Oceanic Internal Tides: Observations, Analysis and Modeling

Eugene G. Morozov

Oceanic Internal Tides: Observations, Analysis and Modeling

A Global View

Eugene G. Morozov Physical Department Shirshov Institute of Oceanology, Russian Academy of Sciences Moscow Russia

ISBN 978-3-319-73158-2 ISBN 978-3-319-73159-9 (eBook) https://doi.org/10.1007/978-3-319-73159-9

Library of Congress Control Number: 2017962038

© Springer International Publishing AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cover photo: Plastic Buoyancy holding a wire with instruments. (Courtesy of T. Demidova)

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book presents the author's study of the properties of internal tides. The experimental data that were used in this research were collected during experiments aimed at studying other physical processes in the ocean, for example the general circulation or mesoscale eddies. To date, special experiments designed to study internal tides have been very rare. Since the horizontal size of mesoscale eddies and internal tide wavelengths have almost the same length, it was possible to interpret the data in light of the phenomena related to internal tides. In the experiments aimed at studying mesoscale eddies, additional instruments were sometimes set on the moorings and additional moorings were deployed with the goal of better understanding of the internal tides.

This book is the result of 50 years of scientific research carried out by the author since 1967. Internal waves are investigated across a wide range of frequencies with special emphasis on internal tides. The research is based on the statistical analysis of temperature and velocity measurements in different regions of the World Ocean. Systematic studies of internal waves presented in Krauss (1966), Miropolsky (2001), Vlasenko et al. (2005), Gerkema and Zimmerman (2008) are generally related to theoretical studies. A summary of the experimental studies is presented in Roberts (1975), Morozov (1985), Konyaev and Sabinin (1992). This book focuses mainly on the experimental studies of internal waves. It is a progressive study of the research presented by Morozov (1985). The data of measurements in the ocean are interpreted in light of the modern concepts and models of oceanic internal waves.

Surface waves are familiar to everybody. Waves similar to surface waves can appear at the density interface between fluids of different density or over the continuous stratification of fluid. If a perturbation displaces the water particles from the state of equilibrium, oscillations will appear under the influence of the buoyancy forces and forces returning the particles to the equilibrium. Since the water particles are interconnected, spatial oscillations will develop, which are known as gravity waves. The density differences within the fluid are smaller than at the surface between water and air; hence, the returning forces are weaker, and the wave periods are longer than the periods of surface waves. In oceanic conditions, the amplitudes of waves can be as large as several tens or even hundreds of meters as reported in early publications (Bockel 1962; Perry and Schimke 1965; Niiler 1968; Osborne and Burch 1980).

The measurements show that internal gravity waves are found everywhere in the ocean where positive density stratification of water exists. Upon the discovery that this phenomenon is global, studies of oceanic internal waves became one of the leading research fields of oceanography in the second half of the twentieth century. Internal waves play an important role in all dynamical processes in the ocean, especially in the energy transfer from the surface to the ocean interior and in the mixing of water layers. Internal waves exist everywhere in the ocean; they are the main mechanism by which wind energy is transferred from the ocean surface to the depths. In addition to the important influence of internal waves on ocean dynamics as a whole, they are important in the practical sense for underwater navigation, marine biology, sedimentation, acoustics, and optics of the ocean.

Cold dense water masses are formed in the polar regions of the Earth and descend to the deep layers in all oceans. The Sun warms only the upper ocean layer. Since the density distribution is generally stationary in the ocean, which is significantly different from two-layer stratification, we can conclude that the existing stratification is a result of the long mixing processes.

Munk and Wunsch (1998) discussed the problem of mixing in the ocean and the formation of the existing stratification. According to their estimates, the flow of Antarctic Bottom Water formed over the continental slope of Antarctica is approximately equal to 25-30 Sv. Approximately one-third of this amount of water flows to the north. Without internal mixing, a layer of warm water would be located in the upper part of the ocean, and cold waters would fill the entire depths of the ocean. According to the estimates of Munk and Wunsch, such a structure could be formed in approximately 3000 years. However, mixing induces an upward buoyancy water flow, and the cold waters mix with the overlying layers. The current estimates of vertical diffusivity in the abyssal depths of the ocean are 10^{-5} m²/s. This is not sufficient to perform the necessary mixing. Hence, "hot points" of mixing exist, in which the vertical diffusivity is much greater, and intense mixing occurs exactly at these points. Such regions are characterized by sharp changes in the bottom topography: submarine ridges, continental slopes, seamounts, and abyssal channels and fractures.

Mixing in the ocean is generally determined by the energy transferred from wind and tides. The role of internal tides in the vertical and horizontal exchange dominates over that of other types of internal waves. In the theoretical paper by Müller (1976), internal wave packets are compared with gas molecules. A quantitative estimate of the role of internal waves in the transport of energy, momentum, and mass, the influence of internal waves on the mixing processes in the ocean, and the study of the generation, propagation, instability, and breaking of internal waves are among the main problems of modern physics of the ocean. The understanding of internal wave dynamics is important for the study of circulation in the ocean and its thermohaline structure. Density stratification is a necessary condition for the existence of internal waves. Internal waves occupy a wide frequency band from the Brunt–Väisälä frequency to the inertial frequency. Tidal oscillations and partly turbulent pulsations also belong to this frequency range. The problem of the physical mechanism of perturbations of physical fields in the ocean can be solved jointly by experimental field measurements, theoretical studies, and numerical and laboratory modeling. Experimental research can verify the theoretical conclusions and put forward the questions that need theoretical interpretation.

The study of internal wave properties and their relation to the mean state of the ocean is key to understanding many processes in the ocean. The influence of the mean ocean state on the internal wave regime, revealing the mechanisms of the generation and breaking of internal waves, the influence of tide and wind on internal wave parameters, the investigation of the energy exchange between waves of different frequency ranges and between waves and mean motion are the most pressing problems of internal wave research.

In this book, we consider the characteristics of internal waves and determine their relation to the mean state of the ocean and other oceanic processes. The analysis is based on the application of statistical methods in the processing of large amounts of field data on temperature and currents measured on moorings in various regions of the ocean. The main focus was on the temperature measurements and the analysis of temperature fluctuations because these data reflect the vertical displacements of water caused by internal waves.

This book is the result of more than 50 years of research. Over these years, the oceanographers of the world have come to a better understanding of the important role of internal waves in ocean dynamics. Our knowledge of internal waves has increased rapidly. During this time period, the oceanographic concept has changed. New instruments for measuring in the ocean have been developed and applied in the research. The theory of ocean physics has also progressed.

The author would have been unable to accomplish such a vast amount of work including the development of the database, without the help of other scientists from the Shirshov Institute of Oceanology and colleagues from other oceanographic institutes around the world.

Moscow, Russia

Eugene G. Morozov

References

Bockel M (1962) Travaux oceanographiques de l' "Origny" a Gibraltar. Cah Oceanogr 14: 325–329

Gerkema T, Zimmerman JTF (2008) An introduction to internal waves. Lect notes, Royal NIOZ. Texel. http://imis.nioz.nl/imis.php?module=ref&refid=289938. Accesed in October 2017

Konyaev KV, Sabinin KD (1992) Waves inside the ocean. Gidrometeoizdat, S.-Petersburg, p 272 Krauss W (1966) Interne Wellen. Gebrüder Borntraeger, Berlin–Nikolasee

- Miropolsky YZ (2001) In: Shishkina O (ed) Dynamics of internal gravity waves in the ocean, Springer
- Morozov EG (1985) Oceanic internal waves. Russian, Nauka, Moscow, p 151
- Müller P (1976) On the diffusion of momentum and mass by internal gravity waves. J Fluid Mech 77(4):789–823
- Munk WH, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res 45:1977–2010
- Niiler PP (1968) On the internal tidal motions in the Florida straits. Deep-Sea Res 15(1):113–123
- Osborne AR, Burch TL (1980) Internal solitons in the Andaman sea. Science 208(4443):451–459
- Perry RB, Schimke GR (1965) Large amplitude internal waves observed off the north-west coast of Sumatra. J Geophys Res 70(10):2319–2324
- Roberts J (1975) Internal gravity waves in the ocean. Marcel Dekker, NY
- Vlasenko V, Stashchuk N, Hutter K (2005) Baroclinic tides: theoretical modeling and observational evidence. Cambridge Univ. Press, Cambridge, p 351

Acknowledgements

The author thanks his supervisors V. G. Kort, Yu. A. Ivanov, and S. S. Voit, and scientific colleagues K. D. Sabinin, S. V. Nikitin, V. G. Neiman, B. N. Filyushkin, V. I. Vlasenko, E. N. Pelinovsky, T. A. Talipova, N. I. Makarenko, A. S. Samodurov, I. D. Lozovatsky, S. S. Lappo, R. I. Nigmatulin, V. G. Bondur, M. N. Koshlyakov, B. A. Tareev, I. M. Ovchinnikov, R. Yu. Tarakanov, A. N. Serebryany, A. V. Marchenko, S. V. Muzylev, S. M. Shapovalov, S. V. Pisarev, A. V. Sokov, T. A. Demidova, D. I. Frey, O. D. Shishkina, S. Yu. Erofeeva, L. M. Fomin, V. A. Melnikov, V. I. Byshev, E. A. Plakhin, V. T. Paka, A. D. Shcherbinin, I. E. Kozlov, L. P. Filatova, Yu. V. Grebenyuk, V. V. Ledenev, V. V. Bulatov, and many others for their help and assistance with the work. The author thanks his foreign colleagues W. Munk, C. Garrett, P. Baines, M. Velarde, L. Maas, H. van Haren, T. Gerkema, T. Hibiya, G. Parrilla, T. Joyce, L. Mysak, G. Weatherly, J. Grue, K. Trulsen, H. J. S. Fernando, W. Zenk, S. Thorpe, M. Briscoe, P. Holloway, A. New, M. Bruno, and J. Alonso for many fruitful discussions. The author thanks the crews and captains of research ships for their help in the field research: E. A. Rebains, N. V. Apekhtin, A. S. Svitailo, K. V. Sokolov, E. I. Suprunov, G. A. Poskonny, L. V. Sazonov, and V. V. Beluga. The author also thanks the community of oceanographers, technicians, captains, and crews of the many oceanographic research ships for the hard work that enabled the collection of mooring records. Special thanks go to J. Bottero and R. Pilsbury from Oregon State University who developed the CMDAC database of moored measurements, which the author used in his research.

The research and field studies were supported by many scientific programs of the Russian Academy of Sciences and Government; the recent expeditions were supported by the Russian Foundation for Basic Research (current grant no. 17-08-00085); the work on the text of the book was supported by the Russian Science Foundation (grant no. 16-17-10149).

Contents

1	Mode	ern Concepts About Oceanic Internal Waves	1
	1.1	Main Relations	1
	1.2	The Garrett and Munk Spectral Background Model	10
	1.3	Generation of Internal Waves	21
	1.4	Some Mathematical Tools of Data Processing and Modeling	25
		1.4.1 Vlasenko Numerical Model	25
		1.4.2 Spatiotemporal Spectrum	27
		1.4.3 Dispersion Relation	28
	1.5	General Notes on Internal Tides	28
	1.6	Observations of Internal Tides in Different Regions	
		of the Ocean	35
	Refer	ences	38
2	Obse	rvations of Internal Tides in the Atlantic Ocean	47
	2.1	Gibraltar Strait	47
	2.2	Messina Strait	53
	2.3	Canary Basin, Gambia Abyssal Plain	55
	2.4	Sargasso Sea, POLYMODE, LDE, ARRAY, WOCE ACM-1,	
		LOTUS, LLWODP, FASINEX-86, and IWEX Experiments	64
	2.5	Southwest Atlantic, Trindadi and Martin Vas Islands, Brazil	
		Basin, Santos Plateau, WOCE ACM-24, ACM-3, ACM-12	
		Experiments	68
	2.6	East Equatorial Atlantic, Gulf of Guinea, GATE-77	
		Experiment	71
	2.7	Northwest Atlantic, SYNOP-87, Gulf Stream Extension-79,	
		RISE-74 Experiments	73
	2.8	Northwest Atlantic Shelf	77
	2.9	West of Great Britain, CONSLEX, NEADS Experiments	81
	2.10	Gulf of Mexico	83
	2.11	Falkland Gap, MAPCOWS-86 Experiment	85

