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Preface

This book presents the author’s study of the properties of internal tides. The
experimental data that were used in this research were collected during experiments
aimed at studying other physical processes in the ocean, for example the general
circulation or mesoscale eddies. To date, special experiments designed to study
internal tides have been very rare. Since the horizontal size of mesoscale eddies and
internal tide wavelengths have almost the same length, it was possible to interpret
the data in light of the phenomena related to internal tides. In the experiments aimed
at studying mesoscale eddies, additional instruments were sometimes set on the
moorings and additional moorings were deployed with the goal of better under-
standing of the internal tides.

This book is the result of 50 years of scientific research carried out by the author
since 1967. Internal waves are investigated across a wide range of frequencies with
special emphasis on internal tides. The research is based on the statistical analysis
of temperature and velocity measurements in different regions of the World Ocean.
Systematic studies of internal waves presented in Krauss (1966), Miropolsky
(2001), Vlasenko et al. (2005), Gerkema and Zimmerman (2008) are generally
related to theoretical studies. A summary of the experimental studies is presented in
Roberts (1975), Morozov (1985), Konyaev and Sabinin (1992). This book focuses
mainly on the experimental studies of internal waves. It is a progressive study of the
research presented by Morozov (1985). The data of measurements in the ocean are
interpreted in light of the modern concepts and models of oceanic internal waves.

Surface waves are familiar to everybody. Waves similar to surface waves can
appear at the density interface between fluids of different density or over the
continuous stratification of fluid. If a perturbation displaces the water particles from
the state of equilibrium, oscillations will appear under the influence of the buoyancy
forces and forces returning the particles to the equilibrium. Since the water particles
are interconnected, spatial oscillations will develop, which are known as gravity
waves. The density differences within the fluid are smaller than at the surface
between water and air; hence, the returning forces are weaker, and the wave periods
are longer than the periods of surface waves. In oceanic conditions, the amplitudes
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of waves can be as large as several tens or even hundreds of meters as reported in
early publications (Bockel 1962; Perry and Schimke 1965; Niiler 1968; Osborne
and Burch 1980).

The measurements show that internal gravity waves are found everywhere in the
ocean where positive density stratification of water exists. Upon the discovery that
this phenomenon is global, studies of oceanic internal waves became one of the
leading research fields of oceanography in the second half of the twentieth century.
Internal waves play an important role in all dynamical processes in the ocean,
especially in the energy transfer from the surface to the ocean interior and in the
mixing of water layers. Internal waves exist everywhere in the ocean; they are the
main mechanism by which wind energy is transferred from the ocean surface to the
depths. In addition to the important influence of internal waves on ocean dynamics
as a whole, they are important in the practical sense for underwater navigation,
marine biology, sedimentation, acoustics, and optics of the ocean.

Cold dense water masses are formed in the polar regions of the Earth and
descend to the deep layers in all oceans. The Sun warms only the upper ocean layer.
Since the density distribution is generally stationary in the ocean, which is sig-
nificantly different from two-layer stratification, we can conclude that the existing
stratification is a result of the long mixing processes.

Munk and Wunsch (1998) discussed the problem of mixing in the ocean and the
formation of the existing stratification. According to their estimates, the flow of
Antarctic Bottom Water formed over the continental slope of Antarctica is
approximately equal to 25–30 Sv. Approximately one-third of this amount of water
flows to the north. Without internal mixing, a layer of warm water would be located
in the upper part of the ocean, and cold waters would fill the entire depths of the
ocean. According to the estimates of Munk and Wunsch, such a structure could be
formed in approximately 3000 years. However, mixing induces an upward buoy-
ancy water flow, and the cold waters mix with the overlying layers. The current
estimates of vertical diffusivity in the abyssal depths of the ocean are 10−5 m2/s.
This is not sufficient to perform the necessary mixing. Hence, “hot points” of
mixing exist, in which the vertical diffusivity is much greater, and intense mixing
occurs exactly at these points. Such regions are characterized by sharp changes in
the bottom topography: submarine ridges, continental slopes, seamounts, and
abyssal channels and fractures.

Mixing in the ocean is generally determined by the energy transferred from wind
and tides. The role of internal tides in the vertical and horizontal exchange domi-
nates over that of other types of internal waves. In the theoretical paper by Müller
(1976), internal wave packets are compared with gas molecules. A quantitative
estimate of the role of internal waves in the transport of energy, momentum, and
mass, the influence of internal waves on the mixing processes in the ocean, and the
study of the generation, propagation, instability, and breaking of internal waves are
among the main problems of modern physics of the ocean. The understanding of
internal wave dynamics is important for the study of circulation in the ocean and its
thermohaline structure.
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Density stratification is a necessary condition for the existence of internal waves.
Internal waves occupy a wide frequency band from the Brunt–Väisälä frequency to
the inertial frequency. Tidal oscillations and partly turbulent pulsations also belong
to this frequency range. The problem of the physical mechanism of perturbations of
physical fields in the ocean can be solved jointly by experimental field measure-
ments, theoretical studies, and numerical and laboratory modeling. Experimental
research can verify the theoretical conclusions and put forward the questions that
need theoretical interpretation.

The study of internal wave properties and their relation to the mean state of the
ocean is key to understanding many processes in the ocean. The influence of the
mean ocean state on the internal wave regime, revealing the mechanisms of the
generation and breaking of internal waves, the influence of tide and wind on
internal wave parameters, the investigation of the energy exchange between waves
of different frequency ranges and between waves and mean motion are the most
pressing problems of internal wave research.

In this book, we consider the characteristics of internal waves and determine
their relation to the mean state of the ocean and other oceanic processes. The
analysis is based on the application of statistical methods in the processing of large
amounts of field data on temperature and currents measured on moorings in various
regions of the ocean. The main focus was on the temperature measurements and the
analysis of temperature fluctuations because these data reflect the vertical dis-
placements of water caused by internal waves.

This book is the result of more than 50 years of research. Over these years, the
oceanographers of the world have come to a better understanding of the important
role of internal waves in ocean dynamics. Our knowledge of internal waves has
increased rapidly. During this time period, the oceanographic concept has changed.
New instruments for measuring in the ocean have been developed and applied in
the research. The theory of ocean physics has also progressed.

The author would have been unable to accomplish such a vast amount of work
including the development of the database, without the help of other scientists from
the Shirshov Institute of Oceanology and colleagues from other oceanographic
institutes around the world.

Moscow, Russia Eugene G. Morozov
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Abstract

This book is dedicated to the study of the structure and variability of internal tides
and their geographical distribution in the ocean.

The work is mainly the result of the experimental analysis of oceanic mea-
surements combined with numerical modeling, and it gives a comprehensive pre-
sentation of internal wave processes on the globe. In particular, it is based on the
observations from moored buoys in many regions of the global ocean (Atlantic,
Pacific, Indian, Arctic, and Southern) that have been carried out over 40 years
within many oceanographic programs, including WOCE and CLIVAR, by many
researchers from different countries. However, a significant part of the data was
collected by the author who is a field oceanographer. These data were processed
and interpreted within the concept of the modern knowledge of internal wave
motion. The properties of internal waves are analyzed in relation to the bottom
topography and mean state of the ocean in specific regions.

Internal waves play an important role in the formation of the existing stratifi-
cation of seawater and are responsible for important processes of ocean dynamics,
such as energy transfer and mixing. One of the most important ideas presented in
this book is the strong generation of internal tides over submarine ridges. Energy
fluxes from submarine ridges related to tidal internal waves exceed by many times
the fluxes from continental slopes. Submarine ridges form an obstacle to the
propagation of tidal currents that can cause the generation of large amplitude
internal tides. The energy fluxes from these submarine ridges account for approx-
imately one-fourth of the total energy dissipation of barotropic tides. Combined
model simulations and moored measurements result in a map of the global distri-
bution of internal tide amplitudes.
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