Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for
undergraduates studying in all areas of computing and information science. From core foundational
and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and
modern approach and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory board, and contain
numerous examples and problems. Many include fully worked solutions.

Also in this series

Iain D. Craig
Object-Oriented Programming Languages: Interpretation
978-1-84628-773-2

Max Bramer
Principles of Data Mining
978-1-84628-765-7

Hanne Riis Nielson and Flemming Nielson
Semantics with Applications: An Appetizer
978-1-84628-691-9

Michael Kifer and Scott A. Smolka
Introduction to Operating System Design and Implementation: The OSP 2 Approcah
978-1-84628-842-5

Phil Brooke and Richard Paige
Practical Distributed Processing
978-1-84628-840-1

Frank Klawonn
Computer Graphics with Java
978-1-84628-847-0

David Salomon
A Concise Introduction to Data Compression
978-1-84800-071-1

David Makinson
Sets, Logic and Maths for Computing
978-1-84628-844-9

Orit Hazzan
Agile Software Engineering
978-1-84800-198-5

Pankaj Jalote
A Concise Introduction to Software Engineering
978-1-84800-301-9

Alan P. Parkes
A Concise Introduction to Languages and Machines
978-1-84800-120-6

Gilles Dowek

Principles
of Programming
Languages

@ Springer

Gilles Dowek
Ecole Polytechnique
France

Series editor
Ian Mackie, Ecole Polytechnique, France

Advisory board

Samson Abramsky, University of Oxford, UK

Chris Hankin, Imperial College London, UK

Dexter Kozen, Cornell University, USA

Andrew Pitts, University of Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Denmark
Steven Skiena, Stony Brook University, USA

Tain Stewart, University of Durham, UK

David Zhang, The Hong Kong Polytechnic University, Hong Kong

Undergraduate Topics in Computer Science ISSN 1863-7310
ISBN: 978-1-84882-031-9 e-ISBN: 978-1-84882-032-6
DOI: 10.1007/978-1-84882-032-6

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008943965

Based on course notes by Gilles Dowek published in 2006 by L’Ecole Polytechnique with the following
title: “Les principes des langages de programmation.”

(© Springer-Verlag London Limited 2009

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be repro-
duced, stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

Printed on acid-free paper

Springer Science+Business Media
springer.com

The author wants to thank Francois Pottier, Philippe Baptiste, Julien
Cervelle, Albert Cohen, Olivier Delande, Olivier Hermant, Ian Mackie, Francgois
Morain, Jean-Marc Steyaert and Paul Zimmermann for their remarks on a first
version of this book.

Preface

We’ve known about algorithms for millennia, but we’ve only been writing com-
puter programs for a few decades. A big difference between the Euclidean or
Eratosthenes age and ours is that since the middle of the twentieth century,
we express the algorithms we conceive using formal languages: programming
languages.

Computer scientists are not the only ones who use formal languages. Op-
tometrists, for example, prescribe eyeglasses using very technical expressions,
such as “OD: -1.25 (-0.50) 180° OS: -1.00 (-0.25) 180°”, in which the parenthe-
ses are essential. Many such formal languages have been created throughout
history: musical notation, algebraic notation, etc. In particular, such languages
have long been used to control machines, such as looms and cathedral chimes.

However, until the appearance of programming languages, those languages
were only of limited importance: they were restricted to specialised fields with
only a few specialists and written texts of those languages remained relatively
scarce. This situation has changed with the appearance of programming lan-
guages, which have a wider range of applications than the prescription of eye-
glasses or the control of a loom, are used by large communities, and have allowed
the creation of programs of many hundreds of thousands of lines.

