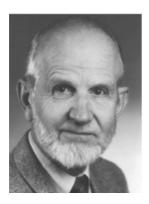
Classics in Mathematics	
Lars Hörmander	The Analysis of Linear Partial
	Differential Operators II



Born on January 24, 1931, on the southern coast of Sweden, Lars Hörmander did his secondary schooling as well as his undergraduate and doctoral studies in Lund. His principle teacher and adviser at the University of Lund was Marcel Riesz until he returned, then Lars Gårding. In 1956 he worked in the USA, at the universities of Chicago, Kansas, Minnesota and New York, before returning to a chair at the University of Stockholm. He remained a frequent visitor to the US, particularly to Stanford and was Professor at the IAS, Princeton from 1964 to 1968. In 1968 he accepted a chair at the University of Lund, Sweden, where, today he is Emeritus Professor.

Hörmander's lifetime work has been devoted to the study of partial differential equations and its applications in complex analysis. In 1962 he was awarded the Fields Medal for his contributions to the general theory of linear partial differential operators. His book *Linear Partial Differential Operators*, published 1963 by Springer in the Grundlehren series, was the first major account of this theory. His four volume text *The Analysis of Linear Partial Differential Operators*, published in the same series 20 years later, illustrates the vast expansion of the subject in that period.

The Analysis of Linear Partial Differential Operators II

Differential Operators with Constant Coefficients

Reprint of the 1983 Edition

University of Lund
Department of Mathematics
Box 118
SE-22100 Lund
Sweden
email: lvh@maths.lth.se

Originally published as Vol. 257 in the series: Grundlehren der mathematischen Wissenschaften

Library of Congress Control Number: 2004097173

Mathematics Subject Classification (2000): 35B, 35C, 35E, 35G, 35L, 35H10, 35P25, 44A35

ISSN 1431-0821 ISBN 3-540-22516-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springeronline.com

© Springer Berlin Heidelberg 2005 Printed in Germany

The use of general descriptive names, registered names, trademarks etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Printed on acid-free paper

41/3142YL-543210

The Analysis of Linear Partial Differential Operators II

Differential Operators with Constant Coefficients

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong

Lunds Universitet, Matematiska Institutionen Box 118 S-22100 Lund Sweden

With 7 Figures

Second revised printing 1990

AMS Subject Classification: 35 E; 35 G, 35 H, 35 L, 35 P, 44 A 35

ISBN 3-540-12139-0 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-12139-0 Springer-Verlag New York Heidelberg Berlin Tokyo

Library of Congress Cataloging-in-Publication Data

Hörmander, Lars. The analysis of linear partial differential operators / Lars Hörmander. – Rev. ed. p. cm. – (Grundlehren der mathematischen Wissenschaften; 257) Includes bibliographical references. Contents: 2. Differential operators with constant coefficients. ISBN (invalid) 0-387-12139-0 (U.S.: v. 2)

1. Differential equations, Partial. 2. Partial differential operators. I. Title. II. Series. QA377.H578 1990 515'.353-dc20 89-26134 CIP

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1983 Printed in Germany

Typesetting: Universitätsdruckerei H. Stürtz AG, 8700 Würzburg Printing: Reprotechnik Deutschland GmbH, Heidelberg Bookbinding: Schäffer, Grünstadt 2141/3111 - 543 Printed on acid-free paper

Preface

This volume is an expanded version of Chapters III, IV, V and VII of my 1963 book "Linear partial differential operators". In addition there is an entirely new chapter on convolution equations, one on scattering theory, and one on methods from the theory of analytic functions of several complex variables. The latter is somewhat limited in scope though since it seems superfluous to duplicate the monographs by Ehrenpreis and by Palamodov on this subject.

The reader is assumed to be familiar with distribution theory as presented in Volume I. Most topics discussed here have in fact been encountered in Volume I in special cases, which should provide the necessary motivation and background for a more systematic and precise exposition. The main technical tool in this volume is the Fourier-Laplace transformation. More powerful methods for the study of operators with variable coefficients will be developed in Volume III. However, the constant coefficient theory has given the guidelines for all that work. Although the field is no longer very active – perhaps because of its advanced state of development – and although it is possible to pass directly from Volume I to Volume III, the material presented here should not be neglected by the serious student who wants to gain a balanced perspective of the theory of linear partial differential equations.

