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Preface

Prediction has been one of the earliest forms of statistical inference. The emphasis
on parametric estimation and testing seems to only have occurred about 100 years
ago; see Geisser (1993) for a historical overview. Indeed, parametric models served
as a cornerstone for the foundation of Statistical Science in the beginning of the
twentieth century by R.A. Fisher, K. Pearson, J. Neyman, E.S. Pearson, W.S. Gosset
(also known as “Student”), etc.; their seminal developments resulted into a complete
theory of statistics that could be practically implemented using the technology of the
time, i.e., pen and paper (and slide-rule!).

While some models are inescapable, e.g., modeling a polling dataset as a se-
quence of independent Bernoulli random variables, others appear contrived, often
invoked for the sole reason to make the mathematics work. As a prime example,
the ubiquitous—and typically unjustified—assumption of Gaussian data permeates
statistics textbooks to the day. Model criticism and diagnostics were developed as a
practical way out; see Box (1976) for an account of the model-building process by
one of the pioneers of applied statistics.

With the advent of widely accessible powerful computing in the late 1970s,
computer-intensive methods such as resampling and cross-validation created a rev-
olution in modern statistics. Using computers, statisticians became able to analyze
big datasets for the first time, paving the way towards the “big data” era of the
twenty-first century. But perhaps more important was the realization that the way
we do the analysis could/should be changed as well, as practitioners were gradually
freed from the limitations of parametric models. For instance, the great success of
Efron’s (1979) bootstrap was in providing a complete theory for statistical inference
under a nonparametric setting much like Maximum Likelihood Estimation had done
half a century earlier under the restrictive parametric setup.

Nevertheless, there is a further step one may take, i.e., going beyond even non-
parametric models, and this is the subject of the monograph at hand. To explain this,
let us momentarily focus on regression, i.e., data that are pairs: (¥1,X;), (¥2,X>),...,
(Yn,X,), where Y; is the measured response associated with a regressor value of X;.
There are several ways to model such a dataset; three main ones are listed below.
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viii Preface
They all pertain to the standard, homoscedastic additive model:
Yy =pu(X) +& (1

where the random variables &; are assumed to be independent, identically distributed
(i.i.d.) from a distribution F(-) with mean zero.

e Parametric model: Both pi(-) and F(-) belong to parametric families of func-
tions, e.g., 1(x) = fo+ Bix and F(-) is N(0,02).

o Semiparametric model: pi(-) belongs to a parametric family, whereas F(-) does
not; instead, it may be assumed that F(-) belongs to a smoothness class, etc.

e Nonparametric model: Neither ((-) nor F(-) can be assumed to belong to
parametric families of functions.

Despite the nonparametric aspect of it, even the last option constitutes a model,
and is thus rather restrictive. To see why, note that Eq. (1) with i.i.d. errors is not
satisfied in many cases of interest even after allowing for heteroscedasticity of the
errors. For example, consider the model Y; = G(X;, €;), where the & are i.i.d., and
G(+,-) is a nonlinear/non-additive function of two variables. It is for this reason, i.e.,
to render the data amenable to an additive model such as (1), that a multitude of
transformations in regression have been proposed and studied over the years, e.g.,
Box-Cox, ACE, AVAS, etc.; see Linton et al. (1997) for a review.

Nevertheless, it is possible to shun Eq. (1) altogether and still conduct inference
about a quantity of interest such as the conditional expectation function E (Y |X = x).
In contrast to nonparametric model (1), the following model-free assumption can be
made:

e Model-free regression:

— Random design. The pairs (Y1,X)), (Y2,X2), ..., (Yn,X,) are i.i.d.

— Deterministic design. The variables X1, ..., X, are deterministic, and the ran-
dom variables Yi,...,Y, are independent with common conditional distribu-
tion, i.e., P{Y; < y|X; = x} = Dy(y) not depending on ;.

Inference for features, i.e., functionals, of the common conditional distribution Dy (-)
is still possible under some regularity conditions, e.g., smoothness. Arguably, the
most important such feature is the conditional mean E (Y |X = x) that can be denoted
1 (x). While p(x) is crucial in the model (1) as the function explaining ¥ on the basis
of X = x, it has a key function in model-free prediction as well: p(xy) is the mean
squared error (MSE) optimal predictor of a future response Y associated with a
regressor value xg.

