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We have both been fascinated by models for our entire careers. Climate 
models are especially interesting, because they are the largest and most 
complex of models and also, in some sense, the most mysterious. The 
systems are completely filled with nonlinear equations and unpredict-
ability, yet some climate models are valued for their predictive capacities. 
Others are appreciated for their abilities to represent causal forces within 
climate systems and their interactions, and yet others represent those sys-
tems simply, elegantly, and yet powerfully.

There are numerous philosophical questions involving representation, 
grounding, and reality itself that arise when using climate models, as well 
as conceptual issues concerning the models as tools themselves. Yet there 
is no book or collection available that addresses these issues. We have 
aimed to collect a set of essays here that discusses these and other philo-
sophical and conceptual questions about climate models. We asked some 
of the best philosophers and some of the best modelers to contribute to 
the book, and they agreed, to our delight.

Our book is intended to be enjoyed by policy-makers, climate scien-
tists, and philosophers alike, as well as the general public. Some essays, 
such as those concerning policy and robustness, in parts 2 and 3 of the 
book, are very accessible. There are sections of part 1 that are more tech-
nical, such as the Santer et al. paper, but that is explained in Lloyd’s essay 
and in Santer et al.’s “Fact Sheet” in part 1.

Preface
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Sadly, there is rampant disinformation circulating about climate mod-
els today, despite concerted efforts by climate scientists to correct the 
public record. The essays contributed to this book provide a foundation 
for an informed discourse concerning climate models, one based on the-
ory, facts, and evidence.

We have both learned a great deal about climate modeling through 
editing this collection, and our hope is that anyone dipping into the book 
will experience the same benefit. Of course, modeling is an ongoing 
activity, and many of the facets explored in this book will continue to 
fascinate both modelers, philosophers, and policy analysts for some time 
to come.

Bloomington, IN, USA� Elisabeth A. Lloyd
Tampa, FL, USA� Eric Winsberg
June 2017
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Fig. 2.1	 A Web of Science analysis of 928 abstracts using the  
keywords “global climate change.” No papers in the  
sample provided scientific data or theoretical arguments  
to refute the consensus position on the reality of global  
climate change (It should be acknowledged that in any  
area of human endeavor, leadership may diverge from  
the views of the led. For example, many Catholic priests  
endorse the idea that priests should be permitted to marry  
(Watkin 2004))� 37

Fig. 2.2	 Changes in global mean surface temperature after  
carbon dioxide values in the atmosphere are doubled.  
The black lines show the results of 2579 fifteen-year  
simulations by members of the general public using their  
own personal computers. The gray lines show comparable  
results from 127 thirty-year simulations completed by  
Hadley Centre scientists on the Met Office’s supercomputer  
(<www.metoffive.gov.uk>). Figure prepared by Ben  
Sanderson with help from the <climateprediction.net>  
project team (Source: Reproduced by permission from  
http://www.climateprediction.net/science/results_ 
cop10.phpi)� 52

Fig. 4.1	 Estimates of observed temperature changes in the tropics 
(30 °N–30 °S). Changes are expressed as departures from  
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average conditions over 1979–2006. The top panel shows  
results for the surface and lower troposphere. The  
thin red and black lines in the top panel are 12-month  
running averages of the temperature changes for  
individual months. The thick straight lines are trends  
that have been fitted to the time series of surface and  
tropospheric temperature changes. The warming trend  
is larger in the tropospheric temperature data than in  
the surface temperature record, in accord with computer  
model results. The bottom panel shows a commonly used  
index of El Niño and La Niña activity, consisting of sea  
surface temperature changes averaged over the so-called  
Niño 3.4 region of the tropical Pacific. The bottom panel  
shows that much of the year-to-year variability in surface  
and lower tropospheric temperatures is related to changes  
in El Niños and La Niñas� 78

Fig. 5.1	 Anomaly time series of monthly-mean T2LT, the spatial  
average of lower tropospheric temperature over tropical  
(20°N–20°S) land and ocean areas. Results are for five  
different realizations of twentieth-century climate change  
performed with a coupled A/OGCM (the MRI- 
CGCM2.3.2). Each of the five realizations (panels A–E)  
was generated with the same model and the same external  
forcings, but with initialization from a different state  
of the coupled atmosphere-ocean system. This yields  
five different realizations of internally generated variability,  
ηm(t), which are superimposed on the true response to  
the applied external forcings. The ensemble-mean T2LT  
change is shown in panel F. Least-squares linear trends  
were fitted to all time series; values of the trend and lag-1  
autocorrelation of the regression residuals (r1) are given in  
each panel. Anomalies are defined relative to climatological 
monthly means over January 1979 to December 1999, and 
synthetic T2LT temperatures were calculated as described in  
Santer et al. (1999)� 95

Fig. 5.2	 Calculation of unadjusted and adjusted standard errors  
for least-squares linear trends. The standard error s{bo} of  
the least-squares linear trend bo (see Sect. 5.4.1) is a measure  
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of the uncertainty inherent in fitting a linear trend to  
noisy data. Two examples are given here. Panel A shows  
observed tropical T2LT anomalies from the RSS group  
(Mears and Wentz 2005). The regression residuals (shaded  
blue) are highly autocorrelated (r1 = 0.884). Accounting  
for this temporal autocorrelation reduces the number of  
effectively independent time samples from 252 to 16,  
and inflates s{bo} by a factor of four (see “Results from  
A” in panel C). The anomalies in panel B were generated  
by adding Gaussian noise to the RSS tropical T2LT trend,  
yielding a trend and temporal standard deviation that are  
very similar to those of the actual RSS data. For this  
synthetic data series, the regression residuals (shaded red)  
are uncorrelated and r1 is close to zero, so that the actual  
number of time samples is similar to the effective sample  
size, and the unadjusted and adjusted standard errors are  
small and virtually identical (see “Results from B” in  
panel C). All results in panel C are 2σ confidence  
intervals (C.I.). The analysis period is from January  
1979 to December 1999� 99

Fig. 5.3	 Comparisons of simulated and observed trends in  
tropical T2LT over January 1979 to December 1999.  
Model results in panel A are from 49 individual realizations  
of experiments with twentieth-century external forcings,  
performed with 19 different A/OGCMs. Observational  
estimates of T2LT trends are from Mears and Wentz (2005)  
and Christy et al. (2007) for RSS and UAH data, respectively.  
The dark and light gray bands in panel A are the 1σ and 2σ 
confidence intervals for the RSS T2LT trend, adjusted for  
temporal autocorrelation effects. In the paired trends test  
applied here, each individual model T2LT trend is tested  
against each observational T2LT trend (Sect. 5.4.1). Panel  
B shows the three elements of the DCPS07 “consistency  
test”: the multi-model ensemble-mean T2LT trend, << bm>> 
(represented by the horizontal black line in panel B);  
σSE, DCPS07’s estimate of the uncertainty in << bm>>;  
and bo, the individual RSS and UAH T2LT trends (with  
and without their 2σ confidence intervals from panel A).  
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The 1σ and 2σ values of σSE are indicated by orange  
and yellow bands, respectively. The colored dots in  
panel B are either the ensemble-mean T2LT trends for  
individual models or the trend in an individual 20CEN  
realization (for models that did not perform multiple  
20CEN realizations). Statistical uncertainties in the  
observed trends are neglected in the DCSP07 test. If  
these uncertainties are accounted for, << bm>> is well  
within the 2σ confidence intervals on the RSS and UAH  
T2LT trends (Sect. 5.5.1.2)� 105

Fig. 5.4	 As for Fig. 5.3, but for comparisons of simulated and  
observed trends in the time series of differences between  
tropical TSST and T2LT. The observed TSST data are from  
NOAA ERSST-v3 (Smith et al. 2008). For trends and  
confidence intervals from other observed pairs of surface  
and T2LT data, refer to Table 5.4� 109

Fig. 5.5	 Performance of statistical tests with synthetic data. Results  
in panel A are for the “paired trends” test [d; see Eq. (5.3)],  
in which trends from “observed” temperature time series  
are tested against trends from individual realizations of  
“model” 20CEN runs. Two versions of the paired trends  
test are evaluated, with and without adjustment of trend  
standard errors for temporal autocorrelation effects.  
Panel B shows results obtained with the DCPS07  
“consistency test” [d∗; see Eq. (5.11)] and a modified  
version of the DCPS07 test [d∗

1; see Eq. (5.12)] which  
accounts for statistical uncertainties in the observed  
trend. In the d∗ and d∗

1 tests, the “model average” signal  
trend is compared with the “observed” trend. Synthetic x(t)  
time series were generated using the standard AR-1 model  
in Eq. (5.14). Rejection rates for hypotheses H1 (for the  
“paired trends” test) and H2 (for the d∗ and d∗

1 tests; see  
Sect. 5.4) are given as a function of N, the total number  
of synthetic time series, for N = 5, 6,…100. Each test is  
performed for stipulated significance levels of 5%, 10%,  
and 20% (denoted by dashed, thin, and bold lines,  
respectively). For each value of N, rejection rates are the  
mean of the sampling distribution of rejection rates  
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obtained with 1000 realizations of N synthetic time series.  
The specified value of the lag-1 autocorrelation coefficient  
in Eq. (5.14) is close to the sample value of r1 in the UAH  
and RSS T2LT data (Table 5.1). Similarly, the noise  
component of the synthetic x(t) data was scaled to  
ensure x(t) had (on average) approximately the same  
temporal standard deviation as the observed T2LT  
anomaly data. See Sect. 5.6 for further details� 115

Fig. 5.6	 Vertical profiles of trends in atmospheric temperature  
(panel A) and in actual and synthetic MSU temperatures  
(panel B). All trends were calculated using monthly-mean  
anomaly data, spatially averaged over 20°N–20°S. Results  
in panel A are from seven radiosonde datasets (RATPAC-A,  
RICH, HadAT2, IUK, and three versions of RAOBCORE;  
see Sect. 5.2.1.2) and 19 different climate models.  
Tropical TSST and TL+O trends from the same climate  
models and four different observational datasets  
(Sect. 5.2.1.3) are also shown. The multi-model average  
trend at a discrete pressure level, << bm(z) >>, was  
calculated from the ensemble-mean trends of individual  
models [see Eq. (5.7)]. The gray shaded envelope is  
s{< bm(z) >}, the 2σ standard deviation of the ensemble-mean  
trends at discrete pressure levels. The yellow envelope  
represents 2σSE, DCPS07’s estimate of uncertainty in  
the mean trend. For visual display purposes, TL+O results  
have been offset vertically to make it easier to discriminate  
between trends in TL+O and TSST. Satellite and radiosonde  
trends in panel B are plotted with their respective  
adjusted 2σ confidence intervals (see Sect. 5.4.1). Model  
results are the multi-model average trend and the standard  
deviation of the ensemble-mean trends, and gray and  
yellow shaded areas represent the same uncertainty  
estimates described in panel A (but now for layer-averaged  
temperatures rather than temperatures at discrete pressure  
levels). The y-axis in panel B is nominal, and bears no  
relation to the pressure coordinates in panel A. The  
analysis period is January 1979 through December  
1999, the period of maximum overlap between the  
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observations and most of the model 20CEN simulations.  
Note that DCPS07 used the same analysis period for  
model data, but calculated all observed trends over  
1979–2004 � 118

Fig. 6.1	 The NOAA raw data as interpreted by three teams of  
analysts—UAH, RSS, and UMd—and their resulting  
trend lines. Note the difference in slopes of the trend lines  
(Karl et al. 2006)� 150

Fig. 6.2	 Note that the models are presented within the bounds  
of two standard errors at the top of the figure, while the  
four observational radiosonde datasets below are presented  
as lone points, as are the satellite datasets on the side  
(Douglass et al. 2008)� 163

Fig. 6.3	 Note that the model realizations are all found within  
two standard deviations of the RSS trend, thus  
demonstrating the compatibility of the satellite data  
and various models (Santer et al. 2008)� 164

Fig. 7.1	 Estimates of the equilibrium climate sensitivity (“ECS”)  
based on various independent lines of evidence  
summarized by Knutti and Hegerl (2008) (Modified  
from Mann 2014 Scientific American)� 176

Fig. 7.2	 Shown in the above is the D’Arrigo et al. tree-ring-based  
NH reconstruction (blue) along with the climate model  
(NCAR CSM 1.4) simulated NH mean temperatures  
(red) and the “simulated tree-ring” NH temperature  
series based on driving the biological growth model  
with the climate model-simulated temperatures (green).  
The two insets focus on the response to the AD 1258  
and AD 1809+1815 volcanic eruption sequences. Also  
shown in the insets are the results (dashed magenta)  
when the volcanic diffuse-light impact is ignored  
(From Mann et al. (2012a))� 181

Fig. 7.3	 Ensemble of hemispheric tree-ring temperature  
reconstructions derived from available regional tree-ring  
composites resampled to account for predicted age model  
errors. Shown are the raw composite based on the  
D’Arrigo et al. (2006) tree-ring data (green), Monte Carlo  
surrogate reconstructions (8000 in total—blue curves),  
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and GCM simulation (red). Insets: Expanded views of the  
response to the AD 1258/1259 and AD 1815 eruptions  
responses showing the 10 coldest surrogates (blue) for  
each eruptions and the 2 and 4 sigma significance  
thresholds for cooling (dashed black). Shown also for  
AD 1815 eruption is the recently back-extended  
instrumental NH land temperature record of  
Rohde et al. (2013) (black). Centering of all series is  
based on a 1961–1990 modern base period  
(From Mann et al.  (2013))� 187

Fig. 7.4	 Tree-ring records across the AD1258 eruption.  
The three D’Arrigo et al. regional series that begin  
before AD774 (Coastal Alaska, Tornestraesk,  
and Taymir), along with the Icefields series for  
reference, are shown on their original time scale  
(a) and age-adjusted (b) in a way consistent with our  
hypothesis. The Icefields series is unaltered, the Coastal  
Alaska series is shifted four-years older (~0.6%), and  
the Tornestraesk and Taymir series are both shifted one  
year older (~0.1%) (From Rutherford and Mann (2014))� 193

Fig. 8.1	 Change (%) in winter precipitation mid-twenty-first  
century (2041–2070) vs. late-twentieth century  
(1971–2000) from simulations with the HadCM3  
AOGCM (a) (left) downscaled using the BCSD method  
(1/8° resolution) and (b) (right) in the original HadCM3  
model which was run at a spatial resolution of 2.5° latitude  
by 3.5° longitude (Graphics by Seth McGinnis and Joshua  
Thompson, NCAR, using data acquired from:  
https://esgcet.llnl.gov:8443/index.jsp for raw HadCM3  
data; http://gdo-dcp.ucllnl.org/downscaled_cmip3_ 
projections/dcpInterface.html for BCSD data)� 204

Fig. 8.2	 Change in total precipitation (expressed in %) at 936 
 stations in (a and b) cold season (NDJFM) and (c and d)  
warm season (MJJAS) and for 2046–2065 or 2081–2100  
relative to 1961–2000 derived from statistical downscaling  
of 10 AOGCMs (BCCR-BCM2, CCCMA-CGCM3, 
CNRM-CM3, CSIRO-MK3, GFDL-CM2, GISS-Model  
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E-R, IPSL-CM4, MIUB-ECHO, MPI-ECHAM5, and  
MRI-CGCM2) (Schoof et al. 2010)� 214

Fig. 8.3	 Regional histograms for the ensemble mean difference in  
seasonal precipitation 2046–2065 v 1961–2000 at each  
station based on downscaling of 10 AOGCMs  
(BCCR-BCM2, CCCMA-CGCM3, CNRM-CM3, 
CSIRO-MK3, GFDL-CM2, GISS-Model E-R,  
IPSL-CM4, MIUB-ECHO, MPI-ECHAM5, and  
MRI-CGCM2) (Schoof et al. 2010). The upper panels  
show the results for the warm season (MJJAS), and the 
 lower panel shows results for the cool season (NDJAM).  
The frequency denotes the percentage of stations in a given  
region that show a ratio of a given magnitude. If the  
Fraction of the historical value is 1 the historical and  
future periods have equal precipitation totals� 215

Fig. 8.4	 Transect of terrain height (m) along, approximately, 40 °N  
from 95 °W westward to the California Central Valley in  
the regional climate models (RCMs), at five different  
resolutions. A few geographic landmarks are labeled  
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Fig. 8.6	 An MPAS Voronoi hexagonal mesh centered over North  
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Fig. 8.7	 11 RCM + 2 HR-AGCM ensemble mean 2-m temperature  
change from 1971–1999 to 2041–2069 for December– 
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