I would like to thank all who have helped me in various ways during the preparation of this volume. As in the case of the first Volume I am particularly indebted to Niels Jørgen Kokholm of the University of Copenhagen who has read all the proofs and in doing so suggested many improvements of the text.

Lund in February 1983

Lars Hörmander

Contents

Introduction	1
Chapter X. Existence and Approximation of Solutions of	
Differential Equations	3
Summary	3
10.1. The Spaces $B_{n,k}$	3
10.2. Fundamental Solutions	16
10.3. The Equation $P(D) u = f$ when $f \in \mathcal{E}'$	29
10.4. Comparison of Differential Operators	32
10.5. Approximation of Solutions of Homogeneous	
Differential Equations	39
10.6. The Equation $P(D)u=f$ when f is in a Local Space	
$\subset \mathscr{D}_{\mathtt{F}}'$	41
10.7. The Equation $P(D)u=f$ when $f \in \mathcal{D}'(X)$	45
10.8. The Geometrical Meaning of the Convexity Conditions .	50
Notes	58
Chapter XI. Interior Regularity of Solutions of Differential	
Equations	60
Summary	60
11.1. Hypoelliptic Operators	61
11.2. Partially Hypoelliptic Operators	69
11.3. Continuation of Differentiability	73
11.4. Estimates for Derivatives of High Order	85
Notes	92
Chapter XII. The Cauchy and Mixed Problems	94
Summary	94
12.1. The Cauchy Problem for the Wave Equation	96
12.2. The Oscillatory Cauchy Problem for the Wave Equation.	
12.3. Necessary Conditions for Existence and Uniqueness	_ ,
of Solutions to the Cauchy Problem	110
· · · · · · · · · · · · · · · · · · ·	

	Contents	VII
12.4. Properties of Hyperbolic Polynomials		112
12.5. The Cauchy Problem for a Hyperbolic Equation		
12.6. The Singularities of the Fundamental Solution		125
12.7. A Global Uniqueness Theorem		
12.8. The Characteristic Cauchy Problem		
12.9. Mixed Problems		
Notes		
11000		100
Chapter XIII. Differential Operators of Constant Streng	th	182
Summary		182
13.1. Definitions and Basic Properties		
13.2. Existence Theorems when the Coefficients are M		
Continuous	-	184
13.3. Existence Theorems when the Coefficients are in		
13.4. Hypoellipticity		
13.5. Global Existence Theorems		
13.6. Non-uniqueness for the Cauchy Problem		
Notes		
Notes		224
Chapter XIV. Scattering Theory		225
Summary		225
14.1. Some Function Spaces		
14.2. Division by Functions with Simple Zeros		
14.2. Division by 1 unctions with Simple Zeros 1. 14.3. The Resolvent of the Unperturbed Operator .		
14.4. Short Range Perturbations		
14.4. Short Range Perturbations		243
Spectrum		251
14.6. The Distorted Fourier Transforms and the Con		201
Spectrum		255
14.7. Absence of Embedded Eigenvalues		
Notes		
rotes		200
Chapter XV. Analytic Function Theory and Differential		
		270
Equations		270
Summary		270
15.1. The Inhomogeneous Cauchy-Riemann Equation		
15.2. The Fourier-Laplace Transform of $B_{2,k}^c(X)$ when		
Convex		279
15.3. Fourier-Laplace Representation of Solutions of		
Differential Equations		287

VIII Contents

15.4. The Fourier-Laplace Transform of $C_0^{\infty}(X)$ when X is	۸,
Convex	
inotes	<i>J</i> U
Chapter XVI. Convolution Equations	02
Summary	02
16.1. Subharmonic Functions	03
16.2. Plurisubharmonic Functions	14
16.3. The Support and Singular Support of a Convolution 3	19
16.4. The Approximation Theorem	35
16.5. The Inhomogeneous Convolution Equation	41
16.6. Hypoelliptic Convolution Equations	
16.7. Hyperbolic Convolution Equations	
Notes	
Appendix A. Some Algebraic Lemmas	62
A.1. The Zeros of Analytic Functions	
A.2. Asymptotic Properties of Algebraic Functions of	
Several Variables	64
Notes	71
Bibliography	73
Index	91
Index of Notation	92