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Preface

Astrophysics is a highly important part of the modern vision of the world
around us. Over the past century, it has transformed the very foundation and
basic philosophical concepts on the fundamental laws of nature controlling
the structure and evolution of the Universe. One can recall such fascinating
astrophysical discoveries as the expansion of the Universe and more recently
the accelerated expansion; dark matter and dark energy and so on. This is
why astrophysics is studied in hundreds of universities throughout the world;
astrophysical courses are taken by students with highly diverse backgrounds,
often concentrating on disciplines lacking a direct connection to astrophysics.

This textbook considers primarily those astrophysical and space plasma
phenomena, in which electromagnetic interactions play a primary or at least
essential role. This textbook has been written based on graduate and un-
dergraduate courses and seminars on “cosmic electrodynamics,” “magneto-
hydrodynamics,” “plasma astrophysics,” and “radiative processes in astro-
physics” that the authors have taught to many generations of students at
State Polytechnic University (St. Petersburg, Russia) and New Jersey In-
stitute of Technology (Newark, New Jersey, USA), cumulatively, over more
than half a century, in conjunction with the authors’ astrophysical studies
in the field of theoretical astrophysics, including plasma astrophysics, cos-
mic rays, solar wind, solar flares, supernova remnants, performed mainly at
the above universities, Toffe Institute (St. Petersburg, Russia), and National
Radio Astronomy Observatory (Charlottesville, Virginia, USA). Jointly, we
have a long history of teaching these sciences in Russia and the USA, and
at some point we felt more and more strongly a deficit of appropriate text-
books to teach our students, which led us to substitute journal papers for
use in teaching. We know that many of our colleagues teaching these courses
experience similar feelings, so we decided to convert our research and teach-
ing experience to a modern, concise textbook on cosmic electrodynamics and
magnetohydrodynamics.

A driver of the textbook writing was, therefore, our willingness to share
our teaching experience with our peers and supply them with a textbook
representing a core, self-contained reading source, much needed to facilitate
delivering undergraduate and graduate courses to students concentrating in



vi Preface

the field of astrophysics, solar /stellar Physics, and space physics. The field of
cosmic electrodynamics is exceptionally broad, which implies that there is no
hope to describe this science field fully and comprehensively within a single
textbook. Therefore, it is highly important to clearly formulate the concept
of material selection and the approach to depth of presentation.

First of all, we are going to make the case that modern cosmic electrody-
namics is a science dealing with a highly nonlinear, nonstationary, turbulent
conducting fluid (plasma) in conditions of strong energy release manifesting
itself in fast fluid motions, strong magnetic field amplification, and energetic
particle generation. We made an attempt to sort out and include only a “fun-
damental” theory, although not necessarily the “old” one: in many cases we
include relatively recent discoveries and developments if we had a good reason
to believe that they are reliable and potentially broadly applicable or science
transforming.

Furthermore, in application of the theory we restricted ourselves in most
cases to analytical solutions of the specific problems discussed: it is the an-
alytical solutions and order-of-magnitude estimates made with them that
develop our understanding of sophisticated natural phenomena. Even though
we fully appreciate numerical methods and corresponding results and widely
use them in our everyday research, we believe that analytical study (solutions
and estimates) is the key in developing students’ physical understanding and
intuition, which is needed to create the science vision, to dig up what is hid-
den behind observations, and, in particular, to set up sophisticated numerical
simulations as well as sort out and interpret their results.

The textbook presents fundamental concepts of the science illustrated by
numerous examples of astrophysical applications of the theory. In doing so
we try to combine classical concepts with their new developments and clearly
demarcate what is well established and what is still under debate. We at-
tempt to present the live science and illustrate how apparently complicated
phenomena can be addressed and understood both qualitatively and quan-
titatively using well-known physics principles and equations applied under
appropriate approximations and simplifications. For this purpose a limited
number of astrophysical examples are considered in greater detail than it
might be expected for most textbooks. In many cases we specifically address
the points of agreement or disagreement between the theory and astrophysical
observations, employing the latest observational data and modern theory.

The textbook delivers the most essential equations, ideas, and models
widely used in modern astrophysics (see the chapter titles as a guide) in the
order of increasing complexity of the material: it begins with basic concepts
and linear processes including linear eigenmodes (Chaps. 1-3), then consid-
ers instabilities, weak and strong nonlinearity, and turbulence (Chaps. 4-6),
and finally addresses key astrophysical problems of particle acceleration and
transport, magnetic field generation, and electromagnetic radiation including
self-consistent nonlinear models (Chaps. 7-12). Later chapters extensively use
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the material given in earlier chapters. We tried to avoid the opposite cross-
referencing of later chapters, but it was not always possible, which once again
illustrates that various astrophysical phenomena are tightly connected. Many
topics are presented with a full theoretical completeness, although in other
cases derivations are truncated or fully omitted depending on the availabil-
ity of the required theory in complementary reading on the subject (Melrose
1980; Kulsrud 2005; Somov 2006, 2007). For example, the highly important
topic of magnetic reconnection is described very briefly, given that it is very
well described by Kulsrud (2005) and Somov (2006, 2007).

One of the main focuses of the textbook is detailed application of the the-
ory to astrophysical phenomena. Obviously, we cannot apply all the presented
theory to all astrophysical objects and phenomena; thus, we apply some of
the theory to some objects/phenomena in such a way to eventually touch
upon most (if not all) of the diverse astrophysical objects including stellar
interior and atmosphere, solar/stellar flares and winds, interstellar medium,
supernova explosions, neutron stars, superbubbles, supernova remnants, pul-
sar wind nebulae, active galactic nuclei, and gamma-ray burst sources. It may
seem that having so many diverse objects implies necessarily that they can
be described only superficially given a limited book volume. Nevertheless,
this is not the case: many phenomena are presented in all essential detail
and a number of cutting-edge examples of comprehensive data analysis and
interpretation are given. Complementarily, in most of the cases the derived
equations and equation sets are general enough to be immediately used in
scientific research work without further consulting original journal papers.
This implies that the textbook will be highly useful well beyond the target
audience (undergraduate and graduate students)—for active researches in
astrophysics, space physics, and, perhaps, geophysics.

