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Foreword

The series Robotic Exploration of the Solar System by P. Ulivi and D. M. Harland is,
first of all, a monumental chronicle of the amazing adventure that in the last 50 years
allowed mankind to visit and understand the immense and eerie domain of the solar
system, with its hidden nooks and unexpected peculiarities, providing data, images
and in some cases samples. The story is told with an extraordinary amount of factual
and technical details, mostly arranged to trace each project from its conception to
engineering design, to construction of the spacecraft, execution of the actual mission,
data analysis and, finally, publication of the results. Most of these details are not
known even to the communities of experts: temporary reports, especially if technical,
are seldom published and are easily forgotten or lost. The style of this series is one of
first class journalism: the story unfolds in a fascinating and easy-going way, without
difficult digressions at the physical and engineering level. But the content is in no
way superficial or vague: the accuracy of the information is confirmed not only by its
exhaustive quantitative level, but also by the supporting primary documents quoted
in the bibliography. Any future historical study of space exploration will have to be
based on this chronicle. Much of its content refers to details of the instrumentation
on each spacecraft, and to the manner in which the mission was accomplished. The
design, making and testing of instruments for use in space is not an casy task.
Conditions in space are often prohibitive, as, for instance, near the Sun, owing to its
radiation and solar wind. Systems must reliably function for years without any check
and repair. Extraordinary sensitivities for various physical quantities, like very weak
magnetic fields and high-energy particles, are required. The possibility of storing on
board very large amounts of data, processing it and sending it back to Earth is an
essential condition for success. To reproduce space conditions on the ground to test
systems is difficult, if not impossible.

I have been a Principal Investigator of the Ulysses mission, which is described in
this volume. Launched in 1990, it conducted for the first time a deep exploration of
the solar system environment outside the ecliptic plane in which most of the planets
orbit the Sun — with outstanding results, as announced in the journal Nature on 3
July 2008. In the near future, after 18 years, its operation will terminate, not because
of instrument problems, but because its radioisotope fuel is nearly exhausted.



xvi Foreword

The word ‘robotic’ in the title of this series points to an important controversy in
space exploration: is direct human involvement necessary, or even advisable? For
example, is the International Space Station commendable from the scientific point of
view? I am clear on this point: the extraordinary developments in remote-sensing,
software and control make a human presence on an orbiting machine for exploration
useless for most of the time, costly and dangerous. Even when the round-trip time of
a radio signal from Earth takes hours — such as in the descent of the Huygens probe
to the surface of Titan, Saturn’s large satellite (a mission that will be discussed in the
next volume of this series) — an unmanned probe can work very well, even though the
control from Earth is delayed and an immediate reaction to unforeseen conditions
impossible. The system on Huygens, on the basis of pre-planned choices, was able to
decide autonomously which actions to take on the basis of the physical conditions it
encountered in the descent.

