Skip to main content

Molecular Mechanisms of Fatty Acid β-Oxidation Enzyme Catalysis

  • Chapter
Current Views of Fatty Acid Oxidation and Ketogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 466))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kunau, W.-H., Dommes, V. & Schulz, H. (1995) Prog. Lipid Res. 34, 267–342. β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress.

    CAS  PubMed  Google Scholar 

  2. Preisig-Müller, R., Gühnemann-Schäfer, K. & Kindl, H. (1994) J. Biol. Chem. 269, 20475–20481. Domains of the tetrafunctional protein acting in glyoxysomal fatty acid β-oxidation. Demonstration of epimerase and isomerase activities on peptide lacking hydratase activity.

    PubMed  Google Scholar 

  3. Hiltunen, J.K., Wenzel, B., Beyer, A., Erdmann, R., Fossa, A. & Kunau, W.-H. (1992) J. Biol. Chem. 267, 6646–6653. Peroxisomal multifunctional β-oxidation protein of Saccharomyces cerevisiae. Molecular analysis of the FOX2 gene and gene product.

    CAS  PubMed  Google Scholar 

  4. Filppula, S.A., Sormunen, R.T., Hartig, A., Kunau, W.-H. & Hiltunen, J.K. (1995) J. Biol. Chem. 270, 27453–27457. Changing stereochemistry for a metabolic pathway in vivo. Experiments with the peroxisomal β-oxidation in yeast.

    CAS  PubMed  Google Scholar 

  5. Hashimoto, T. (1992) In New Developments in Fatty Acid Oxidation (Coates, P.M. & Tanaka, K., eds.) pp. 19–32. Wiley-Liss, New York. Peroxisomal and mitochondrial enzymes.

    Google Scholar 

  6. He, X.-Y. & Yang, S.-Y. (1998) Biochim. Biophys. Acta. 1392, 119–126. Molecular cloning, expression in Escherichia coli, and characterization of a novel L-3-hydroxyacyl coenzyme A dehydrogenase from pig liver.

    CAS  PubMed  Google Scholar 

  7. He, X-Y, Schulz, H. & Yang, S.-Y. (1998) J. Biol Chem. 273, 10741–10746. A human brain L-3-hydroxyacyl coenzyme A dehydrogenase is identical to an amyloid β-peptide binding protein involved in Alzheimer’s disease.

    CAS  PubMed  Google Scholar 

  8. Leenders, F., Tesdorpf, J.G., Markus, M., Engel, T., Seedorf, U. & Adamski, J. (1996) J. Biol. Chem. 271, 5438–5442. Porcine 80-kDa protein reveals intrinsic 17 β-hydroxysteroid dehydrogenase, fatty acyl-CoA-hydratase/dehydrogenase, and sterol transfer acitivties.

    CAS  PubMed  Google Scholar 

  9. Dieuaide-Noubhani, M., Novikov, D., Baumgart, E., Vanhooren, J.C.T., Fransen, M., Goethals, M., Vandekerckhove, J., Van Veldhoven, P.P. & Mannaerts, G.P. (1996) Eur. J. Biochem. 240, 660–666. Further characterization of the peroxisomal 3-hydroxyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di-and tri-hydroxycoprostanic acids are metabolized by separate multifunctional proteins.

    Article  CAS  PubMed  Google Scholar 

  10. Pawar, S. & Schulz, H. (1981) J. Biol. Chem. 256, 3894–3899. The structure of the multienzyme complex of fatty acid oxidation from Escherichia coli.

    CAS  PubMed  Google Scholar 

  11. Willadsen, P. & Eggerer, H. (1975) Eur. J. Biochem. 54, 247–252. Substrate stereochemistry of the enoyl-CoA hydratase reaction.

    CAS  PubMed  Google Scholar 

  12. Bahnson, B.J. & Anderson, V.E. (1991) Biochemistry 30, 5894–5906. Crotonase-catalyzed β-elimination is concerted: A double isotope effect study.

