Photoelectron Spectroscopy

Advanced Texts in Physics

This program of advanced texts covers a broad spectrum of topics which are of current and emerging interest in physics. Each book provides a comprehensive and yet accessible introduction to a field at the forefront of modern research. As such, these texts are intended for senior undergraduate and graduate students at the MS and PhD level; however, research scientists seeking an introduction to particular areas of physics will also benefit from the titles in this collection.

Springer-Verlag Berlin Heidelberg GmbH

ONLINE LIBRARY Physics and Astronomy

http://www.springer.de/phys/

Stefan Hüfner

Photoelectron Spectroscopy

Principles and Applications

Third Revised and Enlarged Edition With 461 Figures and 28 Tables

Professor Dr. Stefan Hüfner

Universität des Saarlandes Fakultät für Physik und Elektrotechnik Fachrichtung 7.2 - Experimentalphysik Postfach 151150 66041 Saarbrücken Germany

ISSN 1439-2674

ISBN 978-3-642-07520-9

Library of Congress Cataloging-in-Publication Data. Hüfner, Stefan, 1935- Photoelectron spectroscopy : principles and applications / Stefan Hüfner. – 3rd rev. and enlarged ed. p. cm. –(Advanced texts in physics) Includes bibliographical references. ISBN 978-3-642-07520-9 ISBN 978-3-662-09280-4 (eBook) DOI 10.1007/978-3-662-09280-4 1. Photoelectron spectroscopy. I. Title. II. Series. QC454.P48 H84 2003 543'.0858-dc21 2002191151

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag Berlin Heidelberg GmbH.

Violations are liable for prosecution under the German Copyright Law.

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 1995, 1996, 2003 Originally published by Springer-Verlag Berlin Heidelberg New York in 2003 Softcover reprint of the hardcover 3rd edition 2003

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Data prepared by the author using a Springer TEX macro package Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN 11016083 57/3111/di 5 4 3 2 1

Preface

Since the completion of the manuscript for the first edition of Photoelectron Spectroscopy, the field has undergone a steady growth.

Firstly, the theory has been refined and condensed into a manageable form. Secondly two important experimental developments have occurred. The resolution that can be obtained is now of the order of 3 meV, which corresponds approximately to an energy of $30 k_{\text{B}}$ K. This means that photoelectron spectroscopy can now obtain data with an accuracy similar to that achieved in standard thermodynamic experiments (such as specific heat experiments), thus facilitating a direct comparison of data from the two different types of experiment. The second important experimental advance is that one can now readily measure electron energy distributions over a solid angle of almost 2π . This yields valuable information whenever these electron energy distributions have anisotropies.

It was decided, in view of these developments, to rework and expand the volume so as to do justice to the full potential of today's photoelectron spectroscopy. I have benefitted very much from the help of my group namely R. de Masi, D. Ehm, B. Eltner, F. Müller, G. Nicolay, F. Reinert, D. Reinicke and in particular S. Schmidt. Without the dedicated effort of these collaborators the present edition could not have been produced. I am grateful to S. Neumann who typed the complete text with great skill. Thanks are due to the Springer Verlag for their expert help and patience.

Saarbrücken, February 2003 Stefan Hüfner

Preface to the Second Edition

This new edition has provided me with the possibility to correct, with the assistance of R. Zimmermann (Saarbrücken), some errors that appeared in the previous edition and to prepare a somewhat more detailed subject index which was done with the help of Th. Engel (Saarbrücken). In addition, some references have been added from publications that appeared in 1994/1995 to give the reader the chance to find in some areas the most recent literature.

A word on the nomenclature should be added. The field treated with in this monograph is called photoelectron spectroscopy (if one wants to name it by the particle that is being detected) or photoemission spectroscopy (if one wants to name it by the primary process that takes place). Both names are and have been used in the literature on an equal footing, and in this book this practice has been adopted.

In preparing this second edition I have enjoyed the expert and friendly help of Dr. H. Lotsch from Springer Verlag.

Saarbrücken, November 1995 Stefan Hüfner

Preface to the First Edition

Molecules and solids can be characterized by two main types of qualities, namely their vibrational (elastic) properties and their electronic properties, which are of course intimately connected with each other. The study of vibrations in molecules and solids is mostly performed by means of optical spectroscopy. This spectroscopy can also determine the electronic excitations of molecules and solids. In solids, compared to molecules, the phonon and electron excitations depend on an additional quantum number, which originates from the periodicity of the crystal solid, namely the wave vector k. In order to perform wave-vector-dependent measurements one has to work with exciting particles which can transmit or absorb wave vectors of the same magnitude as those present in a solid. Therefore the optical technique is no longer sufficient to scan the phonon or electron distributions over the whole Brillouin zone (except with the difficult technique of two-photon spectroscopy).

With respect to the elastic properties of solids, the neutron diffraction technique has provided much information on the phonon dispersion curves of a great number of systems. Today we have a fair understanding of these phonon dispersion curves. With respect to the electron dispersion curves the situation was different up to about 1980, when the first electron dispersion curves were measured by photoemission spectroscopy. In the meantime photoemission spectroscopy has been developed further and is now the method of choice to study the electron dispersion curves of solids. Of course such dispersion curves can be, and also have been, measured for electronic surface states.

This volume deals with some, although by no means all, aspects of photoemission spectroscopy. This technique has been developed in the last 25 years and, with the extensive use of synchrotron radiation, can now be employed for such diverse fields as the investigation of the chemical properties of specially treated surfaces of semiconductors or high polymers, for the study of the electronic structure of molecules absorbed on surfaces, and for the measurement of dispersion curves of bulk and surface electronic states. We have tried to write this volume at an elementary level such that the newcomer to the field can find some basic information that will then allow him to study recent reviews and the original literature.

VIII Preface to the First Edition

After an introductory chapter, core levels, which are mostly used for chemical investigations, are treated in Chap 2. In Chaps. 3 and 4 the different final states that can arise in the photoemission process and the relation to the initial ground state are discussed. Chapters 5, 6 and 7 deal with valence bands in molecules and in particular solids, where we try to present in some detail the methods by which electron dispersion relations can be obtained by this kind of spectroscopy. Finally, in the last four chapters we discuss specific fields of photoemission spectroscopy, namely the study of surface effects and then three particular modes of this technique, namely inverse photoemission spectroscopy, spin polarized photoemission spectroscopy and photoelectron diffraction.

Saarbrücken, February 1994 Stefan Hüfner

Acknowledgements

This book has profited tremendously from long standing cooperation and many discussions with colleagues in the field. My early interest in photoemission spectroscopy was stimulated by G.K. Wertheim of AT&T Laboratories more than twenty years ago. I enjoyed the collaboration with him over many years. Later, in Saarbrücken, R. Courths, A. Goldmann, H. Höchst, F. Reinert, and, in particular, P. Steiner, have worked with me and much of the material presented in this book derives from that collaboration.

A very successful collaboration that I have enjoyed during the last years was that with the group of L. Schlapbach (Zürich, now Fribourg), and with many of his colleagues, notably J. Osterwalder, T. Greber and A. Stuck. From that collaboration I have learned everything that I know about photoelectron diffraction.

Over the years I have profited from discussions with many people in the field, notably Y. Baer (Neuchâtel), A. Bradshaw (Berlin), P. Echenique (San Sebastian), P. Fulde (Stuttgart), A. Fujimori and A. Kotani (Tokyo), O. Gunnarsson (Stuttgart), K. Schönhammer (Göttingen), G. Kaindl (Berlin), F. Meier (Zürich), W.D. Schneider (Lausanne), G.A. Sawatzky (Groningen) and H.C. Siegmann (Zürich).

A. Goldmann (Kassel), M. Cardona (Stuttgart) and R. Claessen (Saarbrücken) have made various extremely useful comments and suggestions about the manuscript, for which I thank them.

K. Fauth, A. Jungmann, M. Weirich and, in particular, R. Zimmermann (all from Saarbrücken) have helped me in the proof reading procedure, which I acknowledge gratefully.

The manuscript originated from a series of lectures given at the ETH Zürich in 1983 and repeated at the University of Fribourg and Lausanne in 1989. The first draft of the manuscript was written during the tenure of an Akademie Stipendium granted by the Volkswagen Foundation during the academic year 1986/87, which I spent at the Cavendish Laboratory in Cambridge. I thank the Volkswagen Foundation for the financial support and the mentioned institutions for their hospitality.

I thank the Deutsche Forschungsgemeinschaft, the Bundesministerium für Forschung und Technologie and the Volkswagen Stiftung for the financial support that kept my laboratory running and made the work reported in this volume possible.

I have to thank my secretary H. Waack for typing with great skill the various (many) drafts of the manuscript and for helping me in reading the proofs.

This book would not have been completed without the expert and friendly cooperation and help from Dr. A. Lahee and in particular Dr. H. Lotsch from Springer Verlag. I appreciate in particular that H. Lotsch worked intensively on the manuscript even under the most difficult personal conditions.

Contents

 1.1 Historical Development	1
 1.2 The Electron Mean Free Path 1.3 Photoelectron Spectroscopy and Inverse Photoelectron Spectroscopy 1.4 Experimental Aspects 1.5 Very High Resolution 1.6 The Theory of Photoemission 1.6.1 Core-Level Photoemission 1.6.2 Valence-State Photoemission 1.6.3 Three-Step and One-Step Considerations 1.7 Deviations from the Simple Theory of Photoemission References 	1
 1.3 Photoelectron Spectroscopy and Inverse Photoelectron Spectroscopy 1.4 Experimental Aspects 1.5 Very High Resolution 1.6 The Theory of Photoemission 1.6.1 Core-Level Photoemission 1.6.2 Valence-State Photoemission 1.6.3 Three-Step and One-Step Considerations 1.7 Deviations from the Simple Theory of Photoemission References 	9
and Inverse Photoelectron Spectroscopy1.4 Experimental Aspects1.5 Very High Resolution1.6 The Theory of Photoemission1.6.1 Core-Level Photoemission1.6.2 Valence-State Photoemission1.6.3 Three-Step and One-Step Considerations1.7 Deviations from the Simple Theory of PhotoemissionReferences	
 1.4 Experimental Aspects 1.5 Very High Resolution 1.6 The Theory of Photoemission 1.6.1 Core-Level Photoemission 1.6.2 Valence-State Photoemission 1.6.3 Three-Step and One-Step Considerations 1.7 Deviations from the Simple Theory of Photoemission References 	14
 1.5 Very High Resolution 1.6 The Theory of Photoemission	20
 1.6 The Theory of Photoemission	27
 1.6.1 Core-Level Photoemission 1.6.2 Valence-State Photoemission 1.6.3 Three-Step and One-Step Considerations 1.7 Deviations from the Simple Theory of Photoemission References 	$\frac{-}{39}$
 1.6.2 Valence-State Photoemission 1.6.3 Three-Step and One-Step Considerations 1.7 Deviations from the Simple Theory of Photoemission References 	42
1.6.3Three-Step and One-Step Considerations1.7Deviations from the Simple Theory of PhotoemissionReferences	45
1.7 Deviations from the Simple Theory of Photoemission References	50
References	51
	57
2. Core Levels and Final States	61
2.1 Core-Level Binding Energies in Atoms and Molecules	63
2.1.1 The Equivalent-Core Approximation	63
2.1.2 Chemical Shifts	65
2.2 Core-Level Binding Energies in Solids	69
2.2.1 The Born–Haber Cycle in Insulators	69
2.2.2 Theory of Binding Energies	71
2.2.3 Determination of Binding Energies and Chemical Shifts	
from Thermodynamic Data	76
2.3 Core Polarization	83
2.4 Final-State Multiplets in Rare-Earth Valence Bands	92
2.5 Vibrational Side Bands	99
2.6 Core Levels of Adsorbed Molecules	100
2.7 Quantitative Chemical Analysis from Core-Level Intensities 1	103
References 1	104
3. Charge-Excitation Final States: Satellites	109
3.1 Copper Dihalides; 3d Transition Metal Compounds	110
3.1.1 Characterization of a Satellite	110
3.1.2 Analysis of Charge-Transfer Satellites	115