The word ‘exploration’, usually romantically understood as the strenuous efforts
of daring and often irresponsible people to survey unknown lands and civilizations,
has acquired another meaning: instruments provide us with eyes and sensors far
more powerful and penetrating than our own senses, supported by a vast memory
capacity. The accounts in this series impressively confirm this view. This leads me to
my final topic: the use of robotic space probes in the solar system to understand the
structure of space and time. As the Oxford English Dictionary explains, the primary
meaning of the verb ‘to explore’ is to investigate; to survey an unknown land is
secondary. Most emphatically, the main purpose of the exploration of the solar
system is not the sheer collection and cataloguing of images and data in very great
quantities; it is the rational understanding of the structure, the history and the
functioning of the physical objects that they refer to. In 1958, at the beginning of
space exploration of the solar system, the conceptual framework was already set up
and well accepted: first, planets and other large bodies move according to the laws of
gravitation devised by Isaac Newton and applied to an exceedingly refined degree by
mathematicians in France and England in the nineteenth and twentieth centuries;
secondly, the origin of the planetary system in the collapse of a rotating interstellar
cloud of gas and dust, at the centre of which the Sun began to shine 4.56 billion years
ago, was a well established scenario. Space exploration did not change this general
framework, but it opened up unexpected windows and led to extraordinary
discoveries, two of which I shall quote. Planets and their satellites are not point-like,
as assumed in the Newtonian model; their finite size gives rise to new forces and tidal
effects that significantly influence the evolution of the system, and these have been
extensively investigated with space probes. In 1979 Voyager 1 discovered a few active
volcanoes on lo, one of Jupiter’s moons. In fact, their existence had been predicted
by S.J. Peale and his collaborators at the University of California at Santa Barbara,
on the basis of tidal forces exerted on Io by the nearby moons Europa and
Ganymede. Space probes have also allowed immense progress in the investigation of
planetary atmospheres, in particular on their composition, their evolution, and how
they are maintained or replenished in spite of their continuous loss to space. Again,
the traditional laws of chemistry and physics are not under question here; but no
theory can predict or even explain the wealth of interlocking phenomena and
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complex behaviours, which often can be revealed and understood only with in-situ
observations. A striking example is the recent discovery of extensive water activity
on the surface of Mars in the geological past; of course, this has a bearing on the
possible presence of life. But acceptance of physical laws can never be uncritical;
indeed, the statement that a natural law is correct is idle and logically inconsistent, as
there is no way to test it; one can only say, in the negative, that a given physical law is
self-contradictory or conceptually inadequate, or that it disagrees with observations.
It is well known, for example, that the Newtonian law of gravity works very well in
most cases, but on both counts it is unacceptable. Minor anomalies in the motions of
planets and the propagation of light in the solar system that are inexplicable by it are
a quantitative consequence of the theory of general relativity announced by Albert
Einstein in 1915; this theory is the currently accepted framework. The large
computer programs used to predict and control the motions of interplanctary probes
are in fact based on a fully relativistic mathematical scheme, and they include as an
essential part the appropriate corrections to Newtonian theory to take account of
relativity. A major question faced by theoretical physicists is: how, and at what
quantitative level is general relativity violated? Space probes play a very important
role in addressing this fundamental issue. They orbit the Sun at very large distances
in an environment which is practically empty, and free from Earth’s gravity and
mechanical disturbances like microseisms. The sophistication of measurements using
space probes of time intervals, distances and relative velocities is improving all the
time, and such measurements have allowed the predictions of general relativity to be
tested to a very high degree of accuracy. Remarkably, more than 90 years after its
discovery, Einstein’s theory is still unchallenged; but the assault is mounting, with a
number of new missions in preparation to explore the deep nature of gravitation. An
important experiment was carried out in 2002 by the Cassini spacecraft, which was
cruising through interplanetary space to Saturn. Its radio system and a specially built
antenna at NASA’s Deep Space Network complex at Goldstone, California, enabled
the relative velocity between them to be measured to an unprecedented accuracy, and
made possible a new test of a relativistic effect of the Sun’s gravitational field on the
propagation of radio waves. No discrepancy from the prediction of general relativity
was detected. It is quite remarkable that space probes are able not only to explore the
mechanisms by which the objects in the solar system work, but also to investigate the
very nature of space and time.

Bruno Bertotti
Dipartimento di Fisica Nucleare e Teorica
Universita di Pavia (Italy)



Author’s preface

The first part of Robotic Exploration of the Solar System ended with launches in
1981, but related missions in flight at that time through to their completion. This
second part covers missions launched between 1983 and 1996, employing the same
“spotter’s guide to planetary spacecraft” approach. While the period covered is
short, and was marked by a frustrating hiatus with rare missions, it saw the debut of
new players, the decline of another, and a number of triumphs and failures. It was
also marked by the ‘Christmas tree’ approach to planetary exploration which on the
one hand caused a dearth of planetary missions and on the other hand a number of
missions that produced an overwhelming return of results, not all of which were able
to be included in this book. The period was also shaped by some peculiar external
conditions: the American emphasis on human spaceflight and Shuttle flights, which
deprived planetary missions of badly needed funds; the Challenger accident which
derailed those few projects that had managed to survive; and finally the Strategic
Defense Initiative, which provided technology for the low-cost revolution in deep-
space missions of the 1990s. The low-cost approach, too, would soon dramatically
show its shortcomings, but these will be left to future volumes in the series.

Paolo Ulivi
Milan, Italy
July 2008
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