To easily learn the textbook, the basic knowledge obtained in general
mathematics and physics courses is desirable along with a general astro-
physics course. However, understanding of our book does not require any
special knowledge beyond that; e.g., the most essential information from
plasma physics is given in the textbook itself, although a more specialized
and detailed information can be learned from Melrose (1980) and Kulsrud
(2005). The book has a long list of recommended bibliography, which can
be helpful for both students and researchers as a guideline for deeper study
of a topic. The reference list, however, is incomplete: in most cases we in-
cluded the monographs, textbooks, and review articles, which we actually
used in our work on the topic. Not surprisingly, the reader can notice many
sources published in Russian, given that this is the main language of both
co-authors of the book. Citation of original papers is limited to the cases
when we explicitly use the corresponding paper in devising a topic or in case
of a few “classical” science-transforming papers. No paper has been ignored
intentionally.
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Finally, the authors are happy to sincerely thank our colleagues and
collaborators V. Abramenko, A. Altyntsev, T. Bastian, M. Bietenholz, A.
Bykov, D. Gary, P. Goode, E. Kontar, A. Kuznetsov, V. Melnikov, G. Nita,
K. Platonov, J. Stone, A. Tsygan, D. Yakovlev, and V. Yurchishin for their
help, highly important discussions, or sharing their observational data, as
well as funding agencies NSF, NASA, Russian Ministry of Education and
Science, and RFBR, which have partly been supporting our research in the
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manuscript.

Newark, NJ G.D. Fleishman
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Notations (Conventions)

v=mn/p
Um
VCH H, 1

Sound speed

Alfvén velocity

Elementary charge; charge of the electron

Mass of the particle (of sort a)

Coeflicient of heat conductivity

Coeflicient of thermal diffusivity; diffusion coefficient
of accelerated particles

Reynolds number

Rayleigh number

Prandtl number

Pécklet number

Radius of solar photosphere

Speed of light

Plank constant

Mass of the electron

Boltzman constant

Cyclic frequency

Gyrofrequency (cyclotron frequency) of a particle
(of sort 4)

Radius-vector of a particle

Time

Velocities

Distribution functions

Forces

Temperature

Mass density or charge density

Charge density (if interfere with the mass density p)
Electric conductivity or effective cross-section
(typically, with subscripts)

Dynamic viscosity

Kinematic viscosity

Collisional magnetic diffusivity (magnetic viscosity)
Effective magnetic diffusivities (viscosities)

Xix



XX

A-B

A xB
V xB

V-B

vi=Y
B, B, b

R =149 x 10'3 cm
E & FE

2

Notations (Conventions)

Dot product
Cross product

Curl
Divergence

Gradient

Magnetic field

Sun to Earth distance (1 AU)
Electric field

Physical units in equations are given in [|, e.g., [erg]

Pus
s

In AC
O-mode
X-mode
Z-mode

Tensor of the momentum flux density
Viscous tension tensor

Coulomb logarithm

Electromagnetic ordinary mode
Electromagnetic (fast) extraordinary mode
Electromagnetic (slow) extraordinary mode



Acronyms

AR
AU
BGK
CMB
CME
CR
DM
DSR
EM
Eq
FASR
FFF
GRB
GS
GSR
GUI
HD
HXR
IPM
ISM
LCP
lhs
MDI
MERLIN
mfp
MHD
MRI
NLFFF
NoRH
NoRP
NST

Active region

Astronomical unit; 1 AU = 1.49 x 103 cm
Bhatnagar—Gross—Krook

Cosmic microwave background

Coronal mass ejection

Cosmic ray

Dispersion measure

Diffusive synchrotron radiation

Emission measure

Equation

Frequency agile solar radiotelescope (project)
Force Free Field

Gamma-ray burst

Gyrosynchrotron

Gyrosynchrotron radiation

Graphical user interface

Hydrodynamics

Hard X-ray

Interplanetary medium

Interstellar medium

Left circular polarization

Left hand side

Michelson Doppler Imager

Multi-element radio-linked interferometer network
Mean free path

Magnetohydrodynamics
Magneto-rotational instability

NonLinear force free field

Nobeyama radioheliograph

Nobeyama radio polarimeters

New solar telescope (Big Bear Solar Observatory,
California, USA)

XxXi



xxii Acronyms

OVSA Owens Valley Solar Array (Owens Valley Radio
Observatory, California, USA)

PIC Particle-in-cell

PWN Pulsar wind nebula

RCP Right circular polarization

rhs Right hand side

RM Rotation measure

rms Root mean square

RHESSI Reuven Ramaty high energy solar spectroscopic imager

RTR Resonant transition radiation

SEP Solar energetic particle(s)

sfu Solar flux unit

SHH Soft-hard-harder

SHS Soft-hard-soft

SN Supernova

SNR Supernova remnant

SOHO Solar and heliospheric observatory

SSRT Siberian solar radio telescope

SST Solar sub-THz telescope (Andes, Argentina)

STR Stochasic theory of radiation

SXR Soft X-ray

SXT Soft X-ray telescope

TRACE Transition region and coronal explorer is a mission of the

Stanford-Lockheed institute for space research, and part
of the NASA small Explorer program

UuT Universal time

VCR Vavilov—Cherenkov radiation

WR Wolf-Rayet (star)
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