	2.12	Biscay Bay	86
	2.13	West of the Iberian Peninsula and Gibraltar Strait, MORENA,	
		WOCE ACM-27, ACM-28, Vityaz-88 Experiments	88
	2.14	West Equatorial Atlantic, WOCE ACM-10 Experiment	90
	2.15	Romanche and Chain Fracture Zones, WOCE ACM-11	
		Experiment.	91
	2.16	Hunter Channel	92
	2.17	Revkjanes Ridge	92
	2.18	Central Equatorial Atlantic, SEQUAL, PIRATA Experiments	93
	2.19	Denmark Strait, WOCE ACM-8 Experiment	93
	2.20	Iceland-Faroe Overflow, WOCE ACM-8 Experiment	93
	2.21	North Atlantic, Irminger Basin, WOCE ACM-8 Experiment	94
	2.22	Benguela Region, WOCE ACM-4 Experiment	94
	2.23	Norwegian Sea	95
	2.24	Mid-Atlantic Ridge (27°N)	96
	2.25	Agulhas Region	97
	2.26	West Tropical Atlantic, MOVE Experiment	98
	2.27	Labrador Sea	98
	Refer	ences	98
2	01	and the set of the terror of Triber in the Device Opener	105
3	Obsei	rvations of Internal Tides in the Pacific Ocean	105
	3.1	Henderson Seamount (25°N, 119°W)	105
	3.2	west of California and Oregon, South of the Mendocino	
		Escarpment, DM-86, Abrupt Topography, LLWODP WEST,	100
	2.2	Next And the feature of the second se	108
	3.3	Northwest Pacific, Megapolygon-87, wP1, and wP2	114
	2.4		114
	3.4	Emperor Seamounts	119
	3.5	Kermadec Ridge, MAPKIWI Experiment	123
	3.6	Equatorial Pacific, TOGA COARE, PEQUOD, Tropical Heat,	100
	27	MANOP, and EPOCS Experiments	123
	3.7	East Tropical Pacific, East Pacific Rise, DOMES Experiment	126
	3.8	Kyushu-Palau Ridge	126
	3.9	Aleutian Ridge, FOCI (52° N, $1/0^{\circ}$ W); GARS (59° N, 148° W),	
		North Pacific Boundary Current (46°–51°N, 1/5°W)	107
	2.10		127
	3.10	Hawaii Islands	130
	3.11	Karin Ridge $(1/^{\circ}N, 168^{\circ}W)$	134
	3.12	Clipperton Ridge (10°N, 119°W)	134
	3.13	Kuroshio Current	135
	3.14	Kuroshio Extension, WOCE PCM-7, KERE Experiment	138
	3.15	Monterey Bay	138
	3.16	Central North Pacific $(152^{\circ}W, 175^{\circ}W)$ $(31^{\circ}-41^{\circ}N, 175^{\circ}E)$	139
	3.17	Bussol Strait, Sea of Okhotsk	140

	3.18	West of Peru	140
	3.19	Southeast Australia, Australian Coastal Experiment (ACE)	140
	3.20	East of Australia, WOCE PCM-3 Experiment	142
	3.21	Lord Howe Rise	142
	3.22	Storms Experiment	142
	3.23	Southeast of New Zealand, RIDGE Experiment	142
	3.24	Samoan Passage, WOCE PCM-11 Experiment	143
	3.25	British Columbia	143
	3.26	South China Sea	143
	3.27	Tasman Sea	146
	Refer	ences	146
4	Obse	rvations of Internal Tides in the Indian Acean	153
7	1 1	Mascarana Ridge	153
	4.1	Madagascar Basin	150
	4.2	Madagascal Dasiii	150
	4.5	Religited Rise	162
	4.4	Southwest Indian Ocean (20°S: 50°E 70°E and 00°E)	102
	4.5	MADSOON WOCE ICM 2 Experiments	165
	16	MAPSOON, WOLE ICM-5 Experiments	165
	4.0	Independent Throughflow, MALLIKI, LADE, WOCE ICM 4	107
	4.7	Arlindo and Makassar Experiments	167
	48	Mozambique Channel Agulhas WOCE ICM-1 Experiment	168
	49	Western Australia I FEIIWIN WOCE ICM-6 Experiments	170
	4 10	Faustorial Indian Ocean	171
	4 1 1	South of Africa	172
	4 12	Southwest of Australia WOCE SCM-4 Experiment	173
	Refer	ences	176
	Kelei		170
5	Obse	rvations of Internal Tides in the Southern Ocean	179
	5.1	Drake Passage	179
	5.2	South of New Zealand, East of the Macquarie Ridge	180
	5.3	PRIZM Experiment, Ross Sea	182
	5.4	Antarctic Slope, Cape Adare	183
	5.5	Greenwich Meridian, Bouvet Island, WOCE SCM-2	
		Experiment	184
	5.6	Southwest of Tasmania, WOCE SCM-3 and SAZ	
		Experiments	185
	5.7	Southeast of the Crozet Islands, WOCE SCM-6,	
		Antarctic Deep Outflow Experiment.	185
	5.8	Weddell Sea, WOCE SCM-7 Experiment	185
	5.9	Prince Edward Islands	187
	5.10	Antarctic Slope, SOGLOBEC Experiment West	
		of the Antarctic Peninsula	187

	5.11 5.12 5.13 Refer	Ridge Experiment, Campbell Plateau South Orkney Islands South Sandwich Islands ences	187 188 188 188
6	Obse	rvations of Internal Tides in the Arctic Ocean	189
-	6.1	General Notes.	189
	6.2	Internal Tides in the Arctic Seas of Russia	197
	6.3	Great Siberian Polynya	203
	6.4	Kara Gates	207
	6.5	Beaufort Sea.	213
	6.6	Lomonosov Ridge	213
	6.7	North Pole	214
	6.8	Greenland Sea	215
	Refer	ences	216
7	Properties of Internal Tides		219
-	7.1	Spectral Composition of Internal Tides	219
	7.2	Modulation of Semidiurnal Internal Tide	224
	7.3	Eigen Functions for the Internal Wave Equation	226
	7.4	Mode Composition of Internal Tides	229
	7.5	Separation of Semidiurnal Fluctuations of Currents Caused	
		by the Barotropic and Internal Tides	232
	7.6	Beam Propagation of Internal Tides	238
	7.7	Long Distance Propagation of Internal Tides and Their Energy	
		Decay with Distance	245
	7.8	Influence of Internal Tides on Antarctic Bottom Water	
		Flow	253
	Refer	ences	258
8	Semio	diurnal Internal Wave Global Field; Global Estimates	
	of Int	ternal Tide Energy	263
	Refer	ences	288
Co	onclusi	ons	293

About the Author

Eugene G. Morozov is the Head of the Laboratory of Hydrological Processes at the Shirshov Institute of Oceanology in Moscow, Russia. He has been working at this institute after graduating from the Moscow Institute of Physics and Technology in 1970. He never changed his place of work.

His research is focused on oceanic internal waves and large-scale circulation of the ocean. He is a field oceanographer and a specialist in the observations in the open ocean. He works on data acquisition, data processing, interpretations, and partly numerical modeling. Since 2002, he has been interested in the abyssal flows in the Atlantic Ocean and abyssal circulation, especially in the flows in deep fractures. Since 2008, he has been also working on the problems of arctic oceanography in cooperation with scientists from the University Centre in Svalbard. His interests lies in the interaction of the ocean water and glaciers descending to the fjords.

During his oceanographic career, he participated in 47 long oceanic cruises in all oceans of the globe and in 15 coastal expeditions. His field work is related to internal tides and currents in the ocean such as the Gulf Stream, Kuroshio and their rings, Antarctic Circumpolar Current, Falkland Current, California Current, equatorial countercurrents in the Indian and Atlantic oceans.

He was a Guest Scientist at Woods Hole Oceanographic Institution, USA; Universidad Complutense de Madrid, Spain; Royal Netherlands Institute of Sea Research; the University Centre in Svalbard, Norway; Universidad de Buenos Aires, Argentina; Universidad de Montevideo, Uruguay; Arizona State University, USA; Florida State University, USA; University of Victoria, Canada; and University of Cape Town, South Africa.

In 1999, he became a member of the Executive Committee of the International Association for the Physical Sciences of the Oceans (IAPSO). From 2011 to 2015, he was the President of this Association. He was also a member of the Executive Committee of the International Union of Geodesy and Geophysics (IUGG) and a member of the Executive Committee of the Scientific Committee on Oceanic Research (SCOR).

Abbreviations

AABW	Antarctic Bottom Water
ADCP	Acoustic Doppler current profiler
ADOX	Antarctic Deep Outflow Experiment
AVP	Absolute velocity profiler
AWI	Alfred Wegener Institute
BEST	Benguela Source and Transport Experiment
CMDAC	Current Meter Data Assembly Center
COARE	Coupled Ocean–Atmosphere Research Experiment
CONSLEX	Continental Slope Experiment
CSIRO	Commonwealth Scientific and Industrial Research
	Organisation
CTD	Conductivity temperature depth profiler
DESOTO	DESOTO experiment in 1997 (near the De Soto Canyon)
DOMES	Deep Ocean Mining Environmental Study
EBC	Eastern Boundary Current Experiment
EPOCS	Equatorial Pacific Ocean Climate Studies
ESTOC	European Station for Time Series in the Ocean
FASINEX	Frontal Air-Sea Interaction Experiment
FOCI	Fisheries-Oceanography Coordinated Investigations
FZ	Fracture zone
GARP	Global Atmospheric Research Program
GARS	Gulf of Alaska Recirculation Study
GATE	GARP Atlantic Tropical Experiment
GM	Garrett-Munk model (Garrett and Munk 1972, 1975)
GMPO	Gulf of Mexico Physical Oceanography Program
GW	Gigawatts
HOME	Hawaii Ocean Mixing Experiment
IBCAO	International Bathymetric Chart of the Arctic Ocean
IWEX	Internal wave experiment
KERE	Kuroshio Extension Regional Experiment

LADCP	Lowered acoustic Doppler current profiler
LDE	Local dynamic experiment
LLWODP	Low Level Waste Ocean Dumping Program
MANOP	Manganese Nodule Program
MAPCOWS	Abyssal Boundary Current Studies in the Atlantic Ocean
MAPKIWI	Abyssal Boundary Current Studies in the Pacific Ocean
MAPSOON	Abyssal Boundary Current Studies in the Indian Ocean
MASAR	Mid-Atlantic Slope and Rise Experiment
MILDEX	Mixed Layer Dynamics Experiment
MODE	Mid-Ocean Dynamics Experiment
MORENA	Multidisciplinary Oceanographic Research in the Eastern
	Boundary of the North Atlantic project
MOVE	Meridional Overturning Variability Experiment
NASA	National Aeronautics and Space Administration
NEADS	North-East Atlantic Dynamic Study
NIO	National Institute of Oceanography, India
NIOZ	Netherlands Institute of Sea Research
NOAA	National Oceanic and Atmospheric Administration
NPBC	North Pacific boundary current experiment
OMEX	Ocean Margin Exchange Project
OPTOMA	Ocean Prediction Through Observations Modeling and
	Analysis
OTIS	Oregon State University (OSU) Tidal Inversion Software
PEQUOD	Pacific Equatorial Ocean Dynamics Experiment
PIRATA	Pilot Research Moored Array in the Tropical Atlantic
	changed to Prediction and Research Moored Array in the
	Tropical Atlantic
POLYMODE	Joint Russian Polygon and USA Mid-Ocean Dynamics
	Experiment
POM	Princeton Ocean Model
ROMS	Regional Ocean Modeling System
SAZ	Sub-Antarctic Zone Experiment
SeaWiFS	Sea-viewing Wide Field-of-view Sensor
SEQUAL	Seasonal Equatorial Atlantic Experiment
SOGLOBEC	Southern Ocean experiment of the Global Ocean
	Ecosystems Dynamics
SWINDEX	Southwest Indian Ocean Experiment
SYNOP	Synoptic Ocean Prediction Experiment
TOGA	Tropical Ocean Global Atmosphere Experiment
TOPEX/POSEIDON	TOPography EXperiment and the Greek god of the ocean
	Poseidon
TW	Terawatts
WBUC	West Boundary Undercurrent experiment
WHOI	Woods Hole Oceanographic Institution
WOCE ACM	WOCE Atlantic current meter program

WOCE ICM	WOCE Indian Ocean current meter program
WOCE PCM	WOCE Pacific current meter program
WOCE SCM	WOCE Southern Ocean current meter program
WODB	World Ocean Database
XBT	Expandable bathythermographs

Abstract

This book is dedicated to the study of the structure and variability of internal tides and their geographical distribution in the ocean.

The work is mainly the result of the experimental analysis of oceanic measurements combined with numerical modeling, and it gives a comprehensive presentation of internal wave processes on the globe. In particular, it is based on the observations from moored buoys in many regions of the global ocean (Atlantic, Pacific, Indian, Arctic, and Southern) that have been carried out over 40 years within many oceanographic programs, including WOCE and CLIVAR, by many researchers from different countries. However, a significant part of the data was collected by the author who is a field oceanographer. These data were processed and interpreted within the concept of the modern knowledge of internal wave motion. The properties of internal waves are analyzed in relation to the bottom topography and mean state of the ocean in specific regions.

Internal waves play an important role in the formation of the existing stratification of seawater and are responsible for important processes of ocean dynamics, such as energy transfer and mixing. One of the most important ideas presented in this book is the strong generation of internal tides over submarine ridges. Energy fluxes from submarine ridges related to tidal internal waves exceed by many times the fluxes from continental slopes. Submarine ridges form an obstacle to the propagation of tidal currents that can cause the generation of large amplitude internal tides. The energy fluxes from these submarine ridges account for approximately one-fourth of the total energy dissipation of barotropic tides. Combined model simulations and moored measurements result in a map of the global distribution of internal tide amplitudes.