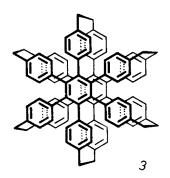
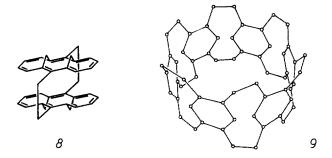
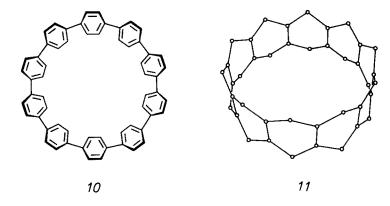

Concluding Remarks


This volume presented a selection of research work in the field of (cyclo-)phane chemistry. The reader may have realized the continuous extension of this topic and its increasing influence on neighbouring disciplines.

In future, synthetic chemistry will increase the amount and value of such phane molecules, the size of which ranges between low molecular and macromolecular compounds. They may be called "mediomolecules" with molecular masses between approx. 1000 and 20000 and contain acyclic as well as cyclic exponents — the medio-and macrocyclic compounds. Not only primary structures but also secondary and tertiary structures are included into the synthetic strategy directed to such molecules stimulated by further developments of synthetic procedures and of spectroscopic methods. It will be important to find means to handle molecules of this size in solution and to investigate their static and dynamic structures, their intermolecular host/guest interactions and reactions.


Apart from the impetus of phane chemistry to other fields of chemical research work attention should be drawn to desirable molecules, which are pure cyclophane hydrocarbons, however, might effect the design of further, less puristic extraordinary molecular structures. Such target molecules apart from leading to new findings may also simply appear as nice symmetric structures and therefore delight the eye of the "molecular designer" at the end of this volume:

After $[2_6]$ cyclophane, postulated in 1972, designated as "superphane" (1) has been synthesized, its hexaene 2 remains to be done and the preparation of the extended $[2_6]$ hexaphenylbenzenophane 3 also can be attacked.



Molecules with only clamped aromatic assemblies like 4, 5, in which benzene rings are forced into boat conformations, and also spacered (cf. 6) helices like 7 will be synthesizable, as well as annulenophanes such as 8 and the phane molecule 9, which is interpreted with a sensitive artistic understanding to a gyro-wheel. Structure 9 opens the field of tube-shaped aromatic molecules: Will it be possible to succeed in the condensation and aromatisation of the skeleton to end up with a cyclic pyreno/peryleno oligomer?

The $[0_{10}]$ paracyclophane 10 and similar oligo-paraphenylenes hopefully will be synthesized; they are of interest not only in account of the increasing large ring strain with decreasing ring width.

Tube-shaped molecules looking like bracelettes, for example 11, fully aromatic or partly aliphatic, belong to the stars under the phanes-to-be. The aromatic representative of 11 might be designated as a "super-acen" in analogy to super-

phane. Apart from questions regarding aromaticity a second point of interest here is coming from the reducibility of the ring width. This aspect reminds of the classic question of the smallest cyclic alkene or alkyne.

By insertion of heteroatoms or affixing of substituents into known compounds, analogues with improved properties of solubility will be available. Obviously, challenges calling for innovations are waiting for generations of chemists. Research connected with structures like and beyond the few ones shown above — and those in the contribution collected in this (and the coming) volume — will impart new conclusions and set up new ideas for future trends based on stronger fundaments.

Cyclophane chemistry as a "bridge builder in the molecular architecture" already led to a directive bridging between research fields and departments, which is also evident in the studies presented.

F. Vögtle

Author Index Volumes 101–115

Contents of Vols. 50–100 see Vol. 100 Author and Subject Index Vols. 26–50 see Vol. 50

The volume numbers are printed in italics

Ashe, III, A. J.: The Group 5 Heterobenzenes Arsabenzene, Stibabenzene and Bismabenzene. 105, 125-156 (1982).

Austel, V.: Features and Problems of Practical Drug Design, 114, 7-19 (1983).

Balaban, A. T., Motoc, I., Bonchev, D., and Mekenyan, O.: Topilogical Indices for Structure-Activity Correlations, 114, 21–55 (1983).

Barthel, J., Gores, H.-J., Schmeer, G., and Wachter, R.: Non-Aqueous Electrolyte Solutions in Chemistry and Modern Technology, 111, 33-144 (1983).

Bestmann, H. J., Vostrowsky, O.: Selected Topics of the Wittig Reaction in the Synthesis of Natural Products. 109, 85-163 (1983).

Boekelheide, V.: Syntheses and Properties of the [2_n] Cyclophanes, 113, 87-143 (1983).

Bonchev, D., see Balaban, A. T., 114, 21-55 (1983).

Bourdin, E., see Fauchais, P.: 107, 59-183 (1983).

Charton, M., and Motoc, I.: Introduction, 114, 1-6 (1983).

Charton, M.: The Upsilon Steric Parameter Definition and Determination, 114, 57-91 (1983).

Charton, M.: Volume and Bulk Parameters, 114, 107-118 (1983).

Chivers, T., and Oakley, R. T.: Sulfur-Nitrogen Anions and Related Compounds. 102, 117-147 (1982).

Consiglio, G., and Pino, P.: Asymmetrie Hydroformylation, 105, 77-124 (1982).

Coudert, J. F., see Fauchais, P.: 107, 59-183 (1983).

Edmondson, D. E., and Tollin, G.: Semiquinone Formation in Flavo- and Metalloflavoproteins. 108, 109-138 (1983).

Eliel, E. L.: Prostereoisomerism (Prochirality). 105, 1-76 (1982).

Fauchais, P., Bordin, E., Coudert, F., and MacPherson, R.: High Pressure Plasmas and Their Application to Ceramic Technology. 107, 59-183 (1983).

Fujita, T., and Iwamura, H.: Applications of Various Steric Constants to Quantitative Analysis of Structure-Activity Relationshipf, 114, 119-157 (1983).

Gerson, F.: Radical Ions of Phanes as Studied by ESR and ENDOR Spectroscopy. 115, 57-105 (1983).

Gielen, M.: Chirality, Static and Dynamic Stereochemistry of Organotin Compounds. 104, 57-105 (1982).

Gores, H.-J., see Barthel, J.: 111, 33-144 (1983).

Groeseneken, D. R., see Lontie, D. R.: 108, 1-33 (1983).

Heilbronner, E., and Yang, Z.: The Electronic Structure of Cyclophanes as Suggested by their Photoelectron Spectra. 115, 1-55 (1983).

Hellwinkel, D.: Penta- and Hexaorganyl Derivatives of the Main Group Elements. 109, 1-63 (1983).

Hess, P.: Resonant Photoacoustic Spectroscopy. 111, 1-32 (1983).

Hilgenfeld, R., and Saenger, W.: Structural Chemistry of Natural and Synthetic Ionophores and their Complexes with Cations. 101, 3-82 (1982).

Iwamura, H., see Fujita, T., 114, 119-157 (1983).

Káš, J., Rauch, P.: Labeled Proteins, Their Preparation and Application. 112, 163-230 (1983).

Keat, R.: Phosphorus(III)-Nitrogen Ring Compounds. 102, 89-116 (1982).

Kellogg, R. M.: Bioorganic Modelling — Stereoselective Reactions with Chiral Neutral Ligand Complexes as Model Systems for Enzyme Catalysis. 101, 111-145 (1982).

Kniep, R., and Rabenau, A.: Subhalides of Tellurium. 111, 145-192 (1983).

Krebs, S., Wilke, J.: Angle Strained Cycloalkynes. 109, 189-233 (1983).

Kosower, E. M.: Stable Pyridinyl Radicals, 112, 117-162 (1983).

Labarre, J.-F.: Up to-date Improvements in Inorganic Ring Systems as Anticancer Agents. 102, 1-87 (1982).

Laitinen, R., see Steudel, R.: 102, 177-197 (1982).

Landini, S., see Montanari, F.: 101, 111-145 (1982).

Lavrent'yev, V. I., see Voronkov, M. G.: 102, 199-236 (1982).

Lontie, R. A., and Groeseneken, D. R.: Recent Developments with Copper Proteins. 108, 1-33 (1983).

Lynch, R. E.: The Metabolism of Superoxide Anion and Its Progeny in Blood Cells. 108, 35-70 (1983).

McPherson, R., see Fauchais, P.: 107, 59-183 (1983).

Majestic, V. K., see Newkome, G. R.: 106, 79-118 (1982).

Margaretha, P.: Preparative Organic Photochemistry. 103, 1-89 (1982).

Mekenyan, O., see Balaban, A. T., 114, 21-55 (1983).

Montanari, F., Landini, D., and Rolla, F.: Phase-Transfer Catalyzed Reactions. 101, 149-200 (1982).

Motoc, I., see Charton, M.: 114, 1-6 (1983).

Motoc, I., see Balaban, A. T.: 114, 21-55 (1983).

Motoc, I.: Molecular Shape Descriptors, 114, 93-105 (1983).

Müller, F.: The Flavin Redox-System and Its Biological-Function. 108, 71-107 (1983).

Murakami, Y.: Functionalited Cyclophanes as Catalysts and Enzyme Models. 115, 103-151 (1983).

Mutter, M., and Pillai, V. N. R.: New Perspectives in Polymer-Supported Peptide Synthesis. 106, 119-175 (1982).

Newkome, G. R., and Majestic, V. K.: Pyridinophanes, Pyridinocrowns, and Pyridinycryptands. 106, 79-118 (1982).

Oakley, R. T., see Chivers, T.: 102, 117-147 (1982).

Painter, R., and Pressman, B. C.: Dynamics Aspects of Ionophore Mediated Membrane Transport. 101, 84-110 (1982).

Pillai, V. N. R., see Mutter, M.: 106, 119-175 (1982).

Pino, P., see Consiglio, G.: 105, 77-124 (1982).

Pommer, H., Thieme, P. C.: Industrial Applications of the Wittig Reaction. 109, 165-188 (1983).

Pressman, B. C., see Painter, R.: 101, 84-110 (1982).

Rabenau, A., see Kniep, R.: 111, 145-192 (1983).

Rauch, P., see Káš, J.: 112, 163-230 (1983).

Recktenwald, O., see Veith, M.: 104, 1-55 (1982).

Reetz, M. T.: Organotitanium Reagents in Organic Synthesis. A Simple Means to Adjust Reactivity and Selectivity of Carbanions. 106, 1-53 (1982).

Rolla, R., see Montanari, F.: 101, 111-145 (1982).

Rossa, L., Vögtle, F.: Synthesis of Medio- and Macrocyclic Compounds by High Dilution Principle Techniques, 113, 1-86 (1983).

Rzaev, Z. M. O.: Coordination Effects in Formation and Cross-Linking Reactions of Organotin Macromolecules. 104, 107-136 (1982).

Saenger, W., see Hilgenfeld, R.: 101, 3-82 (1982).

Schmeer, G., see Barthel, J.: 111, 33-144 (1983).

Schöllkopf, U.: Enantioselective Synthesis of Nonproteinogenic Amino Acids. 109, 65-84 (1983).

Shibata, M.: Modern Syntheses of Cobalt(III) Complexes. 110, 1-120 (1983).

Siegel, H.: Lithium Halocarbenoids Carbanions of High Synthetic Versatility. 106, 55–78 (1982).

Steudel, R.: Homocyclic Sulfur Molecules. 102, 149-176 (1982).

Steudel, R., and Laitinen, R.: Cyclic Selenium Sulfides. 102, 177-197 (1982).

Suzuki, A.: Some Aspects of Organic Synthesis Using Organoboranes. 112, 67-115 (1983).

Szele, J., Zollinger, H.: Azo Coupling Reactions Structures and Mechanisms. 112, 1-66 (1983).

Tabushi, I., Yamamura, K.: Water Soluble Cyclophanes as Hosts and Catalysts, 113, 145–182 (1983). Thieme, P. C., see Pommer, H.: 109, 165–188 (1983).

Tollin, G., see Edmondson, D. E.: 108, 109-138 (1983).

Veith, M., and Recktenwald, O.: Structure and Reactivity of Monomeric, Molecular Tin(II) Compounds. 104, 1-55 (1982).

Venugopalan, M., and Vepřek, S.: Kinetics and Catalysis in Plasma Chemistry. 107, 1-58 (1982).

Vepřek, S., see Venugopalan, M.: 107, 1-58 (1983).

Vögtle, F., see Rossa, L.: 113, 1-86 (1983).

Vögtle, F.: Concluding Remarks. 115, 153-155 (1983).

Vostrowsky, O., see Bestmann, H. J.: 109, 85-163 (1983).

Voronkov. M. G., and Lavrent'yev, V. I.: Polyhedral Oligosilsequioxanes and Their Homo Derivatives. 102, 199-236 (1982).

Wachter, R., see Barthel, J.: 111, 33-144 (1983).

Wilke, J., see Krebs, S.: 109, 189-233 (1983).

Yamamura, K., see Tabushi, I.: 113, 145-182 (1983).

Yang, Z., see Heilbronner, E.: 115, 1-55 (1983).

Zollinger, H., see Szele, I.: 112, 1-66 (1983).