
Appendix A
Uncertainty Inequalities

For a set of observables {X̂i }i=1,...,N of a quantum mechanical system, the fact that
their expectation values are determined by an underlying quantum state, determine
a set of fundamental bounds to be satisfied by their outcome statistics.

The experiment where an identical quantum state of the system, ρ̂, is indepen-
dently prepared and any of the observables is measured once per preparation, deter-
mines a distribution of outcomes for each of the observables. Denoting by xi ∈ R

the continuous eigenvalues of the observable X̂i corresponding to the eigenstate |xi 〉,
the probability distribution of the outcomes of X̂i is given by [1–3],

Pr [xi ] = Tr
[|xi 〉〈xi | ρ̂

]
. (A.0.1)

Broadly, uncertainty relations are general statements that describe the constraints
satisfied by the set of these probability distributions.

In the case of a large number of experimental trials, each of these distributions
tend to a gaussian distribution, in which case, a convenient measure of measurement
uncertainty is the deviation from the mean outcome, represented by the operators,

δ X̂i := X̂i −
〈
X̂i

〉
. (A.0.2)

The uncertainty in each observable may be characterized as the variance of the
distribution,

Var
[
X̂i

]
:=
〈
δ X̂i

2
〉
, (A.0.3)

while the mutual correlations between the observables described by the covariance,

Cov
[
X̂i , X̂ j

]
:=
〈
1

2

{
δ X̂i , δ X̂ j

}〉
, (A.0.4)

where the possible non-commutativity of observables necessitates the symmetriza-

tion. Note that, Var
[
X̂i

]
= Cov

[
X̂i , X̂i

]
. In a general setting, the observables may
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commute amongst themselves according to,

[
X̂ j , X̂k

]
= i Ĉ jk, (A.0.5)

where Ĉ jk are some operators encoding the commutation structure. Note that Ĉ jk

are necessarily hermitian, and satisfy, Ĉ jk = −Ĉk j .

Theorem 1 (Uncertainty principle) In the setting described herein, the covariance
matrix satisfies the matrix inequality,

Cov
[
X̂ j , X̂k

]
+ i

2

〈
Ĉ jk

〉
≥ 0. (A.0.6)

Proof Note that a general operator, defined by,

M̂ :=
∑

j

α j δ X̂ j ,

for some arbitrary complex numbers αi , satisfies the identity, Tr
[
M̂†M̂ ρ̂

]
≥ 0, for

any state ρ̂ (see Lemma 2.1). Working out the trace explicitly,

Tr
[
M̂†M̂ ρ̂

]
=
∑

j,k

α∗
jαk Tr[δ X̂ jδ X̂k ρ̂]

=
∑

j,k

α∗
jαk Tr

[(
1

2

{
δ X̂ j , δ X̂k

}
+ 1

2

[
δ X̂ j , δ X̂k

])
ρ̂

]

=
∑

j,k

α∗
jαk

(
Cov

[
X̂i , X̂ j

]
+ i

2

〈
Ĉ jk

〉)

= αHMα,

where, α := [α1, . . . , αN ]T , is the vector of the arbitrary complex numbers αi ,
αH = (α∗)T is its hermitian conjugate, and M is a complex matrix whose elements
are given by,

Mjk := Cov
[
X̂i , X̂ j

]
+ i

2

〈
Ĉ jk

〉
.

The identity Tr
[
M̂†M̂ ρ̂

]
≥ 0 implies that the quadratic form,

αHMα ≥ 0, for any αi .

This implies that the matrix M must itself be positive, giving the desired result. ��
Corollary 1 (Robertson-Schrodinger [4, 5])For the caseof twoobservables, X̂1, X̂2,
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Var[X̂1]Var[X̂2] ≥ 1

4

∣∣∣
〈{

δ X̂1, δ X̂2

}〉∣∣∣
2 + 1

4

∣∣∣
〈[

δ X̂1, δ X̂2

]〉∣∣∣
2
. (A.0.7)

Proof The N = 2 case of Eq. (A.0.6) gives,

⎛

⎝
Var
[
X̂1

]
Cov

[
X̂1, X̂2

]
+ i

2

〈[
X̂1, X̂2

]〉

Cov
[
X̂1, X̂2

]
− i

2

〈[
X̂1, X̂2

]〉
Var
[
X̂2

]

⎞

⎠ ≥ 0.

The sufficient condition for this to be true is that its lowest eigenvalue be positive,
i.e.

(
Var
[
X̂1

]
+ Var

[
X̂2

])
−
√(

Var
[
X̂1

]
− Var

[
X̂2

])2 + 4Cov
[
X̂1, X̂2

]2 +
〈[
X̂1, X̂2

]〉2 ≥ 0;

simplifying this gives the required result. ��
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Appendix B
Miscellanea on Elastodynamics

B.1 Principle of Least Action

Following from Sect. 3.1, the action for the elastodynamic field is,

S �ui� =
∫

dt
∫

D
d3r L (ui , u̇i , ∂ j ui ), (B.1.1)

for the set of independent displacement fields ui (r, t). Note that for the sake of
generality, we here retain a possible functional dependence of the Lagrangian on ui ,
even though the actual Lagrangian of interest (Eq. (3.1.15)),

L = ρ

2
u̇i u̇i − 1

2
ti j u

(1)
i j , (B.1.2)

depends only on the derivatives of ui . Note the constitute relation for the stress in
terms of the strain (Eq. (3.1.16))

ti j = αi jklu
(1)
kl , (B.1.3)

with the Hooke tensor given by (Eq. (3.1.17)),

αi jkl = μ1 δi jδkl + μ2(δikδ jl + δilδ jk). (B.1.4)

The principle of least action dictates that the field configuration ui (r, t) that is
realized is the one that renders the action minimum. Note that the action Eq. (B.1.1)
is an example of a functional, i.e., a map that associates to a set of functions (here
ui ), a real number (here, the value of the definite integral in Eq. (B.1.1)). Thus, it
is reasonable to compare values of the action for different field configurations and
determine one for which the action attains a minimum. In order to determine such
a point, we are led to consider a space of test functions, so as to be able to explore
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the neighbourhood of each element of this functional space in a systematic fashion.
Variational calculus [1–3] provides the machinery to accomplish this task.1

We consider the variation of the functions ui ,

ui (r, t) → ui (r, t) + Dui (r, t),

where the symbol D denotes a functional variation, signifying the fact that these
changes are simply a device to enable exploration of the functional neighbourhood
of ui . Since the fields ui are independent, they maybe varied independently, and so
the corresponding variations Dui are also independent. The resulting variation in the
action is,

DS =
∫

dt d3r

[
∂L

∂ui
Dui + ∂L

∂ u̇i
Du̇i + ∂L

∂(∂ j ui )
D(∂ j ui )

]
.

The second and third terms of the integrand can be re-expressed as,

∂L

∂ u̇i
Du̇i = ∂L

∂ u̇i
∂t (Dui ) = ∂t

(
∂L

∂ u̇i
Dui

)
− ∂t

(
∂L

∂ u̇i

)
Dui

∂L

∂(∂ j ui )
D(∂ j ui ) = ∂L

∂(∂ j ui )
∂ j (Dui ) = ∂ j

(
∂L

∂(∂ j ui )
Dui

)
− ∂ j

(
∂L

∂(∂ j ui )

)
Dui

(B.1.5)
and re-inserted back. Thus we arrive at,

DS =
∫

dt
∫

D
d3r

[
∂L

∂ui
− ∂t

(
∂L

∂ u̇i

)
− ∂ j

(
∂L

∂(∂ j ui )

)]
Dui

+
∫

D
d3r

[
∂L

∂ u̇i
Dui

]t=∞

t=0

+
∫

dt
∮

∂D
dA j

∂L

∂(∂ j ui )
Dui .

(B.1.6)

Here, the second and third integrals arise from integrating the total derivatives in
Eq. (B.1.5). In the third integral, this is performed through an application of the
divergence theorem, resulting in an integral over the boundary ∂D of the domain D.

For the principle of least action to be implemented in the form,

DS

Dui
= 0,

it is therefore required that each of the integrals in Eq. (B.1.6) vanish separately.
Since the variations Dui are arbitrary, this is tantamount to each of the integrands
vanishing independently. This results in three conditions:

1. the Euler-Lagrange equations,

1Incidentally, note that the principle of least action is really a principle of stationary action [1].
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∂L

∂ui
− ∂t

(
∂L

∂ u̇i

)
− ∂ j

(
∂L

∂(∂ j ui )

)
= 0 (B.1.7)

2. fulfilment of initial and/or final conditions,

[
∂L

∂ u̇i
Dui

]t=∞

t=0

= 0 (B.1.8)

3. fulfilment of boundary conditions,

∮

∂D
dA j

∂L

∂(∂ j ui )
Dui = 0. (B.1.9)

Note that the principle of least action not only furnishes the dynamical equation
Eq. (B.1.7) to be satisfied by the true field configuration, but also provides a consistent
set of natural boundary conditions Eqs. (B.1.8) and (B.1.9).

B.1.1 Equations of Motion

To implement the Euler-Lagrange equation Eq. (B.1.7), we compute the various
terms in it, for the Lagrangian Eq. (B.1.2):

∂L

∂ui
= 0

∂L

∂ u̇i
= ∂

∂ u̇i

(ρ

2
u̇a u̇a

)
= ρ

2
(2u̇aδia) = ρu̇i

∂L

∂(∂ j ui )
= ∂

∂(∂ j ui )

(
−αabcd

2
(∂bua)(∂duc)

)
= −αi jcd(∂duc).

(B.1.10)

Inserting these in Eq. (B.1.7) gives,

ρüi − αi jkl∂ j∂luk = 0. (B.1.11)

Finally using the explicit form of the Hooke tensor (Eq. (B.1.3)) gives the Navier
equations,

ρ üi = (μ1 + μ2)∂i∂ j u j + μ2 ∂ j∂ j ui

or, ρü = (μ1 + μ2)∇(∇ · u) + μ2∇2u

= (μ1 + 2μ2)∇(∇ · u) − μ2∇ × (∇ × u),

(B.1.12)

where the last two forms are expressed using vector operators appropriate for 3D
domains. The third form is obtained by using the generally valid vector identity,
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∇ × (∇ × u) = ∇(∇ · u) − ∇2u. (B.1.13)

B.1.2 Boundary Conditions

The natural boundary condition Eq. (B.1.9), applied to the Lagrangian Eq. (B.1.2)
results in, ∮

∂D
dA j ti j Dui = 0,

where, ti j := αi jkl∂luk , is the stress tensor according to Hooke’s law. Using the fact
that the force Fi (along the i direction) is given in terms of the stress ti j acting on the
area element dA j (normal to the direction j), ti j dA j = dFi , the boundary condition
reads, ∮

∂D
dFi Dui = 0.

Since the variationDui are independent of the force on the boundary, this is equivalent
to two conditions, viz.

dFi |∂D = ti jdA j |∂D = 0

Dui |∂D = 0.
(B.1.14)

Physically, the first is appropriate for a free boundary, on which no force impinges,
whereas the second is appropriate for a fixed boundary, whose displacement is pre-
scribed.

B.2 Transverse and Longitudinal Elastic Waves

The Navier equations Eq. (B.1.12) expressed as a single vector equation,

ü =
(

μ1 + 2μ2

ρ

)
∇(∇ · u) −

(
μ2

ρ

)
∇ × (∇ × u), (B.2.1)

makes explicit the two kinds of excitations referred to in Sect. 3.1. In order to exhibit
this claim, wemake use of the fact that any vector field, here u, in a simply connected
domain D, maybe expressed uniquely in terms of potentials, φ(r, t) and �(r, t):

u = ∇φ + ∇ × �. (B.2.2)

Identifying these two terms asuL anduT respectively, standard vector identities imply
∇ · uT = 0 and ∇ × uL = 0; uT (uL ) is the transverse (longitudinal) component of
u. Substituting this decomposition into Eq. (B.2.1), and realizing that the transverse
and longitudinal components are independent, results in two wave equations,

http://dx.doi.org/10.1007/978-3-319-69431-3_3


Appendix B: Miscellanea on Elastodynamics 205

üL =
(

μ1 + 2μ2

ρ

)
∇2uL

üT =
(

μ2

ρ

)
∇2uT .

(B.2.3)

The phase velocities of the two elastic waves can be immediately identified, viz.,

cL :=
√

μ1 + 2μ2

ρ
, cT :=

√
μ2

ρ
. (B.2.4)

B.3 Hermiticity of the Elastic Operator

The elasticity operator L̂, defined in Eq. (3.1.20) viz.