The appearance of programming languages has allowed the creation of ar-
tificial objects, programs, of a complexity incomparable to anything that has
come before, such as steam engines or radios. These programs have, in return,
allowed the creation of other complex objects, such as integrated circuits made
of millions of transistors, or mathematical proofs that are hundreds of thou-
sands of pages long. It is very surprising that we have succeeded in writing
such complex programs in languages comprising such a small number of con-
structs — assignment, loops, etc. — that is to say in languages barely more
sophisticated than the language of prescription eyeglasses.

vii

viii Preface

Programs written in these programming languages have the novelty of not
only being understandable by humans, which brings them closer to the scores
used by organists, but also readable by machines, which brings them closer to
the punch cards used in Barbarie organs.

The appearance of programming languages has therefore profoundly im-
pacted our relationship with language, complexity, and machines.

This book is an introduction to the principles of programming languages.
It uses the Java language for support. It is intended for students who already
have some experience with computer programming. It is assumed that they
have learned some programming empirically, in a single programming language,
other than Java.

The first objective of this book will then be to learn the fundamentals
of the Java programming language. However, knowing a single programming
language is not sufficient to be a good programmer. For this, you must not
only know several languages, but be able to easily learn new ones. This requires
that you understand universal concepts like functions or cells, which exist in
one form or another in all programming languages. This can only be done by
comparing two or more languages. In this book, two comparison languages have
been chosen: Caml and C. Therefore, the goal is not for the students to learn
three programming languages simultaneously, but that with the comparison
with Caml and C, they can learn the principles around which programming
languages are created. This understanding will allow them to develop, if they
wish, a real competence in Caml or in C, or in any other programming language.

Another objective of this book is for the students to begin acquiring the
tools which permit them to precisely define the meaning of the program. This
precision is, indeed, the only means to clearly understand what happens when
a program is executed, and to reason in situations where complexity defies
intuition. The idea is to describe the meaning of a statement by a function
operating on a set of states. However, our expectations of this objective remain
modest: students wishing to pursue this goal will have to do so elsewhere.

The final objective of this course is to learn basic algorithms for lists and
trees. Here too, our expectations remain modest: students wishing to pursue
this will also have to look elsewhere.

Contents

Imperative Core i 1
1.1 Five Constructsiii i, 1
111 Assignmento.iiiii 1
1.1.2 Variable Declaration 3
11,3 SeqUENCE . . oottt 5
114 Test oo 6
115 LOoOD « oo 6
1.2 Input and Output 7
1.2.1 Inpub ..o 7
1.2.2 0utput ... 7
1.3 The Semantics of the Imperative Core....................... 8
1.3.1 The Concept of a State 8
1.3.2 Decomposition of the State 9
1.3.3 A Visual Representation of a State 10
1.3.4 The Value of Expressions............................ 11
1.3.5 Execution of Statements 13
Functions 19
2.1 The Concept of Functions 19
2.1.1 Avoiding Repetition 19
2.1.2 Arguments 21
2.1.3 Return Values i 22
2.1.4 The return Constructcoiiuiinenao... 23
2.1.5 Functions and Procedures 24
2.1.6 Global Variables i 25
2.1.7 The Main Program 25

ix

Contents

2.1.8 Global Variables Hidden by Local Variables............ 27
2.1.9 Overloading 28
2.2 The Semantics of Functions.......... 29
2.2.1 The Value of Expressionsc..oiviunao... 30
2.2.2 Execution of Statements 31
2.2.3 Order of Evaluation 34
224 Caml ... 34
2.2.5 O 36
2.3 Expressions as Statements i 37
2.4 Passing Arguments by Value and Reference 37
2.4.1 Pascal ... 39
242 Caml ... 40
2.4.3 O 41
2.4.4 JaVA ... 45
Recursion. 47
3.1 Calling a Function from Inside the Body of that Function 47
3.2 Recursive Definitions. i 48
3.2.1 Recursive Definitions and Circular Definitions.......... 48
3.2.2 Recursive Definitions and Definitions by Induction. 49
3.2.3 Recursive Definitions and Infinite Programs............ 49
3.2.4 Recursive Definitions and Fixed Point Equations 51
3.3 Caml ..o 53
B O 54
3.5 Programming Without Assignment 55
Records 59
4.1 Tuples with Named Fields 59
4.1.1 The Definition of a Record Type 60
4.1.2 Allocation of a Record 60
4.1.3 Accessing Fields.........o i i 62
4.1.4 Assignment of Fields.........., 62
4.1.5 Constructors. i 64
4.1.6 The Semantics of Records 65
4.2 Sharingt 66
4.2.1 Sharingt 66
422 Equality 68
4.2.3 Wrapper Types 68
4.3 Caml ..o 73
4.3.1 Definition of a Record Type 73
4.3.2 Creating a Record i, 73

4.3.3 Accessing Fields........ i 74

Contents xi

4.3.4 Assigning to Fields oL 74

Ao O 76
4.4.1 Definition of a Record Type 76
4.42 Creatinga Record 76
4.4.3 Accessing Fields........ i 7
4.4.4 Assigning to Fields L 7

A5 ATTAYS oot 79
4.5.1 Array Types ..ot 79
4.5.2 Allocation of an Array i, 80
4.5.3 Accessing and Assigning to Fields 80
4.5.4 Arrays of Arrays 82
4.5.5 Arraysin Caml 83
4.5.6 Arraysin C.. ... 84

5. Dynamic Data Typesc. i, 85
5.1 Recursive Records 85
BT LAStS .o 85
5.1.2 Thenull Value, 86
51.3 An Example 86
5.1.4 Recursive Definitions and Fixed Point Equations 88
5.1.5 Infinite Values i 89

5.2 Disjunctive Types 90
5.3 Dynamic Data Types and Computability 92
5.4 Caml .. o 92
785 T 94
5.6 Garbage Collection, 96
5.6.1 Inaccessible Cells 96
5.6.2 Programming without Garbage Collection 98
5.6.3 Global Methods of Memory Management 100
5.6.4 Garbage Collection and Functions 102

6. Programming with Lists 103
6.1 Finite Sets and Functions of a Finite Domain 103
6.1.1 Membership 103
6.1.2 Association Lists i 104

6.2 Concatenation: Modify or Copy, 105
6.2.1 Modify 105
6.2.2 COPY « vt 109
6.2.3 Using Recursion.......... 111
6.2.4 Chemical Reactions and Mathematical Functions 111

6.3 List Inversion: an Extra Argument.......................... 112

6.4 Lists and Arraysii 114

xii Contents
6.5 Stacks and Queues. 114
6.5.1 Stacks ... 115

6.5.2 QUEUES. . oottt 118

6.5.3 Priority Queues 119

7. Exceptions.......... 121
7.1 Exceptional Circumstances oo .. 121

7.2 EXCEPHIONS ..ottt 122

7.3 Catching Exceptions i 122

7.4 The Propagation of Exceptions............................. 123

7.5 Error Messages. i 124

7.6 The Semantics of Exceptions............ 124

7.7 Caml .o 125

8. Objectso 127
8.1 ClaSSES v ottt 127
8.1.1 Functions as Part of a Type 127

8.1.2 The Semantics of Classes 129

8.2 Dynamic Methods 129

8.3 Methods and Functional Fields............................. 132

8.4 Static Fields 132

8.5 Static Classesv it 133

8.6 Imheritance 134

8.7 Caml ... 137

9. Programming with Trees 139
9.1 TreeS .ottt 139

9.2 Traversing a Tree. i 142
9.2.1 Depth First Traversal 143

9.2.2 DBreadth First Traversal 145

9.3 Search Treesoiii 146
9.3.1 Membership 146

9.3.2 Balanced Trees., 149

9.3.3 Dictionarieso.iiiiii 151

9.4 Priority QUEUESso 152
9.4.1 Partially Ordered Trees, 152

9.4.2 Partially Ordered Balanced Trees..................... 153