		3.1.3 Non-local Screening	126
	3.2	The 6-eV Satellite in Nickel	130
		3.2.1 Resonance Photoemission	133
		3.2.2 Satellites in Other Metals	143
	3.3	The Gunnarsson–Schönhammer Theory	148
	3.4	Photoemission Signals and Narrow Bands in Metals	152
	Refe	rences	166
4.	Cor	tinuous Satellites and Plasmon Satellites:	
	\mathbf{XP}	S Photoemission in Nearly Free Electron Systems	173
	4.1	Theory	181
		4.1.1 General	181
		4.1.2 Core-Line Shape	182
		4.1.3 Intrinsic Plasmons	183
		4.1.4 Extrinsic Electron Scattering:	
		Plasmons and Background	185
		4.1.5 The Total Photoelectron Spectrum	187
	4.2	Experimental Results	187
		4.2.1 The Core Line Without Plasmons	187
		4.2.2 Core-Level Spectra Including Plasmons	190
		4.2.3 Valence-Band Spectra of the Simple Metals 1	195
		4.2.4 Simple Metals: A General Comment	200
	4.3	The Background Correction	201
	Refe	rences	206
F	Val	mas Orbitals in Simula Malandar	
э.	vale	Ince Orbitals in Simple Molecules	111
	and 5 1	UDS Spectra of Manatamia Cases	211
	0.1 5-9	Destaglacture Spectra of Distancia Malagular	212
	0.2 5.2	Rinding Energy of the H Molecule	214
	0.0 5.4	Hudrides Isoelectropic with Noble Cases	221
	0.4	Noon (No)	222
		Hudrogen Elueride (HE)	220 202
			220 222
		$\begin{array}{c} \text{Ammonia} (\text{NH}) \end{array}$	220
		$ \begin{array}{c} \text{Annnonia} (\mathbf{N}\mathbf{n}_3) \\ \text{Mothene} (\mathbf{C}\mathbf{H}_1) \end{array} $	224
	55	Spectra of the Alkali Halider	224
	5.6	Transition Motel Dihelides	220 120
	5.0	Hudrogerbong	202
	0.7	5.7.1 Cuidelines for the Interpretation of Speetra	200
		from Free Molecules	190
		5.7.2 Linear Polymore	220
	5.8	Insulating Solids with Valence d Floctrons	200 2 <i>11</i>
	0.0	5.8.1 The NiO Problem	244)57
		5.8.2 Mott Insulation	204 269
		0.0.4 mote mouation	-00

