1400–1405, 1988.

    CAS  PubMed  Google Scholar 

  • Powell, F.L., Milsom, W.K., and Mitchell, G.S. Time domains of the hypoxic ventilatory response. Respir Physiol. 112: 123–134, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar, N.R., Shenoy, B.C., Simonson, M.S., and Cherniack, N.S. Cell selective induction and transcriptional activation of immediate early genes by hypoxia. Brain Res. 697: 266–270, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Premkumar, D.R.D. Adhikary, G., Simonsons, M.S., Cherniack, N.S., and Prabhakar, N.R. Src, a non-receptor tyrosine kinase is required for c-fos expression by hypoxia. FASEB J. 13: 1091, 1999.

    Google Scholar 

  • Robbins, D.J., Zhen, E., Owaki, H., Vanderbilt, C.A., Ebert, D., Gerpert, D.D., and Cobb, M.H. Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J.Biol. Chem. 268: 5097–5106, 1993.

    CAS  PubMed  Google Scholar 

  • Roche, S., Koegl, M., Barone, M.V., Roussel, M.F., and Courtneidge, S.A. DNA synthesis induced by some but not all growth factors requires Src family protein tyrosine kinases. Mol. Cell, Biol. 15: 1 102–1 109, 1995.

    CAS  Google Scholar 

  • Sabe, H., Knudsen, B., Okada, M., Nada, S., Nakagwa, H., and Hanafusa, H. Molecular cloning and expression of chicken C-terminal Src kinase: Lack of stable association with c-Src protein. Proc. Natl. Acad. Sci. U.S.A. 89: 2190–2194, 1992.

    CAS  PubMed  Google Scholar 

  • Taniguchi, T., Fukunaga, R., Matsuoka, Y., Tooyamam, I., and Kimura, H. Delayed expression of c-fos protein in rat hippocampus and cerebral cortex following transient in vivo exposure to hypoxia. Brain Res. 640: 119–125, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Twamley-Stein, G.M., Pepperkok, R., Ansorge, W., and Courtneidge, S.A. The Src family tyrosine kinase are required for platelet-derived growth factor-mediated signal transduction in NIH 3T3 cells. Proc. Natl. Acad. Sci. U.S.A. 90: 7696–7700, 1993.

    CAS  PubMed  Google Scholar 

  • Wang, Y., and Simonson, M.S. Voltage-insensitive Ca2+ channels and Ca2+/calmodulin-dependent protein kinases propagate signals from endothelin-1 receptors to the c-fos promoter. Mol Cell. Biol. 16: 5915–5923, 1996.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Premkumar, D.R., Adhikary, G., Overholt, J.L., Simonson, M.S., Cherniack, N.S., Prabhakar, N.R. (2002). Intracellular Pathways Linking Hypoxia to Activation of c-fos and AP-1. In: Lahiri, S., Prabhakar, N.R., Forster, R.E. (eds) Oxygen Sensing. Advances in Experimental Medicine and Biology, vol 475. Springer, Boston, MA. https://doi.org/10.1007/0-306-46825-5_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-46825-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46367-9

  • Online ISBN: 978-0-306-46825-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics