
Appendix A
phy++: A C++ Library for Numerical Analysis

A.1 Introduction

A.1.1 A Brief Overview

phy++ is a set of library and tools written in C++ that I developed duringmy PhD. The
goal is to provide user-friendly vector data manipulation, as offered in interpreted
languages like IDL,1 its open source clone GDL,2 or python & numpy,3 but with
the added benefit of C++: increased robustness, and optimal speed.

The library can be split into two components: the core library and the support
library. The core library introduces the vector type, which is at the heart of phy++,
while the support library provides functions and other tools to manipulate these
vectors and do some common tasks, ranging from low level mathematics and pro-
gramming (sorting, integrating, binning,…) to higher level astrophysics-related tasks
(such as cross-matching, stacking, SED fitting, …). You can think of the core library
as “the language” (the equivalent of IDL or python), and the support library as
“the function library” (the equivalent of the IDLastro,4 numpy or astropy5

libraries).
Below is an code sample written in phy++ that illustrates its most basic function-

alities.

1http://www.exelisvis.com/ProductsServices/IDL.aspx.
2http://gnudatalanguage.sourceforge.net/.
3http://www.numpy.org/.
4http://idlastro.gsfc.nasa.gov/.
5http://www.astropy.org/.

© Springer International Publishing AG 2016
C. Schreiber, A Statistical and Multi-wavelength Study of Star Formation
in Galaxies, Springer Theses, DOI 10.1007/978-3-319-44293-8

205

http://www.exelisvis.com/ProductsServices/IDL.aspx
http://gnudatalanguage.sourceforge.net/
http://www.numpy.org/
http://idlastro.gsfc.nasa.gov/
http://www.astropy.org/

206 Appendix A: phy++: A C++ Library for Numerical Analysis

A.1.2 Why Write Something New?

The immediate goal of phy++ is to provide a syntax as close as possible to that of
IDL. IDL is an interpreted language that is widely used in the scientific community,
in particular in astrophysics. Born in the late 1970s, this language provides intuitive
manipulation of large arrays of data using vectorized operations: applying an oper-
ation on a given array does not require the user to write a loop to iterate over its
elements and apply the operation. This leads to very concise code that easy to write
and read. Unfortunately, IDL suffers from a number of problems. I will start with
the political and ethical problems.

• It is a proprietary, mostly6 closed-source program. This means that IDL is a black
box and that people using it have no choice but to rely on the IDL developers for
writing accurate code. While there is an extensive documentation, the algorithms
used by the procedures are not always described. This is hardly acceptable for
scientific code.

• IDL, like C++, combines several languages into one: a functional language and an
object-oriented language. It also contains a huge support library providing many
features (having used IDL for more than two years, I could not list them all). For
this reason, and because it is proprietary, maintaining this language and adding
new features costs a lot of money to its owner, Exelis. This money, in turn, is
provided by science labs all around the world, who pay a yearly fee for a bunch
of IDL licenses. This is totally fine in itself, but the fact is that most IDL users I
have seen only make use of a small sub-set of IDL, one that has barely evolved in
twenty years. In this context, the price that is paid is not justified.

• On top of that, the licensing model is that of floating licenses: only a fixed, maxi-
mum number of simultaneously running IDL instance is allowed in the whole lab.
With the now common budget restrictions in research, labs typically buy fewer
licenses than there are users. Evenworse, it is often needed to runmultiple instances
of IDL on a single computer, e.g., when working on two projects simultaneously.
This will consume two licenses, even though there is a single user. This leads to
silly situations, typically when approaching specific deadlines (e.g., deadlines for
requesting observing time on large telescopes) where everyone needs to use IDL
at the same time, but there is not enough license available. Even worse, we have

6The procedures from the IDL library that are written in IDL language are actually open-source,
but all the procedures written in native language are compiled and only the binary is provided.

Appendix A: phy++: A C++ Library for Numerical Analysis 207

seen cases in our lab of users being unable to run IDL on their new shiny computer
because of incompatibility, not with IDL itself, but with the licensing software.
Lastly, it should be noted that this licensing model relies on having network con-
nection with a license server. This means that one cannot use IDL while traveling
unless a proper SSH tunneling is in place.

These issues can be solved by switching to one of the free and open-source alterna-
tives, like GDL. The downside is that these implementations are lacking behind IDL
in terms of features, as some useful functions are still to be implemented. Worse,
some functions cannot legally be implemented because they would violate IDL’s
copyright.

But that’s only half of the story. Indeed, IDL and GDL also suffer from technical
issues. I will list below the most important ones.

• Designed in the 1970s, IDL was born in an era where the available RAM was
scarce, and that great care had to be taken to consume as few bytes of memory as
possible. For this reason, the default integer type in IDL is a , i.e., it occupies
only two bytes in memory, while most languages (including some that are older
than IDL itself) encode their integers on four bytes by default. The biggest issue
with this choice is that the largest number one can store in a is . Being
the default integer type, this creates quite a few surprises to the unexperienced user,
and will fool even the expert from time to time.

• IDL is an interpreted language, meaning that the code you write is continuously
read and interpreted by the IDL executable. While this is not an issue if you
make good use of vectorization (the art of writing IDL code), performances are
severely degraded once you write loops explicitly, because the content of the loop
has to be interpreted and then executed on each iteration. And this is sometimes
unavoidable.

• Like many interpreted languages, IDL is dynamically typed. This means that the
type of a variable can change fromone line to another, and that a variable containing
a string can be assigned a number. While sometimes convenient, this comes at a
cost: performance. Most IDL programs I have seen do not use this feature, yet they
have to pay for it anyway.

• But worse than dynamic typing, and this is my main concern, variables in IDL
are not declared before they are used. This means that if you do a typo in the
name of one of your variables, chances are that the code will still run. Indeed,
IDL cannot know that this was not intended, and will think that you want to create
or modify a new variable. It will then do its best to carry on, and the result will
be unpredictable. This, together with the fact that variables are almost not scoped
(i.e., a variable created inside a loop is still valid outside of the loop) makes it
very easy to write confusing and buggy code. The most frightening part is that, in
a good fraction of the cases, the output will be meaningful, and you can go on with
your calculation never realizing that something went wrong. And publish that.

Avoiding the aforementioned issues is possible, but it requires coding with a fair
amount of rigorousness and self discipline. My limited experience with astronomers

208 Appendix A: phy++: A C++ Library for Numerical Analysis

taughtme that these are not particularly common character traits in the field, probably
because we are all self taught programmers, but also because most of the code we
write never goes out of our own computer and therefore does not get the chance to
be reviewed an corrected by someone else. My conclusion is that, when it comes
to checking the validity of a code, as much work as possible has to be done by the
language itself (or its compiler), e.g., by being designed so that some errors cannot
even be made, and that most of the remaining ones are identified before running the
program and reported to the programmer so that he/she can fix them.

Switching to more modern interpreted languages like python or Julia7 would
solve a few of these issues, in particular the first one. But the other items on this list
are unfortunately inherent to most interpreted languages.8 To avoid these traps, the
only solution today is to use statically typed, compiled languages, like C++.

Now, there are already some libraries in C++ that are addressing the topic of
vector data manipulation. One can cite Eigen9 or the more recent blaze-lib.10

These are powerful libraries that have inspired phy++ in some way, but their issue
is that they are more oriented toward algebra, meaning that they have vectors and
matrices, but no data type for arrays of higher dimensions (i.e., tensors11).

Therefore, seeing that a gap had to be filled, phy++ was created.

A.1.3 Why C++?

There aremanydifferent compiled languages that offer similar or better performances
thanC++. In particular, themost famousones areFortran andC.C is impractical to use
because it has not been developed with user-friendliness in mind, and no mechanism
exist to improve that. This is a system language, and it does that perfectly, but not
much more. Fortran is known as the fastest of all, and it is particularly well suited for
numerical analysis. While few languages are harder to read than Fortran 77, things
have becomemuch better since Fortran 90 (which is not used as often as it should be).
However, Fortran is relatively bad at doing anything else than numerical analysis,
which is annoying the moment you want to do something that is a bit off the tracks.
C++ on the other hand, with all its disadvantages, is probably the best fit thanks to
its almost unlimited capacity for adaptation. And it also happens to be the language
I am most familiar with.

Since the beginning, C++ has always been good at performances, first because
it is a language that compiles directly into assembler instructions, but also thanks
to its philosophy: “you only pay for what you ask for”. But its main disadvantage
is its complexity: it contains almost the whole C language, plus all the layers that

7http://julialang.org/.
8The best counter example is probably Java.
9http://eigen.tuxfamily.org.
10http://code.google.com/p/blaze-lib/.
11Eigen actually has a tensor module, but it is unsupported.

http://julialang.org/
http://eigen.tuxfamily.org
http://code.google.com/p/blaze-lib/

Appendix A: phy++: A C++ Library for Numerical Analysis 209

were added on top of it, one year after another, starting from classes, exceptions,
then templates. The end result is that it is a challenging task to master all the aspects
of this language.

But the good news is: you do not have to master all of C++, and for your sanity
you probably should not. Indeed, there are a number of sub-languagesmade out of a
subset of C++ that are completely self-sufficient, i.e. you can use them to write any
program. In other words, there are multiple, very different ways of writing the same
program in C++. Typically, modern programs only use a small fraction of the whole
language, e.g., leaving aside most of what was inherited from C (raw arrays, raw
pointers, explicit memory management, etc.). A special class of such sub-languages
are those that are tailored specifically to address a given task, as opposed to being
open to any purpose. These are called domain-specific languages (DSL), and only
require learning a few of C++’s rules and concepts, plus the rules introduced by
the sub-language itself. The phy++ library is an example of such domain-specific
languages, its domain being vector data manipulation.

In short, although C++ is a very complex language, it is only necessary to learn a
fraction of it to be able to use phy++ correctly. Of course, the more one knows about
C++, the more one will be able to take advantage of all the features of phy++ in an
optimal way.

A.1.4 Documentation

In this thesis, I do not include the library’s full documentation. I figured this would
be pointless for one major reason: the library, although fairly mature, is still being
conceived. New functions and features are added on a regular basis. Therefore, the
documentation is still very much unstable, and if I was to include it here, it would
become obsolete several months after the publication of this manuscript. Because it
currently consists of more than a hundred pages, I realized this would be a waste of
time and resources.

If you are interested, you can of course read the current, updated and full12 doc-
umentation online. It is available either in a web-oriented format13 or as a compiled
PDF document.14 I give in Fig.A.1 a screenshot and description of the web interface.

12Actually, at the time of writing this sentence, only half of the functions are documented.
13http://cschreib.github.io/phypp/doc/category_support_01_intro.html.
14http://github.com/cschreib/phypp/raw/master/doc/latex/phypp.pdf.

http://cschreib.github.io/phypp/doc/category_support_01_intro.html
http://github.com/cschreib/phypp/raw/master/doc/latex/phypp.pdf

210 Appendix A: phy++: A C++ Library for Numerical Analysis

Fig. A.1 Example web page in the online documentation of the phy++ library (http://cschreib.
github.io/phypp/doc/category_support_01_intro.html). Three main areas are highlighted on this
screenshot: a the categorymenu, where the functions of the library are grouped by themes and sub-
themes to ease the discovery of new functions; b the alphabeticalmenu, which lists all the functions
of the library by alphabetical order to allow quick access to the documentation of a known function;
and c the central panel where the documentation is displayed, giving the signature of the function
(i.e., what arguments it expects), a short descriptive text, and a code sample to illustrate the usage
of the function

A.2 Application: pixfit and gfit

Using the phy++ library, I have written most of the important codes involved in this
thesis, for example the EGG tool that I introduce in Chap.4. In this section I describe
two other codes that I have written at the end of my PhD.

http://cschreib.github.io/phypp/doc/category_support_01_intro.html
http://cschreib.github.io/phypp/doc/category_support_01_intro.html
http://dx.doi.org/10.1007/978-3-319-44293-8_4

Appendix A: phy++: A C++ Library for Numerical Analysis 211

Most of the galaxies that we detected with ALMA (see Chap. 6) should be rela-
tively bright in the Herschel SPIRE images. However, because of the poor angular
resolution, interpreting these images is challenging. To obtain more precise flux esti-
mations, I developed two programs,pixfit and gfit. These are still in the process
of being tested, and I did not have time to reach a stable solution at the time of writing
this manuscript. Still, I hope to be able to publish the codes in the near future. In the
following, I give a brief description of the philosophy behind this novel approach,
and postpone a more detailed assessment of the performances and robustness to a
future work.

Conventional tools used to extract FIR fluxes (like FASTPHOT, Béthermin et al.,
2010) perform point-source fitting at various pre-determined positions of the image
simultaneously using linear algebra, assuming that the noise of the image isGaussian.
If there is no strong overlap between two extracted objects (or, alternatively, if the
positions of the emitting sources are known perfectly), the resulting fluxes and error
estimates have been shown to be reliable (see, e.g., Wang et al. in prep.). However,
extracting fluxes in the highly confused SPIREmaps remains a challenge, since most
objects are blended. In Wang et al. (in prep.), the situation is improved by bringing
additional prior information on the expected fluxes of the faintest galaxies, but this
comes at a price: the output flux catalog becomes model dependent. Even then, the
number of SPIRE 500µm sources extracted in a typical Herschel deep field does
not exceed a hundred, compared to the thousands of MIPS 24µm detections that we
know are contributing, to some extent, to the observed 500µm emission.

The approach that I chose with these new tools is to think of the flux catalog as
only an intermediate product in the chain of data analysis: what we have in input is an
observed map, and what we want in output is a catalog of SFR, L IR, or Mdust. In fact,
the flux catalog is only a translation of the observed map into a format that is easier to
manage, but the issue is that this translation, as I argue above, is not unique. In most
cases, we do not know what fraction of a given 500µm flux should be attributed to
this or that galaxy, and building a flux catalog requires making assumptions (e.g.,
“the brightest galaxy at 24µm will be the brightest at 500µm”).

However, if we give up on the idea of building a conventional flux catalog, where
each galaxy has either its own flux or no flux at all, one can get rid of these assump-
tions. For example, the idea behind pixfit and gfit is the following: for galaxies
that are too close to one another on a given image (e.g., the SPIRE 500µm map),
I give up measuring their individual fluxes, and combine them into a single “flux
group”, for which I can measure the total flux accurately (e.g., with aperture pho-
tometry after subtracting the neighboring sources). In this case, “too close” can be
defined arbitrarily, for example by choosing a given fraction of the width of the PSF,

http://dx.doi.org/10.1007/978-3-319-44293-8_6

212 Appendix A: phy++: A C++ Library for Numerical Analysis

or a fraction of pixels on the rasterized image.15 The measured flux is then stored into
a separate list, and each galaxy that belongs to the group is linked to this measure-
ment. This first task of extracting the fluxes and making the flux groups is performed
by pixfit on each FIR image independently. In particular, this means that two
galaxies can be grouped in one image, where the angular resolution is poor, but not
in another, where the resolution is sharper. This is made in a fully automatic way, by
just specifying in input a list of prior positions, and defining the distance threshold
below which two sources must be grouped. An example is show in Fig.A.2.

The output of this procedure is very similar to a conventional flux catalog, since
each galaxy can have its individual flux extracted from each image, provided that
it was not grouped with any other galaxy. If this is not the case, then for each band
there is an additional column that indicates the ID of the flux group that contains the
flux of this galaxy, and a second catalog is built to store these flux groups. It contains
four columns: the group ID, a reference to the image this group was extracted from,
the extracted flux and the associated uncertainty.

The next step is to properly interpret this data. Standard SED fitting codes assume
that one has access to individual flux measurements in all bands, and these codes do
not know how to deal with the flux groups I introduced above. Some particular codes
can be given upper limits in case of a non-detection, but treating these in a statistically
correct way is not trivial, and requires non-linear fitting algorithms. Indeed, while
the likelihood associated to a measurement is a Gaussian, that associated to an upper
limit is an error function. Therefore, the contribution of an upper limit to the χ2 is:

χ2 = −1

2
log

[
1

2

(
1 + erf

(
limit − model

error
√
2

))]
, (A.1)

where limit is the estimated upper limit, model is the attempt at modeling the corre-
sponding flux, and error is the uncertainty on the upper limit.16 If a galaxy is grouped
in an image, the flux of the corresponding group can be used as an upper limit. As
written at the beginning of this section, not only is this suboptimal, but this approach
is also incorrect since each galaxy will be fitted independently. Indeed, while the
upper limit will ensure that no individual model goes above the flux present on the
map, there is no constrain on the sum of all the model fluxes: if the measured flux on

15Actually a similar approach is used in the extraction code of (Magnelli et al., 2009), where sources
that are distant by less than a pixel are not fitted individually. The main difference with the approach
I introduce here is that only one of their galaxies is kept in the prior list and arbitrarily “wins” all
the observed flux.
16This expression is numerically unstable for large deviations above the upper limit. Setting d ≡
(limit − model)/error , then for d < −3, this formula can be approximated with good accuracy
by d2 + 2 log(−2 d

√
π/2.0). Note the similarity with the regular formula for a Gaussian weight,

which is just d2.

Appendix A: phy++: A C++ Library for Numerical Analysis 213

Fig. A.2 Example
application of pixfit in
GOODS–South. In the top
row are the observed images.
From left to right: Spitzer 16
and 24µm, Herschel PACS
70, 100 and 160µm,
Herschel SPIRE 250, 350
and 500µm, and LABOCA
870µm. Each postage stamp
covers the same region of the
sky. The bottom row are the
same image after subtracting
the galaxies that have
individual flux
measurements, leaving only
the fluxes of the groups.
Each open circle, whether
green or red, is a prior
position used to extract the
fluxes. Green circles are
galaxies that have an
individual flux measurement,
while red circles show
galaxies that where grouped
with their neighbors for
being too closely packed. A
yellow contour indicates the
extent of the corresponding
flux group, and the area that
is used to perform aperture
photometry

214 Appendix A: phy++: A C++ Library for Numerical Analysis

the map is 20mJy, and we use this value as an upper limit for two galaxies that lie
in this region, then each galaxy can reach 20mJy individually, for a combined flux
of 40mJy that will clearly overshoot what is observed.

That is where the gfit tool comes in. This program understands the catalogs
produced by pixfit, and can perform SED fitting of multiple galaxies simulta-
neously. In particular, if two galaxies have some of their flux grouped, the program
will model these fluxes individually, sum them up, and compare the result to the
measured flux of the group in the χ2, like any regular measurement. The fit can then
be made using linear algebra, and is therefore very fast.

Thismain feature of performing simultaneous SEDfitting is a double-edged sword
though. The major downside is that if I have 100 templates in my SED library (e.g.,
corresponding to different values of Tdust), finding the optimal χ2 requires testing
each and every possible combination of templates for all the galaxies in the group, and
each additional galaxy increases the computation time by a factor of 100. Obviously,
this means that the problem can become computationally prohibitive. To avoid this,
I first sample the parameter space of the library with a coarse grid, say of only 10
templates. I locate the combination of SEDs that produces the best χ2, and refine the
grid around this region with 10 more templates. With this approach, the accuracy on
the best-fit parameters is unchanged, but the complexity drops from 100N to 2×10N .
Without a super computer, this can still be too much if the prior density is too large.
In practice though, I never had to fit more than 6 galaxies simultaneously in a given
group, although I have only applied this method to a handful of cases. This problem
can also be tackled with more sophisticated algorithms for global minimization, but
I have not investigated this path any further.

At present, both tools are written and are feature complete. I have tested them
on some of our ALMA detections, trying to better constrain their SEDs. The results
seemed reasonable, but these tools really have to be tested on simulated images
before any output can be trusted. I will do this later, when time permits.

Below is a excerpt from the code of pixfit, to illustrate how the phy++ library
looks like in a “real world” situation.

Appendix A: phy++: A C++ Library for Numerical Analysis 215

216 Appendix A: phy++: A C++ Library for Numerical Analysis

References

M. Béthermin, H. Dole, A. Beelen, H. Aussel, A&A 512, 78 (2010)
B. Magnelli, D. Elbaz, R.R. Chary et al., A&A 496, 57 (2009)

Index

A
Active galactic nucleus, 20, 38, 41
Aperture correction, 33
Atmospheric transmission, 15

B
Balmer break, 14
Baseline (interferometric), 169
Birth rate parameter, 6
Black body, 14
Black hole (supermassive), 20
Blue cloud, 24
Bulge (galactic), 21, 24

C
Cold dust, 39
Cold flow (gas), 31
Color diagram, 34, 40
Cosmic infrared background, 16, 47

D
Depletion timescale, 5
Diffraction, 15
Disk (galactic), 5, 10, 11, 24
Dust absorption, 13, 38
Dust grain, 13
Dwarf galaxy, 4

E
Elliptical galaxy, 21
Extinction curve (dust), 17

F
Feedback (AGN), 20, 70
Feedback (stellar), 19, 70

G
Gas fraction, 25

I
Infall (cosmological), 5, 20, 31
Initial mass function, 38, 39
Intergalactic medium, 5
Interstellar medium, 13, 31

L
Luminosity function, 30
Luminous infrared galaxy, 30
Lyman break, 14

M
Main Sequence (galaxies), 6, 23, 30
Median absolute deviation, 51
Merger, 70
Merger (major), 5, 30
Metallicity, 17

N
Neutron star, 61

P
Point spread function, 33
Polycyclic aromatic hydrocarbon, 30
Primary beam, 171

© Springer International Publishing AG 2016
C. Schreiber, A Statistical and Multi-wavelength Study of Star Formation
in Galaxies, Springer Theses, DOI 10.1007/978-3-319-44293-8

217

218 Index

Q
Quasi-stellar object, 20
Quenching (AGN), 20
Quenching (gravitational), 23
Quenching (halo), 23
Quenching (morphological), 21
Quenching (stellar), 19
Quiescent galaxy, 21, 39

R
Radiation pressure, 19
Radiative-mode (AGN), 20
Radio jet, 20
Radio-mode (AGN), 20
Red cloud, 24
Redshift (photometric), 37
Redshift (spectroscopic), 37

S
Scatter stacking, 51
Schechter function, 44
Source confusion, 15
Specific star formation rate, 6
Spectral energy distribution, 31
Spectral energy distribution fitting, 38
Spectral slope, 16, 24

Spiral arm, 5
Stacking (image), 18, 45
Star formation efficiency, 25
Star formation history, 4, 30, 38
Star formation rate, 4, 38
Starburst (galaxy), 10, 11, 31, 42
Starburstiness, 66
Stellar lifetime, 13, 61
Stellar mass, 5, 37
Stellar-mass completeness, 33, 42
Stellar remnants, 61
Stellar winds, 19

T
Tapering, 171
Thermal radiation, 13, 38
Tidal tails, 8
Toomre criterion, 8, 21

U
(u, v) plane, 169

W
White dwarf, 61

	Appendix A phy++: A C++ Library for Numerical Analysis
	A.1 Introduction
	A.1.1 A Brief Overview
	A.1.2 Why Write Something New?
	A.1.3 Why C++?
	A.1.4 Documentation
	A.2 Application: pixfit and gfit
	References

	Index