		5.8.3	The Metal–Insulator Transition; the Ratio	
			of the Correlation Energy and the Bandwidth; Doping	274
		5.8.4	Band Structures of Transition Metal Compounds	283
	5.9	High-7	Femperature Superconductors	286
		5.9.1	Valence-Band Electronic Structure;	
			Polycrystalline Samples	287
		5.9.2	Dispersion Relations	
			in High Temperature Superconductors; Single Crystals	303
		5.9.3	The Superconducting Gap	310
		5.9.4	Symmetry of the Order Parameter	
			in the High-Temperature Superconductors	312
		5.9.5	Core-Level Shifts	315
	5.10	The F	ermi Liquid and the Luttinger Liquid	317
	5.11	Adsor	bed Molecules	324
		5.11.1	Outline	324
		5.11.2	CO on Metal Surfaces	324
	Refe	rences	•••••••••••••••••••••••••••••••••••••••	337
6	Pho	toemi	ssion of Valence Electrons	
0.	fron	n Meta	allic Solids	
	in t	he On	e-Electron Approximation	347
	6.1	Theor	v of Photoemission:	0.11
		A Sun	mary of the Three-Step Model	349
	6.2	Discus	ssion of the Photocurrent	357
		6.2.1	Kinematics of Internal Photoemission	
			in a Polycrystalline Sample	357
		6.2.2	Primary and Secondary Cones	
			in the Photoemission from a Real Solid	365
		6.2.3	Angle-Integrated and Angle-Resolved Data Collection .	366
	6.3	Photo	emission from the Semi-infinite Crystal:	
		The Ir	verse LEED Formalism	374
		6.3.1	Band Structure Regime	381
		6.3.2	XPS Regime	381
		6.3.3	Surface Emission	383
		6.3.4	One-Step Calculations	385
	6.4	Therm	nal Effects	387
	6.5	Dipole	e Selection Rules for Direct Optical Transitions	401
	Refe	rences		407
7	Ban	d Stri	icture	
••	and	Angu	lar-Resolved Photoelectron Spectra	411
	7.1	Free-F	Electron Final-State Model	413
	7.2	Metho	ods Employing Calculated Band Structures	415
	7.3	Metho	ods for the Absolute Determination	
		of the	Crystal Momentum	418
			-	

		7.3.1	Triangulation or Energy Coincidence Method	421
		7.3.2	Bragg Plane Method: Variation of External Emission	
			Angle at Fixed Photon Frequency	105
		799	(Disappearance/Appearance Angle Method	425
		1.3.3	Bragg Plane Method: Variation of Photon Energy	400
		7 0 4	at Fixed Emission Angle (Symmetry Method)	433
		7.3.4	The Surface Emission Method and Electron Damping	437
		7.3.5	The Very-Low-Energy Electron Diffraction Method	439
		7.3.6	The Fermi Surface Method	443
		7.3.7	intensities and Their Use	445
		790	ni Dand-Structure Determinations	440
	74	7.3.0 Euroa	simontal Dand Structures	450
	1.4	Exper	One and Two Dimensional Systems	403
		7.4.1	Three Dimensional Systems	453
		7.4.2	Inree-Dimensional Solids: Metals and Semiconductors	472
	75	1.4.3 A.C	UPS Band Structures and APS Density of States	481
	(.) D.f.	A Cor	nment	493
	Refe	rences	•••••••••••••••••••••••••••••••••••••••	495
8.	Sur	face S	tates, Surface Effects	501
	8.1	Theor	etical Considerations	503
	8.2	Exper	imental Results on Surface States	513
	8.3	Quant	tum-Well States	529
	8.4	Surfac	ce Core-Level Shifts	535
	Refe	rences		546
q	Inve	rso P	hotoelectron Spectroscopy	551
υ.	0.1	Surfac	rotoelection spectroscopy	555
	0.2	Bulk I	Band Structure	560
	0.2	Adsor	hed Moloculos	562
	Bofo	roncos		571
	Itele	rences		571
10.	Spir	n-Pola	rized Photoelectron Spectroscopy	575
	10.1	Gener	al Description	575
	10.2	Exam	ples of Spin-Polarized Photoelectron Spectroscopy	575
	10.3	Magne	etic Dichroism	586
	Refe	rences		593
11	Pho	taeler	tron Diffraction	507
	11 1	Exam	nles	601
	11.1	Subet	rate Photoelectron Diffraction	607
	11.2	Adam	hate Photoelectron Diffraction	610
	11.0	Form:	Surface Scope	696
	LL.4 Rofe	renne	Surface Scalls	020 622
	TICLE	LCHCCS		000

Appendix	335
A.1 Table of Binding Energies	336
A.2 Surface and Bulk Brillouin Zones of the Three Low-Index Faces	
of a Face-Centered Cubic (fcc) Crystal Face	342
A.3 Compilation of Work Functions	350
References	351
Index	553