    Article  CAS  PubMed  Google Scholar 

  13. Gerlt, J.A. & Gassman, P.G. (1992) J. Am. Chem. Soc. 114, 5928–5934. Understanding enzyme-catalyzed proton abstraction from carbonic acids: details of stepwise mechanisms for β-eimination reactions.

    CAS  Google Scholar 

  14. Gerlt, J.A. & Gassman, P.G. (1993) Biochemistry 32, 11943–11952. Understanding the rates of certain enzyme-catalyzed reactions: Proton abstraction from carbon acids, acyl-transfer reactions, and dis-placement reactions of phosphodiesters.

    Article  CAS  PubMed  Google Scholar 

  15. D’Ordine, R.L., Tonge, P.J., Carey, P.R. & Anderson, V.E. (1994) Biochemistry 33, 12635–12643. Electronic rearrangement induced by substrate analog binding to the enoyl-CoA hydratase active site: evidence for substrate activation.

    Google Scholar 

  16. D’Ordine, R.L., Bahnson, B.J., Tonge, P.J. & Anderson, V.E. (1994) Biochemistry 33, 14733–14742. Enoyl-coenzyme A hydratase-catalyzed exchange of the α-proton of coenzyme A thiol esters: a model for an enolized intermediate in the enzyme-catalyzed elimination?

    Google Scholar 

  17. Yang, S.-Y, He, X.-Y. & Schulz, H. (1995) Biochemistry 34, 6441–6447. Glutamate 139 of the large α-subunit is the catalytic base in the dehydration of both D-and L-3-hydroxyacyl-coenzyme A but not in the isomerization of Δ3, Δ2-enoyl coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli.

    CAS  PubMed  Google Scholar 

  18. Muller-Newen, G, Janssen, U. & Stoffel, W. (1995) Eur. J. Biochem. 228, 68–73. Enoyl-CoA hydratase and isomerase form a superfamily with a common active-site glutamate residue.

    Article  CAS  PubMed  Google Scholar 

  19. He, X.-Y. & Yang, S.-Y. (1997) Biochemistry 36, 11044–11049. Glutamate-119 of the large α-subunit is the catalytic base in the hydration of 2-trans-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli.

    CAS  PubMed  Google Scholar 

  20. Engel, C.K., Mathieu, M., Zeelen, J.P., Hiltunen, J.K. & Wierenga, R.K. (1996) EMBO J. 15, 5135–5145. Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 angstrom resolution: a spiral fold defines the CoA-binding pocket.

    CAS  PubMed  Google Scholar 

  21. Yang, S.-Y. & Elzinga, M. (1993) J. Biol. Chem. 268, 6588–6592. Association of both enoyl coenzyme A hydratase and 3-hydroxyacyl coenzyme A epimerase with an active site on the amino-terminal domain of the multifunctional fatty acid oxidation protein from Escherichia coli.

    CAS  PubMed  Google Scholar 

  22. Mohrig, J.R., Moerke, K.A., Cloutier, D.L., Lane, B.D., Person, E.C. & Onasch, T.B. (1995) Science 269, 527–529. Importance of historical contigency in the stereochemistry of hydratase-dehydratase enzymes.

    CAS  PubMed  Google Scholar 

  23. Birktoft, J.J., Holden, H.M., Hamlin, R., Xuong, N.C. & Banaszak, L.J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8262–8266. Structure of L-3-hydroxyacyl-coenzyme A dehydrogenase: preliminary chain tracing at 2.8 Á resolution.

    CAS  PubMed  Google Scholar 

  24. Hartmann, D., Philipp, R., Schmadel, K., Birktoft, J.J., Banaszak, L.J. & Trommer, W.E. (1991) Biochenistry 30, 2782–2790. Spatial arrangement of coenzyme and substrates bound to L-3-hydroxyacyl-CoA dehydrogenase as studied by spin-labeled analogues of NAD+ and CoA.

