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Preface

Qu’est-ce que le passé, sinon du présent qui est en retard?
Pierre Dac (I'os & moelle, March 1940)

Modeling automatic engines or physiological systems often involves the
idea of control because feedback is used in order to maintain a stable state.
But much of this feedback require a finite time to sense information and
react to it. A popular way to describe this process is to formulate a delay
differential equation (DDE) where the evolution of a dependent variable at
time ¢ depends on its value at time ¢ — 7. Unfortunately, solving a DDE
is a mathematically difficult task. Over the past decade, rapid advances
in computational power have revived interest in DDEs. Previously known
equations are investigated allowing a better physical understanding of old
problems. In addition, new areas of research have appeared. This is, for
example, the case of lasers subject to optical feedback, the delayed control
of container cranes, or the real-time synthesis of musical instruments.

Oscillatory instabilities are frequently associated with systems described
by DDEs. The motivation to study these oscillations then depends on the
background of the researcher. For some, these oscillatory instabilities are
viewed as a limitation to the performance of a particular device that must
be avoided or possibly controlled. In contrast, other researchers have put
the unstable behavior to good use making practical devices such as high-
frequency optical oscillators.

New mathematical tools and reliable computer software techniques
have been developed for DDEs. Here, preference is given to analytical
approaches known collectively as asymptotic methods [22, 124], the most
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useful techniques for finding approximate solutions to equations. It is a
revised and largely expanded version of a series of lectures first given at
the Université Libre de Bruxelles in 2002-2003, at the Université Joseph
Fourier (Grenoble) in 2003, and, more recently, at the University of Utah in
2007. The minimum prerequisites for this book are a facility with calculus,
experience with differential equations, and an elementary knowledge of
bifurcation theory. The unusual format of this textbook, avoiding rigorous
mathematical proofs and concentrating on applications, aims to introduce
beginning students as well as experienced researchers to the large variety
of phenomena described by DDEs. It has no ambition to review the rich
field of DDEs and references have been selected for their historical impact
or for the experiments they are describing.

One novelty in this volume is the place given to the figures. They help in
understanding the scientific background of a specific application and how
a mathematical model is derived. In addition, computer plots compare ex-
act and approximative solutions illustrating the efficiency of the analytical
method. The mathematical computations are described in as friendly a
manner as possible.

DDE models are used by biologists, physicists, and engineers with dif-
ferent objectives and expectations. This text is meant to serve as an intro-
duction to the rich variety of applications and could be used in a modeling
course on DDEs. Some selected parts of this book could provide material
for a class on singular perturbation techniques or to stimulate a differential
equation class. It is my experience that the combination of illustrations
using a projector and compact computations on the blackboard works well
to attract the attention of the audience.

There are many colleagues to thank for their interest, suggestions, and
contributions to this book. I first wish to thank Taméds Kalmar-Nagy and
John Milton who gave me precious details on comparisons between ex-
periments and theory. The collaboration with Dirk Roose and his group
during the years 2000-2003 was a successful experience combining new
analytical and numerical approaches. Applied mathematicians Don Cohen,
Michael Mackey, and John Ockendon strongly encouraged me to go forward
with this project. The lectures by Gabor Stépan on mechanical engineer-
ing problems, by Yang Kuang and Stephen Gourley on population models,
and by John Mallet-Paret, Roger Nussbaum, and Hans-Otto Walther on
state-dependent delay equations had a strong impact on me. Of course,
I am deeply indebted to my friends in the laser community who in 1993
introduced me to the world of optical feedback. Tom Gavrielides, Vassilios
Kovanis, and Daan Lenstra educated me on the complexities of the Lang
and Kobayashi equations and Ingo Fisher, Eric Lacot, Laurent Larger, Raj
Roy, and David Sukow patiently explained to me the subtleties of the ex-
periments. Work could not have been done without the contribution of en-
thusiastic young collaborators: Kirk Green, Theodore Kolokolnikov, Michel
Nizette, Didier Pieroux, Fabien Rogister, Marc Sciamanna, and Guy Van
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der Sande. I am grateful to Gregory Kozyreff for his constructive criticisms
of the manuscript and I thank my editor Achi Dosanjh who convinced me
to go for an ambitious project. I acknowledge the Belgian National Science
Foundation and the Pole Attraction Pole program of the Belgian govern-
ment (2001-2006) for the support I received during the preparation of this
book. Lastly I would like to thank Anne, Joan, and Marc for their love and
support while I was away searching and computing. This book is dedicated
to them.

Brussels, Belgium Thomas Erneuz
January 2008
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