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I dedicate this book to my parents, James and Joyce Wilson.



Preface

Littlewood-Paley theory can be thought of as a profound generalization of the
Pythagorean theorem. If x ∈ Rd—say, x = (x1, x2, . . . , xd)—then we define
x’s norm, ‖x‖, to be (

∑d
1 x2

n)1/2. This norm has the good property that, if
y = (y1, y2, . . . , yd) is any other vector in Rd, and |yn| ≤ |xn| for each n, then
‖y‖ ≤ ‖x‖. In other words, the size of x, as measured by the norm function,
is determined entirely by the sizes of x’s components. This remains true if
we let the dimension d increase to infinity, and define the norm of a vector
(actually, an infinite sequence) x = (x1, x2, . . .) to be ‖x‖ ≡ (

∑∞
1 x2

n)1/2.
In analysis it is often convenient (and indispensable) to decompose func-

tions f into infinite series,

f(x) =
∑

λnφn(x), (0.1)

where the functions φn come from some standard family (such as the Fourier
system) and the λn’s are complex numbers. (For the time being we will not
specify how the series 0.1 is supposed to converge.) Typically the coefficients
λn are defined by integrals of f against some other functions ψn. If we are
interested about convergence in the sense of L2 (or “mean-square”), and if
the φn’s comprise a complete orthonormal family, then each ψn can be taken
to be φ̄n, the complex conjugate of φn; i.e.,

λn =
∫

f(x) φ̄n(x) dx,

and we have ∫
|f(x)|2 dx =

∑
|λn|2.

(For the time being we will not specify the domain on which f and the φn’s
are defined.) If we are only interested in L2 functions, then the natural norm,

‖f‖2 ≡
(∫

|f(x)|2 dx

)1/2

=
(∑

|λn|2
)1/2

,
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has the same domination property possessed by the Euclidean norm on Rd:
if g =

∑
γnφn and |γn| ≤ |λn| for all n, then ‖g‖2 ≤ ‖f‖2. Even better, if, for

some ε > 0, we have |γn| ≤ ε|λn| for all n, then ‖g‖2 ≤ ε‖f‖2.
Unfortunately, L2 is not always the most useful function space for a given

problem. We might want to work in L4, with its norm defined by

‖f‖4 ≡
(∫

|f(x)|4 dx

)1/4

.

To make things specific, let’s suppose that our functions are defined on [0, 1).
The collection {exp(2πinx)}∞−∞ defines a complete orthonormal family in
L2[0, 1). Now, if f ∈ L4[0, 1), then the coefficients

λn ≡
∫ 1

0

f(x) exp(−2πinx) dx

are defined, and the infinite series,

∞∑
−∞

λn exp(2πinx),

converges to f in the L4 sense, if we sum it up right. But the domination
property fails in a very strong sense. Given f ∈ L4, and given an integrable
function g such |γn| ≤ |λn| for all n, where

γn =
∫ 1

0

g(x) exp(−2πinx) dx,

there is no reason to expect that ‖g‖4 is even finite, let alone controlled by
‖f‖4.

Littlewood-Paley theory provides a way to almost preserve the domina-
tion property. To each function f , one associates something called the square
function of f , denoted S(f). (Actually, the square function comes in many
guises, but we will not go into that now.) Each square function is defined via
inner products with a fixed collection of functions. Sometimes this collection is
a complete orthonormal family for L2, but it doesn’t have to be. The square
function S(f)(x) is defined as a weighted sum (or integral) of the squares
of the inner products, |〈f, φ〉|2, where φ belongs to the fixed collection. The
function S(f)(x) varies from point to point, but, if f and g are two functions
such that |〈g, φ〉| ≤ |〈f, φ〉| for all φ, then S(g)(x) ≤ S(f)(x) everywhere. The
square function S(f) also has the property that, if 1 < p < ∞, and f ∈ Lp,
the Lp norms of S(f) and f are comparable.

The combination of these two facts—domination plus comparablility—lets
us, in many situations, reduce the analysis of infinite series of functions,

f(x) =
∑

λiφi(x),
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to the analysis of infinite series of non-negative functions,

S(f)(x) =
(∑

|γi|2|ψi(x)|2
)1/2

;

and that greatly simplifies things. We have already mentioned the practice,
common in analysis, of cutting a function into infinitely many pieces. Typi-
cally we do this to solve a problem, such as a PDE. We break the data into
infinitely many pieces, solve the problem on each piece, and then sum the
“piece-wise” solutions. The sums encountered this way are likely to contain a
lot of complicated cancelations. Littlewood-Paley theory lets us control them
by means of sums that have no cancelations.

The mutual control between |f | and S(f) is very tight. We will soon show
that, if f is a bounded function defined on [0, 1), there is a positive α such that
exp(α(S(f))2) is integrable on [0, 1)—and vice versa. (This is not quite like
saying that |f | and S(f) are pointwise comparable, but in many applications
they might as well be.) This tight control is expressed quantitatively in terms
of weighted norm inequalities. The reader will learn some sufficient (and not
terribly restrictive) conditions on pairs of weights which ensure that∫

|f(x)|p v dx ≤
∫

(S(f)(x))p w dx (0.2)

or ∫
(S(f)(x))p v dx ≤

∫
|f(x)|p w dx (0.3)

holds for all f in suitable test classes, for various ranges of p (usually, 1 < p <
∞). He will also learn some necessary conditions for such inequalities.

The usefulness of the square function (in its many guises) comes chiefly
from the fact that, for many linear operators T , S(T (f)), the square function
of T (f), is bounded pointwise by a function S̃(f), where S̃(·) is an operator
similar to—and satisfying estimates similar to—S(·). This makes it possible
to understand the behavior of T , because one can say: |T (f)| is controlled by
S(T (f)), which is controlled by S̃(f), which is controlled by |f |. Obviously,
the closer the connection between |f | and S(f), the more efficient this process
will be. The exponential-square results (and the corresponding weighted norm
inequalities) imply that this connection is pretty close.

We have tried to make this book self-contained, not too long, and ac-
cessible to non-experts. We have also tried to avoid excessive overlap with
other books on weighted norm inequalities. Therefore we have not treated
every topic of relevance to weighted Littlewood-Paley theory. We have not
touched on multi-parameter analysis at all, and we have dealt only briefly
with vector-valued inequalities. We discuss Ap weights mainly with reference
to the square function and singular integral operators. We prove the bounded-
ness of the Hardy-Littlewood operator on Lp(w) for w ∈ Ap and we prove an
extrapolation result—because we need both—but we don’t prove Ap factor-
ization or the Rubio de Francia extrapolation theorem, excellent treatments
of which can be found in many books (e.g., [16] and [24]).
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The book is laid out this way. Chapter 1 covers some basic facts from
harmonic analysis. Most of the material there will be review for many people,
but we have tried to present it so as not to intimidate the non-experts. Chapter
2 introduces the one-dimensional dyadic square function and proves some of its
properties; it also introduces a few more techniques from harmonic analysis. In
chapter 3 we prove the exponential-square estimates mentioned above (in one
dimension only). These lead to an in-depth look at weighted norm inequalities.
In chapter 4 we extend the results of the preceding chapters to d dimensions
and to continuous analogues of the dyadic square function.

Chapters 5, 6, and 7 are devoted to the Calderón reproducing formula.
The Calderón formula provides a canonical way of expressing “arbitrary”
functions as linear sums of special, smooth, compactly supported functions.
It is the foundation of wavelet theory. Aside from some casual remarks1, we
don’t talk about wavelets. The expert will see the close connections between
wavelets and the material in chapters 5–7. The non-expert doesn’t have to
worry about them to understand the material; but, should he ever encounter
wavelets, a good grasp of the Calderón formula will come in very handy. We
have devoted three chapters to it because we believe the reader will gain more
by seeing essentially the same problem (the convergence of the Calderón in-
tegral formula) treated in increasing levels of generality, than in having one
big portmanteau theorem dumped onto his lap. The portmanteau theorem
(Theorem 7.1) does come; but we trust that, when it does, the reader is more
than able to bear its weight.

Chapters 8 and 9 give some straightforward applications of weighted
Littlewood-Paley theory to the analysis of Schrödinger and singular integral
operators. This material could easily have come after that in chapter 10, but
we felt that, where it is, it gave the reader a well-earned break from purely
theoretical discussions.

In chapter 10 we return to theory. The scale of Orlicz spaces (which in-
cludes that of Lp spaces for 1 ≤ p ≤ ∞) provides a flexible way of keeping
track of the integrability properties of functions. It is very useful in the study
of weighted norm inequalities. The material here could have come at the very
beginning, but we felt that the reader would understand this theory better if
he first saw the need for it.

As an application of Orlicz space theory, chapter 11 presents a different
proof of Theorem 3.8 from chapter 3. This ingenious argument, due to Fedor
Nazarov, completely avoids the use of good-λ inequalities (which we introduce
in chapter 2). These have been a mainstay of analysis since the early 1970s.
In the opinion of some researchers, they have also become a crutch. We are
neutral on this issue, but please see our note at the end of chapter 2.

Chapter 12 applies the theory from the preceding chapters to give a new
(and, we hope, accessible) proof of the Hörmander-Mihlin multiplier theorem.
Chapter 13 extends the main weighted norm results from earlier chapters

1 Like this one.
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to the �2-valued setting. In chapter 14 we prove one theorem (Khinchin’s
Inequalities), but our discussion there is mainly philosophical. We look at
what Littlewood-Paley theory can tell us about pointwise summation errors
of Haar function expansions.

We have put exercises at the end of almost every chapter. Some of them
expand on topics treated in the text; some tie up loose ends in proofs; some
are referred to later in the book. We encourage the reader to understand all
of them and to attempt at least a few. (We have supplied hints for the more
difficult ones.)

The author wishes to thank the many colleagues who have offered sug-
gestions, helped him track down references, and steered him away from
blunders. These colleagues include David Cruz-Uribe, SFO (of Trinity Uni-
versity in Hartford, Connecticut), Doug Kurtz (of New Mexico State Univer-
sity), José Martell (of the Universidad Autónoma de Madrid), Fedor Nazarov
(of Michigan State University), Carlos Pérez Moreno (of the Universidad de
Sevilla), and Richard Wheeden (of Rutgers University, New Brunswick). I
must particularly thank Roger Cooke, now retired from the University of
Vermont, who read early drafts of the first chapters, and whose insightful
criticisms have made them much more intelligible and digestible.

The author could not have written this book without the generous support
of the Spanish Ministerio de Educación, Cultura, y Deporte, which provided
him with a research grant (SAB2003-0003) during his 2004-2005 sabbatical at
the Universidad de Sevilla. My family and I are indebted to so many members
of the Facultad de Matematicas for their hospitality, that I hesitate to try to
name them, for fear of omitting some. However, I must especially point out
the kindness of my friend and colleague, Carlos Pérez Moreno. Without his
tireless efforts, our visit to Sevilla would never have taken place. I do not
have adequate words to express how much my family and I owe to him for
everything he did for us, both before and after we arrived in Spain. Carlos,
Sevilla, y España se quedarán siempre en nuestros corazones.
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