    CAS  Google Scholar 

  25. He, X.-Y. & Yang, S.-Y. (1996) Biochemistry 35, 9625–9630. Histidine-450 is the catalytic residue of L-3-hydroxyacyl-CoA dehydrogenase associated with the large subunit of the multienzyme complex of α-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli.

    CAS  PubMed  Google Scholar 

  26. Yang, S.-Y. (1992) In New Developments in Fatty Acid Oxidation (Coates, P.M. & Tanaka, K., eds.) pp. 183–188. Wiley-Liss, New York. The fadBA operon of Escherichia coli and evidence for the endosymbiont origin of peroxisomes.

    Google Scholar 

  27. He, X.-Y., Deng, H. & Yang, S.-Y. (1997) Biochemistry 36, 261–268. Importance of the γ-carboxyl group of glutamate-462 of the large α-subunit for the catalytic function and the stability of the multienzyme complex of fatty acid oxidation from Escherichia coli.

    CAS  PubMed  Google Scholar 

  28. Yang, S.-Y. (1994) Comp. Biochem. Physiol. 109B, 557–566. The large subunit of the pig heart mitochondrial membrane-bound β-oxidation complex is a long-chain enoyl-CoA hydratase: 3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme.

    CAS  Google Scholar 

  29. Ijlst, L., Wanders, R.J.A., Ushikubo, S., Kamijo, T. & Hashimoto, T. (1994) Biochim. Biophys. Acta 1215, 347–350. Molecular basis of long chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of the major disease-mutation in the α-subunit of the mitochondrial trifunctional protein.

    PubMed  Google Scholar 

  30. Kamijo, T., Wanders, J.A., Saudubray, J.-M., Aoyama, T., Komiyama, A. & Hashimoto, T. (1994) J. Clin. Invest. 93, 1740–1747. Mitochondrial trifunctional protein deficiency. Catalytic heterogeneity of the mutant enzyme in two patients.

    CAS  PubMed  Google Scholar 

  31. Jornvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J. & Ghosh, D. (1995) Biochemistry 34, 6003–6013. Short-chain dehydrogenases/reductases (SDR).

    CAS  PubMed  Google Scholar 

  32. Furuta, S., Kobayashi, A., Miyazawa, S. & Hashimoto, T. (1997) Biochim. Biophys. Acta 1350, 317–324. Cloning and expression of cDNA for a newly identified isozyme of bovine liver 3-hydroxyacyl-CoA dehydrogenase and its import into mitochondria.

    CAS  PubMed  Google Scholar 

  33. Ghosh, D., Weeks, CM., Grochulski, P., Duax, W.L., Erman, M., Rimsay, R.L. & Orr, J.C. (1991) Proc. Natl. Acad. Sci. USA. 88, 10064–10068. Three-dimensional structure of holo 3 alpha, 20 beta-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family.

    CAS  PubMed  Google Scholar 

  34. Oppermann, U.C., Filling, C., Berndt, K.D., Persson, B., Benach, J., Ladenstein, R. & Jornvall, H. (1997) Biochmistry 36, 34–40. Active site directed mutagenesis of 3 beta/17 beta-hydroxy-steroid dehydrogenase establishes differential effects on short-chain dehydrogenase/reductasereactions.

    CAS  Google Scholar 

  35. Yan, S.D., Fu, J., Soto, C., Chen, X. Zhu, H., Al-Mohanna, F., Collison, K., Zhu, A., Stern, E., Saido, T., Tohyama, M., Ogawa, S., Roher, A. & Stern, D. (1997) Nature 389, 689–695. An intracellular protein that binds amyloid-β peptide and mediates neurotoxicity in Alzheimer’s disease.