L̂ ik = αi jkl

ρ
∂ j∂l , (B.3.1)

acts on vector functions u defined on some finite domain D. Corresponding to some
such function v, we define a linear functional 〈v, ·〉 that acts as,

〈v,u〉 := 1

Vol(D)

∫

D
v∗
i (r)ui (r) d

3r. (B.3.2)

We now restrict attention to functions u for which 〈u,u〉 < ∞, and satisfies one
of the boundary conditions in Eq. (B.1.14) viz.

Type 1: dFi |∂D = ti jdA j |∂D = αi jkl(∂ j ui )(∂luk)|∂D = 0

Type 2: ui |∂D = 0,
(B.3.3)

where we have assumed (without loss of generality) that in the case of a fixed bound-
ary condition, the boundary displacement is zero.

Each set of such functions—bounded and satisfying boundary condition of Type
s (s = 1, 2)—forms a Hilbert space2 Hs under the inner product 〈·, ·〉. For every
u ∈ Hs , there is a functional 〈u, ·〉 ∈ Dual(Hs) in the dual of Hs [4].

Having identified the twodistinctHilbert spaces at play, the proof of the hermiticity
of L̂ is straightforward. Using the definition of L̂ (Eq. (B.3.1)),

〈v, L̂u〉 = ρ−1

Vol(D)

∫

D
v∗
i (r) αi jkl∂ j∂luk(r) d3r.

2Physically the two spaces H1,2 describe the displacement fields for the physically incompatible
boundary conditions of each type; mathematically, this incompatibility manifests as the fact that a
function satisfying one type of boundary condition does not form a superpositionwith that satisfying
a different boundary condition, such that the superposed function satisfies anywell-definedboundary
condition. Closure under superposition is necessary for a Hilbert space.

http://dx.doi.org/10.1007/978-3-319-69431-3_3
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Manipulating the integral, and freely using the symmetries of the Hooke tensor
(Eq. (3.1.10)) αi jkl = α j ikl = αi jlk = αkli j ,

∫

D
v∗
i αi jkl∂ j∂luk d

3r =
∫

D
v∗
i αi jkl∂ j∂kul d

3r

=
∫

D
∂ j (v

∗
i αi jkl ∂kul) d

3r −
∫

D
(∂ jv

∗
i ) αi jkl(∂kul) d

3r

=
∫

∂D
v∗
i αi jkl ∂kul︸ ︷︷ ︸

ti j

dA j −
∫

D
(∂ jv

∗
i ) αi jkl(∂kul) d

3r;

the second equality follows by partial integration, while the third follows fromGauss’
Theorem. Finally, either type of boundary condition ensures that the first term in the
last line is zero. Treating the remaining integral similarly,

∫

D
v∗
i αi jkl∂ j∂luk d

3r = −
∫

D
(∂ jv

∗
i ) αi jkl(∂kul) d

3r

= −
∫

∂D
(∂ jv

∗
i )αi jklul dAk +

∫

D
(∂k∂ jv

∗
i )αi jklul d

3r

= −
∫

∂D
ui αi jkl∂kv

∗
l︸ ︷︷ ︸

t∗i j

dAk +
∫

D
(αi jkl∂ j∂lv

∗
k )ui d

3r

=
∫

D
(αi jkl∂ j∂lv

∗
k )ui d

3r,

i.e., the differential operator ∂ j∂l can be freely commuted within the integral as long
as the functions satisfy one of the boundary conditions (Eq. (B.3.3)), and the Hooke
tensor is symmetric. In particular, this means that the inner product satisfies,

〈v, L̂u〉 = 〈L̂v,u〉, (B.3.4)

i.e. L̂ is hermitian in either Hilbert space H1,2.

B.4 Eigensolution of the Doubly-Clamped Stressed Elastic
Beam

The normalized mode functions vn(ζ ), of a 1D stressed elastic beam are given by
the Euler-Bernoulli equations with stress Eq. (5.1.9), viz.

ε
∂4vn

∂ζ 4
− ∂2vn

∂ζ 2
=
(

	n

	0

)2

vn, (B.4.1)

http://dx.doi.org/10.1007/978-3-319-69431-3_3
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where, ε = KM/T 
2z is the (dimensionless) ratio of bending to tensile energy,
	0 = (T/ρA 
2z )

1/2 is the frequency determined by the ratio of tensile energy to
inertia. The equation is well-posed for the case where the beam is clamped on both
ends, described by the boundary conditions,

v(0) = v(1) = 0, ∂ζ v(0) = ∂ζ v(1) = 0. (B.4.2)

The fourth order differential operator forming the right-hand side of Eq. (B.4.1)
has four eigenfunctions, viz. e±k+

n ζ , e±ik−
n ζ , where,

k±
n :=

(
1

2ε

)1/2 (
±1 +

√
1 + 4ε(	n/	0)2

)1/2
, (B.4.3)

are the normalized wave vectors of the vibration at frequency 	n . Note that this
relation indicates a nonlinear dispersion for waves excited on the stressed beam.
Indeed, the small−ε approximation,

k+
n ≈ 1√

ε

[
1 + (	n/	0)

2

2
ε + O(ε3)

]

k−
n ≈ 	n

	0

[
1 − (	n/	0)

2

2
ε + O(ε2)

] (B.4.4)

seems to suggest that the k−
n branch describes excitations with linear dispersion—

familiar from the case of the purely tensile string (ε = 0), while the k+
n branch arises

from corrections due to the bending term—leading to deviations from a sinusoidal
mode that occupy a spatial scale approximated by 
z/k+

n ≈ 
z
√

ε.
In the following, exact shapes of the mode functions, and their small−ε

approximation—describing the afore-mentioned deviations—will be presented. The
general mode vn(ζ ) is that superposition of the four exponential eigenfunctions that
satisfies the double-clamped boundary conditions in Eq. (B.4.2), viz. (see also [5])

vn(ζ ) ∝ k+
n sin k−

n ζ − k−
n sinh k+

n ζ

k+
n sin k+

n − k−
n sinh k−

n
− cos k−

n ζ − cosh k+
n ζ

cos k−
n − cosh k+

n
. (B.4.5)

Here, the proportionality indicates that an overall constant— fixed by the normal-
ization of the mode function—is omitted. In order for the boundary conditions to be
satisfied consistently, it is required that,

(k+
n )2 − (k−

n )2

2k−
n k

+
n

= cosh k+
n cos k−

n − 1

sinh k+
n sin k−

n
; (B.4.6)

an algebraic equation that, expressed in terms of	n (via Eq. (B.4.3)), determines the
eigenfrequencies of the beam.
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Convenient approximations, relevant for the case ε � 1, can be derived from
noting that in this regime, k+

n � 1, and, k+
n � k−

n . Applied to the characteristic
Eq. (B.4.6),

k+
n /k−

n ≈ 2 coth k+
n cot k−

n ≈ 2 cot k−
n ,

where the second approximation follows from, coth k+
n → 1, for k+

n ≈ 	n/	0 � 1
(and improving for higher order modes). Thus the approximate characteristic equa-
tion,

k−
n cot k−

n ≈ 2k+
n ,

holds. Since k+
n � 1, the solutions of this equation are well approximated by those

values of k−
n that make, cot k−

n , singular; i.e., k
−
n ≈ nπ , for n ∈ Z. Finally using

Eq. (B.4.3), the approximate eigenfrequencies are given by,

	n ≈ nπ	0

√
1 + (nπ)2ε. (B.4.7)

For themode functions, a similar approachmaybe followed, noting that for ε � 1,
sinh k+

n ≈ cosh k+
n � 1. Applying these crude estimates in Eq. (B.4.5), for the case

ζ < 1, gives the approximate mode function, fn(ζ ) := vn(0 ≤ ζ � 1
2 )|ε�1, viz.

fn(ζ ) ≈ k+
n sin k−

n ζ − k−
n sinh k+

n ζ

−k−
n sinh k+

n
− cosh k+

n ζ − cos k−
n ζ

cosh k+
n

∝ sin k−
n ζ − k−

n

k+
n
sinh k+

n ζ + k−
n

k+
n
tanh k+

n

(
cosh k+

n ζ − cos k−
n ζ
)

≈ sin k−
n ζ + k−

n

k+
n

(
cosh k+

n ζ − sinh k+
n ζ − cos k−

n ζ
)

= sin k−
n ζ + k−

n

k+
n

(
e−k+

n ζ − cos k−
n ζ
)

.

This approximate form indicates that the mode functions deviate slightly from the
sinusoidal modes of a tensile string, by a factor proportional to

√
ε, and the form of

the deviation is an exponential correction at the boundary. Indeed the mode function,
vn(ζ ), over the full domain can be approximated by the piecewise smooth function
(used, for example in [6]),

vn(ζ ) ≈
{
fn(ζ ), 0 ≤ ζ ≤ 1

2

(−1)n+1 fn(1 − ζ ), 1
2 < ζ ≤ 1

. (B.4.8)
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Appendix C
Response of an Imbalanced Interferometer

Following the discussion in Sect. 3.2.2, assume that the amplitude flux â(t) of a
coherent source of mean amplitude ā undergoes classical amplitude and phase fluc-
tuations, so that in the rotating frame (the ansatz in Eq. (3.2.6)),

ain(t) = (ā + δα(t))eiδφ(t), (C.1)

where δα(t) and δφ(t) are real-valued stochastic processes. Note that since we are
interested in classical noise in the amplitude δα(t) and in phase δφ(t), all vacuum
contributions will be ignored here.

FigureC.1 shows such a field passing through an interferometer. When the input
field is split at a beam splitter of transmissivity η1 at the input of the interferometer,
each arm is fed with the fields a1,in(t) and a2,in(t), given by,

a1,in(t) = √
η1 ain(t), a2,in(t) = i

√
1 − η1 ain(t). (C.2)

The first field propagates through a path containing a frequency-shifting element (for
example, AOM) implementing a radio frequency shift 	IF � 	det � ω
 (where
	det is the final detection span), while the other field propagates through a relative
delay (for example using a long path length) of duration τ . The two fields emerging
at the end of these paths are,

a1,out(t) = a1,in(t)e
−i	IF t , a2,out(t) = a2,in(t − τ). (C.3)

Finally, the beams are combined at a beam-splitter of transmissivity η2 and one of
the outputs,

aout(t) = √
η2 a1,out(t) + i

√
1 − η2 a2,out(t)

= √
η1η2 ain(t)e

−i	IF t −√(1 − η1)(1 − η2) ain(t − τ),
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Fig. C.1 Schematic of an imbalanced interferometer. An interferometer in Mach-Zehnder con-
figuration with a noisy input field that is possibly frequency-shifted in one of the arms, and phase
delayed in the other

is photodetected. The resulting photocurrent I (t) ∝ |aout(t)|2 is given by,

I (t) = η1η2 |ain(t)|2 + (1 − η1)(1 − η2) |ain(t − τ)|2
+ 2
√

η1η2(1 − η1)(1 − η2)Re a
∗
in(t − τ)ain(t)e

−i	IF t .

The last (interference) term describes fluctuations in the photocurrent,

δ I (t) := Re a∗
in(t − τ)ain(t)e

−i	IF t

= ā2
(
1 + δα(t − τ)

ā

)(
1 + δα(t)

ā

)
cos [δφ(t) − δφ(t − τ) − 	IFt] ,

that carry traces of the amplitude and phase fluctuations of the field at the input of
the interferometer. Introducing the cumulative relative amplitude fluctuations,

δA(t) := (δα(t) + δα(t − τ)) /ā, (C.4)

and the differential phase fluctuations,

δ�(t) := δφ(t) − δφ(t − τ), (C.5)

the photocurrent fluctuations can be approximated as,

δ I (t) ≈ (1 + δA(t)) cos [δ�(t) − 	IFt] . (C.6)

Henceforth, we assume that the amplitude (δα(t)) and phase (δφ(t)) fluctuations are
stationary gaussian processes with zero mean; a property that is inherited by δA(t),
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and, δ�(t). However, due to the nonlinear transformation relating the phase to the
photocurrent, the latter is not gaussian.

Despite this fact, useful information about the amplitude and phase fluctuations
can be garnered from the lowest order correlation function of the fluctuating pho-
tocurrent. Indeed, assuming that the amplitude and phase fluctuations are uncor-
related (see in Chap.7 footnote 4, on page 183), the two-time correlation of the
photocurrent fluctuations take the form,

〈δ I (t)δ I (0)〉 = ā2
〈(
1 + δA(t)

)(
1 + δA(0)

)
cos
[
δ�(t) − 	IFt

]
cos
[
δ�(0)

]〉

= ā2
(
1 + 〈δA(t)δA(0)〉

)(〈
cos[δ�(t)] cos[δ�(0)]〉 cos	IFt

+〈sin[δ�(t)] cos[δ�(0)]〉 sin	IFt
)
.

(C.7)
Using standard techniques,3 the expectation values of the product of the

cosine/sine phase terms can be shown to be equal, and given by,

〈cos[δ�(t)] cos[δ�(0)]〉 = 〈sin[δ�(t)] cos[δ�(0)]〉
= 1

2 + 1
2 exp

[− 〈δ�(t)δ�(0)〉 − 〈δ�(0)2
]〉. (C.8)

Finally using the Fourier representation of δ�, and then using its definition given in
Eq. (C.5),

〈δ�(t)δ�(0)〉 =
∫

d	 d	′

(2π)2
e−i	t

〈
δ�[	]δ�[	′]〉

=
∫

d	 d	′

(2π)2
e−i	t

〈
δφ[	](1 − ei	τ ) δφ[	′](1 − ei	

′τ )
〉

=
∫

d	 d	′

(2π)2
e−i	t (1 − ei	τ )(1 − ei	

′τ ) · 2π Sφφ[	] δ[	 − 	′]

= −4
∫

d	

2π
e−i	(t−τ) sin2

(
	τ

2

)
Sφφ[	];

(C.9)
thus, the two-time correlators in the exponent of Eq. (C.8) can be expressed in terms of
the spectrum of phase fluctuations. Similarly, the two-time correlator, 〈δA(t)δA(0)〉
in Eq. (C.7), can be expressed in terms of the spectrum of amplitude fluctuations,
viz.

3Re-writing the trigonometric functions as exponentials, multiplying them out, and then using the

identity
〈
exp[iδX (t)]

〉
= exp

[− 1
2 〈δX (t)δX (0)〉], on each exponential term; here δX denotes the

relevant random process.
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〈δA(t)δA(0)〉 =
∫

d	 d	′

(2π)2
e−i	t

〈
δA[	]δA[	′]〉

=
∫

d	 d	′

(2π)2
e−i	t

〈
δA[	](1 + ei	τ ) δA[	′](1 + ei	

′τ )
〉

= 4
∫

d	

2π
e−i	(t−τ) cos2

(
	τ

2

)
Sαα[	]
ā2

.

(C.10)

Inserting Eq. (C.9) in Eq. (C.8) and subsequently in Eq. (C.7), and inserting
Eq. (C.10) in Eq. (C.7), taking the limit where Sφφ � 1, and dropping irrelevant
constant factors, the photocurrent correlation takes the approximate form,

〈δ I (t)δ I (0)〉 ∝ sin
(
	IFt + π

4

) [
1 + 4

∫
d	

2π
e−i	(t−τ) cos2

(
	τ

2

)
Sαα[	]
ā2

+ 4
∫

d	

2π
e−i	(t−τ) sin2

(
	τ

2

)
Sφφ[	]

]
.

(C.11)
The (symmetrised) spectrum of photocurrent fluctuations recorded by a spectrum

analyser is the cosine transform of this quantity. Shifted by the heterodyne beat
frequency, the photocurrent spectrum is,

S̄I I [	 − 	IF] ∝ δ[	 − 	IF] + 2

π

(
cos2

(
	τ

2

)
S̄αα[	]
ā2

+ sin2
(

	τ

2

)
S̄φφ[	]

)
,

(C.12)
a result consistent with earlier treatments of phase fluctuations alone [1, 2].

Thus, an imbalanced interferometer transduces input phase and relative amplitude
fluctuations, onto the output photocurrent, depending on the time delay τ between
the two arms. Typically, by operating a laser far above threshold with a large photon
flux ā, the input relative intensity noise can be made arbitrarily small, so that an
imbalanced Mach-Zehnder interferometer can be used to measure input phase noise.

References

1. J.A. Armstrong, J. Opt. Soc. Am. 56, 1024 (1966)
2. P. Gallion, G. Debarge, IEEE J. Quant. Elec. 20, 343 (1984)


	Appendix A Uncertainty Inequalities
	Appendix B Miscellanea on Elastodynamics
	B.1 Principle of Least Action
	B.1.1 Equations of Motion
	B.1.2 Boundary Conditions
	B.2 Transverse and Longitudinal Elastic Waves
	B.3 Hermiticity of the Elastic Operator
	B.4 Eigensolution of the Doubly-Clamped Stressed Elastic Beam
	Appendix C Response of an Imbalanced Interferometer