As will be shown in the sequel, it is possible to accomplish the goal of point and
interval prediction of ¥; under the above model-free setup; this is achieved via the
Model-free Prediction Principle described in Part I of the book. In so doing, the
solution to interesting estimation problems is obtained as a by-product, e.g., infer-
ence on features of D,(-); the prime example again is u(x). Hence, a Model-free
approach to frequentist statistical inference is possible, including prediction and
confidence intervals.
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In nonparametric statistics, it is common to try to develop some asymptotic the-
ory for new methods developed. In addition to offering justification for the accuracy
of these methods, asymptotics often provide insights on practical implementation,
e.g., on the optimal choice of smoothing bandwidth, etc. All of the methods dis-
cussed/employed in the proposed Model-free approach to inference will be based
on estimators that have favorable large-sample properties—such as consistency—
under regularity conditions. Furthermore, asymptotic information on bandwidth
rates, MSE decay rates, etc. will be given whenever available in the form of Facts
or Claims together with suggestions on their proof and/or references. However, for-
mal theorems and proofs were deemed beyond the scope of this monograph in order
to better focus on the methodology, as well as keep the book’s length (and time of
completion) under control. Perhaps more importantly, note that it is still unclear how
to properly judge the quality of prediction intervals in an asymptotic setting; some
preliminary ideas on this issue are given in Sects. 3.6.2 and 7.2.3, and the Rejoinder
of Politis (2013).

Interestingly, the emphasis on prediction seems to be coming back full-circle in
the twenty-first century with the recent boom in machine learning and data mining;
see, e.g., the highly influential book on statistical learning by Hastie et al. (2009),
and the recent monograph on predictive modeling by Kuhn and Johnson (2013).
The Model-free prediction methods presented here are of a very different nature but
share some similarities, e.g., in employing cross-validation and sample re-use for
fine-tuning and optimization, and may thus complement well the popular model-
based approaches to prediction and classification. Furthermore, ideas from statisti-
cal learning and model selection could eventually be incorporated in the Model-free
framework as well, e.g., selecting a subset of regressors; this is the subject of on-
going work. Notably, the methods presented in this monograph are very computer-
intensive; relevant R functions and software are given at: http://www.math.
ucsd.edu/~politis/DPsoftware.html.

I would like to thank my colleagues in the Departments of Mathematics and
Economics of UCSD for their support, and my Ph.D. students for bearing with
some of the material. I have benefited immensely from suggestions and discussions
with colleagues from all over the world; a very partial list includes: Ian Abramson,
Ery Arias-Castro, Brendan Beare, Patrice Bertail, Ricardo Cao, Anirban DasGupta,
Richard Davis, Brad Efron, Peter Hall, Xuming He, Nancy Heckman, Goran Kauer-
mann, Claudia Kliippelberg, Piotr Kokoszka, Jens-Peter Kreiss, Michele La Rocca,
Jacek Leskow, Tim McMurry, George Michailidis, Stathis Paparoditis, Mohsen
Pourahmadi, Jeff Racine, Joe Romano, Dimitrios Thomakos, Florin Vaida, Slava
Vasiliev, Philippe Vieu, and Michael Wolf. Further acknowledgements are given at
the end of several chapters.

In closing, I would like to thank the Division of Mathematical Sciences of the
National Science Foundation for their continuing support with multiple grants, the
most recent ones being DMS-10-07513 and DMS 13-08319, and the John Simon
Guggenheim Memorial Foundation for a 2011-2012 fellowship that helped me get
started on this monograph. I would also like to thank Marc Strauss and Hannah


http://www.math.ucsd.edu/~politis/DPsoftware.html
http://www.math.ucsd.edu/~politis/DPsoftware.html
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Bracken of Springer for a wonderful collaboration, and Somnath Datta and the Edi-
torial Board of the Frontiers Series for hosting this project.

The impetus for putting together this monograph was to show how very different
statistical problems can be approached afresh in a Model-free setting. Due to time
and space limitations, I could only explicitly address a handful of areas of practical
implementation, e.g., regression, autoregression, Markov processes, etc. It is my
sincere hope that the monograph will incite the interest of readers to take another
look at their favorite problem—either theoretical or applied—in this new light; the
insights gained may be well worth it.

San Diego, CA, USA Dimitris N. Politis
Spring 2015
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