    CAS  PubMed  Google Scholar 

  36. Torroja, L., Ortuno-Sahagun, D., Ferrus, A., Hammerle, B. & Barbas, J.A. (1998) J. Cell Biol. 141, 1009–1017. scully, an essential gene of Drosophila, is homologous to mammalian mitochondrial type II L-3-hydroxyacyl-CoA dehydrogenase/amyloid-β-peptide-binding protein.

    Article  CAS  PubMed  Google Scholar 

  37. He, X.-Y, Yang, S.-Y. & Schulz, H. (1989) Anal. Biochem. 180, 105–109. Assay of L-3-hydroxy-acyl-coenzyme A dehydrogenase with substrates of different chain lengths.

    Article  CAS  PubMed  Google Scholar 

  38. He, X.-Y., Yang, S.-Y. & Schulz, H. (1992) Arch. Biochem. Biophys. 298, 527–531. Inhibition of enoyl-CoA hydratase by long-chain L-3-hydroxyacyl-CoA and its possible effect on fatty acid oxidation.

    Article  CAS  PubMed  Google Scholar 

  39. Kamijo, T, Aoyama, T., Komiyama, A. & Hashimoto, T. (1994) Biochem. Biophys. Res. Commun. 199, 818–825. Structureal analysis of cDNA for subunits of human mitochondrial fatty acid β-oxidation tri-functional protein.

    Article  CAS  PubMed  Google Scholar 

  40. Engel, C.K., Kiema, T.R., Hiltunen, J.K. & Wierenga, R.K. (1998) J. Mol Biol. 275, 847–859. The crystal structure of enoyl-CoA hydratase complexed with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule.

    Article  CAS  PubMed  Google Scholar 

  41. Waterson, R.M. & Hill, R.L. (1972) J. Biol. Chem. 247, 5258–5265. Enoyl coenzyme A hydratase (crotonase). Catalytic properties of crotonase and its possible regulatory role in fatty acid oxidation.

    CAS  PubMed  Google Scholar 

  42. Yang, X.-Y.H., Schulz, H., Elzinga, M. & Yang, S.-Y. (1991) Biochemistry 30, 6788–6795. Nucleotide sequence of the promoter and fadB gene of the fadBA operon and primary structure of the multifunctional fatty acid oxidation protein from Escherichia coli.

    CAS  PubMed  Google Scholar 

  43. Osumi, T., Ishii, N., Hijikata, M., Kamijo, K., Ozasa, H., Furuta, S., Miyazawa, S., Kondo, K., Inoue, K., Kagamiyama, H. & Hashimoto, T. (1985) J. Biol. Chem. 260, 8905–8910. Molecular cloning and nucleotide sequence of the cDNA for rat peroxisomal enoyl-CoA: hydratase-3-hydroxyacyl-CoA dehy-drogenase bifunctional enzyme.

    CAS  PubMed  Google Scholar 

  44. Yang, S.-Y., He, X.-Y, Styles, J., Luo, M.J., Schulz, H. & Elzinga, M. (1994) Biochem. Biophys. Res. Commun. 198, 431–437. Primary structure of the large subunit of trifunctional γ-oxidation complex from pig heart mitochondria.

    CAS  PubMed  Google Scholar 

  45. Minami-Ishii, N., Taketani, S., Osumi, T. & Hashimoto, T. (1989) Eur. J. Biochem. 185, 73–78. Molecular cloning and sequence analysis of the cDNA for rat mitochondrial enoyl-CoA hydratase. Structural and evolutionary relationships linked to the bifunctional enzyme of the peroxisomal β-oxidation system.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Yang, SY., He, XY. (2002). Molecular Mechanisms of Fatty Acid β-Oxidation Enzyme Catalysis. In: Quant, P.A., Eaton, S. (eds) Current Views of Fatty Acid Oxidation and Ketogenesis. Advances in Experimental Medicine and Biology, vol 466. Springer, Boston, MA. https://doi.org/10.1007/0-306-46818-2_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-46818-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46200-9

  • Online ISBN: 978-0-306-46818-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics