Appendix A
Proof of Lemma 3.22

Keeping to the semisimple notation in use in Sect. 3.6, we recall that the radial
component of g € G is defined as the unique R(g) € at such that

g = keR@k’
for some k,k’ € K (Cartan decomposition in G, see [27, p. 402]). Let |X| =
p p

v/ (X, X) denote the norm on g, o the origin of G/ K and d(_, .) its distance function.
Lemma A.1. Forallg, g’ € G

[R(g) — R(g"| = d(g-0.8"-0).

Remark. This inequality is equivalent to d(a - 0,a’ - 0) < d(ka - 0;a’ - 0) for all
a,a’ €eexpat andk € K.
Proof. 'The classical decomposition G = (expp) K reduces the problem to the
case g = eX, g’ = X with X, X’ € p. We split the proof into two steps.
(i) |R(*) = RE¥)| = 1x = x']

Indeed, by Cartan decomposition in p we may write X = k-H, X' = k'-H’

for some k,k’ € K, H, H' € a*t and Proposition 5.18 in [28, p. 196] implies

[R(e¥) = R@¥)| = |H = H'| < [k H =k - H'| = |X = X.
(i) |X — X'| < dExpX.ExpX') = d(e¥ -0,eX - 0).

Indeed d(Exp X,Exp X’) is the length of the geodesic segment ' joining
both points. Let y be the corresponding curve segment in the chart Exp, joining

'T am indebted to Sigurdur Helgason for shortening my original proof of the lemma.
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178 A Proof of Lemma 3.22

X to X’ in p. Then (£ denoting length) |X — X’| < £(y) in the Euclidean
space p. Besides £(y) < £(I") by a general property, due to Elie Cartan, of the
exponential chart in a Riemannian manifold of negative curvature [27, p. 73].
Thus | X — X’| < £(T") and the proof is complete.

Remark. For G/K Cartan’s theorem is easily proved as follows. The point is to
show that [(Dx Exp) V| > |V| for X,V € p, with Dy Exp = D,t (e¥) o
(shad X/ ad X). By Cartan decomposition of X it suffices to consider X € a.
In the orthogonal decomposition p = a @ (Ba-0Py) the endomorphism (ad X )?
is then diagonal with respective eigenvalues 0, o(X)?, therefore shad X/ad X =
1+ > @dXx "/ (2n 4+ 1)! is diagonal with eigenvalues > 1 and the result
follows.

Proof of Lemma 3.22. We now explain how Lemma A.1 implies the estimate
R(e*e™) =tH + A(X) + O (e7"™)

ast — +oofor X € p, H € a™, with pu(H) := infoso ¢ (H).
First, replacing g by e’ g and g’ by e”” with H' € a™, the lemma gives

‘R(eH’g) —H'|<de"g-0,¢" - 0)=d(o,g-0). (A1)

Then let X = k(X)e?Xe*Xe be the Iwasawa decomposition for X € p, with
k(X) € K, A(X) € a, X, € g4, the sum ¥ running over all positive roots «. Fixing
H € a™ and remembering [H, X,,] = a(H )X, we obtain

eXet = k(X)eMTAX) VO with V(1) := Ze‘t“(H)Xa €n.

a>0

Since a(H) > 0 for all positive roots a, we have tH+A(X) € a™ for ¢ large enough
(uniformly for X in a compact subset of p) and (A.1) applies to R (e’H HAX Y )) =
R (eXe™):

|R (eXe™) —tH — A(X)| < d(0.e""-0).

The latter distance can be evaluated by means of the decomposition G = (expp)K.
Forgetting ¢ for the moment let us write e* = e"®k(s) with W(s) € p and k(s) €
K, smooth functions of s € R, hence e2"®) = Ve and d(0,e" -0) = |W(1)|.
Disregarding a trivial case we assume V' # 0. For the s-derivative W’ we obtain,
with w = ad W(s),

1— 6_2W

5 QW = (e = 1)V +(V —6V).
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Since (1 — e_2W) /2w = e "(shw)/w is, for W € p, an invertible endomorphism
of p it follows that 2W’' = V — 8V + [W,---] and, by scalar product with W,

2(W(s), W/(s)) = (W(s),V =0V),
hence f'(s) < |V —0V|/f(s) with f(s) = |W(s)|2. To integrate this, observe

that £(0) = 0 and f(s) > O for s # 0 because W(s) = 0 implies ¢’ = ¢*?" ¢
N NON = {e} hence s = 0. Thus \/ f(s) < 5|V —6V|and

d(o,e” -0) =+ f(1) < %|V—9V|.

For V = V() defined above we have |V — V| < Ce ™) with u(H) =
inf~o(H) > 0 and a constant C uniform for all X in a compact subset of p.
This completes the proof of Lemma 3.22. W



Appendix B
Proof of Theorem 3.23

Here G/K is a rank one Riemannian symmetric space of the noncompact type
and we use the notation of Sect. 3.7. As explained in the outline (Sect. 3.7.1) our
main task is to make explicit the kernels a, b in the integral formulas (Lemmas B.2
and B.5 below)

x+y

/K o (I + k - yH]) dk = /| a9 ds B.1)
x—y
x+y

/K o (1Z(cH. k - yE) ) dk = /| by B2)
x—y

where ¢ is a continuous function on [0,00[, H € a with ¢(H) = 1, |H| =
and x, y > 0. As usual the Haar measure dk over K is normalized by f % dk = 1.
After identification of a = RH with R the orthogonal projection 7 : p — ais
w(X) = X - H (the dot denotes here the scalar product on p corresponding to the
norm ||.|| in (3.44)).

Lemma B.1. Let f be a continuous function on [—1, 1]. Then

/f(?t(k H))dk— n 1 l / f(t) (n 3)/2dt.
2

Proof. The map k — k - H = Ad(k)H induces a diffeomorphism of K /M onto
the unit sphere ¥ of p. The classical spherical measure do on X is invariant under
all isometries preserving the origin of p, therefore under the adjoint action of K, and

do corresponds to a K -invariant measure on K /M : there exists a positive constant
C such that

/ FGr(k - HY)dk = / Fu(k - HY)d(M) = C / Fndo(X).
K K/M )
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182 B Proof of Theorem 3.23

Here X = (xi,..., x,) are coordinates with respect to an orthonormal basis of p,
with H as the first basis vector. Given ¢t € [—1, 1] the intersection of ¥ with the
hyperplane x; = ¢ is (forn > 3) a (n — 2)-dimensional sphere with radius ~/1 — ¢2
and it follows that (with another constant C’)

(n—=3)/2

/ f(k - H)) dk = c//1 f(o)(1-1¢%) dr,
K —1

which remains valid for n = 2 too. Taking ' = 1 we obtain the value of C’ and the
lemma. W

Lemma B.2. Given x,y > 0 let ¢ be continuous on [|x — y|, x + y]. Then, for all
rank one spaces,

x+y
/ @ (|xH + k - yH|)) dk:/ 0(alx, y,2) dz
K lx—y|
with
L (") T (3)
% Z((x +y+0x+y—2d(x—y+)(—x+y+ z))("_3)/2
(xy)"—2

a(x,y,z) =

One hasa(x,y,z) >0forx,y >0and|x —y|<z<x+y.

Proof. Since ||xH + k - yH|* = x* 4+ y? 4 2xyn(k - H), this follows from the
previous lemma with f(¢) = ¢ ( x24+y2+ 2xyt) and the change of variable
t>z=x2+y2+2xyt. W

Remark. A similar proof would give John’s formula for the iterated spherical means
(see [29, p. 356]), where the same factor a(x, y, z) appears.

Lemma B.1 turns out to imply (B.2) too in the simple case of real hyperbolic
spaces, as follows.

Lemma B.3. Given x,y > 0 let ¢ be continuous on [|x — y|,x + y]. Then, for
H"(R),

x+y

/K o (1 ZGH. k - yH) ) dk = /| Py d:
x—y

with

230 (%) (chx chychz)"™¥/?

(%) T(5)  (hxshy)™

b(x,y,2) = shz BO—3/2
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and

1
~ chxchychz

« sh xX+y+z <h xX+y-—z <h X—=y+z <h —xX+y+z
2 2 2 2
Proof. Here H"(R) = G/K with G = SOy(n, 1), K = SO(n) x {1}, and p is the
set of matrices

000y

y=|000
00 0y,

Yo yn 0

identified with Y = (y1,...,y,) € R” for short. We take the unit vector H =
(1,0,...,0) as a basis of a. The adjoint action of K on p is the natural action of
SO(n) on R". Since

h hy—1
=1+ 22y 4 S y2 Y2
y

with y = [[Y || = (X0 y2)"/?, the equality eZ K = e*¢? K implies (looking at the
element in the last row and column) chz = chxchy + sthhTyylwith z=|Z],

hence z € [|x — y|,x + y]. Taking Y = k - yH with y € R and k € K we see that
7= ||Z(xH, k - yH)|| is given by

chz=chxchy +n(k-H)shxshy.
Then, by Lemma B.1,

T3 ! _\=3)2
/qu(z)dk— —F(” () /—1 f(o) (1=1?) dt

2

if o and f are related by ¢(z) = f(¢) and chz = chx ch y +¢ sh x sh y. Expressing
the latter integral with the variable z, the result now follows since

4chx chychz

1-1*=
sh® x sh? y

B(x,y,2).
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Our goal is now to prove Lemma B.5, giving (B.2) for the other hyperbolic
spaces, by the classical technique of reduction to SU(2, 1) [27, Chap.IX, §3]. Let
V e g,and W € gy be fixed, with V| = ||W]| = +/2. The next lemma
reduces integration of M -bi-invariant functions on K to a 2-dimensional integral;
for a similar lemma with different coordinates see Orloff [39, p. 588]. Let us recall
that dimG/K = n = p 4+ ¢q + 1 with p = dimg—,, ¢ = dimg_,, and let
g = k(g)e"®n(g) denote the Iwasawa decomposition of g € G.

Lemma B.4. Let k(r,w) := k(n) be the K-component of n = exp(vV + wW)
€ N = 0N, wherev > 0, w > 0 are related to (r, w) by

. 2
l4re®=— =
tre 14+v2—2iw

Then, for any continuous function f on K such that f(mkm') = f(k) form,m’' €
M andk € K,

(i) if ¢ > 1 (quaternionic and exceptional hyperbolic spaces)

/K f(k) dk

_oar(y) L . -
—F(%)F(%)F(%)/O(l ro)\P rqdr/o F(k(r,w))sin?™' o dw

(ii) if g = 1 (complex hyperbolic spaces)

1 T
/K f(k)dk:% /0 (1 — 2@ gy i flk(r,w))dw.

Proof. (i) The M -invariance of f implies

K N

by a classical integral formula valid for arbitrary rank ([28] p. 198), if
the Haar measure d7 is suitably normalized. In the rank one case N =
exp (g—a D g—2¢); if ¢ > 1 we may use polar coordinates (v, o) in g—,, resp.
(w, T) in g_p,, and obtain

/K f(k)dk

=C / f(k(exp(vo + wr)))e 2=pHexpotwol> =101 gy gw do d t
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(it)

where C is a constant, v, w run over |0, oo[ and o, T over the unit spheres Sy, S»
of g_y, g—2¢ With measures do, d . By a theorem of Kostant [60, p. 265] Ad M
acts transitively on S; x S, if ¢ > 1 so that, in view of |V || = |[W || = +/2, we
have vo +wt =m - (%V + %W) for some m € M. But M commutes with
A and normalizes N, therefore

k(mam™") = mk(@ym™" , Hmam™") = H(7)

form e M,7 € N and, by the M -invariance of f,

/K f(k)dk

=C’ / fk(exp(VV + wW)))e 2= HEpOVIWW)>,p=1ya=1 gy gy
(B.3)

an integral over v > 0, w > 0 with another constant C’.

The relation (1 + re ‘”) (1 +1?2 — 2iw) = 2 defines a change of variables
(v,w) — (r,w) (which will be convenient to prove the next lemma), a
diffeomorphism of 0, co[x]0, co[ onto 0, 1[x]0, x| inverted by

1—r2 172 Frsinw
V= W= )
14+ 2rcosw + r? 14+ 2rcosw + r?
Besides
vdvdw = (1 + 2rcosw + rz)_zrdrdw.

As usual let 6 denote the Cartan involution of g. To compute the Iwasawa
decomposition of 7 = exp(vV + wW) it suffices to work in the Lie subalgebra
of g generated by V, W, 6V and W, a method known as SU(2,1)-
reduction since this subalgebra corresponds to a Lie subgroup of G isomorphic
to SU(2,1). By [27, Chap.IX, Theorem 3.8] we have (remembering our
choice (3.44) of the norm and || V|| = |W| = v/2)

e 2<PH(D> _ ((1 i v2)2 n 4W2)—(p/2)—q

= 27772 (14 2rcosw + rz)(p/2)+q

and the integral formula follows, with C’ given by the case f = I.

For ¢ = 1 the group Ad M acts transitively on the unit sphere of g_, by
Kostant’s theorem and trivially on g_,,. The integral (B.3) now runs over
v > 0 and w € R and the change (v,w) +— (r,w) is a diffeomorphism of
(10, oo[xR) \ ([1, oo[x {0}) onto ]O, 1[x] — 7, [. The result follows as above.
|
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Lemma B.5. Given x,y > 0 let ¢ be continuous on [|x — y|, x + y]. Then, for all
rank one spaces,

x+y
[ otzatt i smhae= [ p@per.y.ad
K [x=yl
with
2n=30 (4 chxchychz)?/?~!
b(x,y,z) — — (2)1 ( y Z)n_2
P (*35)T(3) (shxshy)
—1
x shz(chz)? B"=3/2 , F (1 g, ;1, HT; B)
and
_ 1
~ chxchychz

% sh xty+z sh Y+ry-—z sh X—y+z sh Xty+z
2 2 2 2

One hasb(x,y,z) >0forx,y >0and |x —y| <z<x+ y.

Proof. For ¢ = 0 the hypergeometric factor is 1 and the result is given by
Lemma B.3, wheren = p + 1.

We shall prove the lemma for ¢ > 1; the case ¢ = 1 is similar with minor
changes.

(i) Since the function k — z = ||Z(xH, k - yH)|| is M -bi-invariant we only need
to compute it, by the previous lemma, for k = k(r, ). In order to find z > 0
such that

eMk(r,w)e™ = k'e k"

for some k', k" € K, we use SU(2, 1)-reduction again. By [27, Chap. IX,
Theorem 3.1] the Lie subalgebra of g generated by V', W, 8V and 6W contains
H and is isomorphic to su(2, 1). Under this isomorphism H, V, W respectively
correspond to

001 010 i 01
Ho=1000),.%=|-10-1] ., W= 000
100 0-10 —i 0 —i

All computations can now be performed in SU(2, 1) with the maximal compact
subgroup S(U(2) x U(1)); we use subscripts 0 for all notions relative to this
group. Let 71y = koe'™°n be the Iwasawa decomposition of
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(it)

l—é—i—iwv —%—i—iw
ny = exp (WWo + wWy) = —y 1 —v ,
%—iw —vl—}—%—iw
with
ab 0 ab
kh=|cd 0 ,( )EU(Z),ad—bc:u,|u|=l.
4 cd
00u

Applying 71y to the (column) vector v = (1,0, 1) it is easily checked, since
Hyv = vand nyv = v, that

1= V2 4 2iw
T 12— 2iw

au = re'®

with (1 + re'®) (1 +1? — 2iw) = 2 as in the previous lemma.
Besides, a look at the matrix element on third column and third row of
eMokgeo = kje?ok] gives (with u’, u” corresponding to k), k{/)

u'"'u""'chz =chxchy +aushxshy.

Setting e’V := wu/~'u’~' we conclude, first in SU(2,1) then in G, that
ek (r,w)e™ = k'e? k" implies

e'Vchz=chxchy+re®shxshy (B.4)

for some ¥ € R.

Keeping x, y > 0 fixed let us look at the map (r, w) + (z, V) defined by (B.4),
with0 <r < 1,0 <w <mwandz > 0, —7r < ¢ < m. Taking the imaginary
part we have

chzsiny = rsinwshxshy, (B.5)

thus sinyy > 0 and 0 < ¥ < m. Taking the modulus, ch(x — y) < chz <
ch(x 4+ y), thus |x — y| < z < x + y. With B defined in the lemma it is readily
checked that

_ (ch(x + y) —chz)(chz —ch(x — y))
N 4chxchychz

B (B.6)

h? h? h?z—1
1—2B=C X +ch"y +ch™z 7 (B.7)
2chxchychz
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thus 0 < B < 1/2. Furthermore (B.4) implies |¢/¥ chz — chxchy|> =
r?sh? x sh? y, that is

2chxchychz (cosy — 1 +2B) = (1 —r?)sh’xsh? y. (B.8)

Therefore cosyy > 1 — 2B > 0 and we conclude that (r,®w) — (z,v¥) is a
diffeomorphism of 0, 1{x]0, 7| onto the open set defined by

x—y|<z<x+y,0<y¢¥ <7/2,cosy >1—2B(x,y,2).

By Lemma B.4 the integral I = [ ¢ (|| Z(xH, k - yH)||) dk is
T
I=C / o)1 — )P rsinw)! ™ rdrdw
0

with z = z(r,w) given by (B4) and C by the previous lemma.
Using (B.5), (B.8) and shzchz dzdy = sh’xsh’y rdrdo the integral
becomes

(2chx chy)®/2-!
(sh x sh y)n—2

x /¢(Z)(Chz)(p/2)_l+q Shzdz/ (cosy — 1 +2B) P27 siny)~ ! dy.

Considering the domain of i for a given z it is now natural to introduce a
variable ¢, running over ]0, 1[, such that

cosy =1 —2¢B.

Then sin® ¥ = 4¢B(1 — tB) and the integral with respect to i becomes

1
2(P/2+=2 gn=3)/2 / (42=1(] — (/D=1 (1 — g/l g
0
— 2(p/2DHq- 2F(p/2)F(q/2)B(n —3)/2 R (11— q,q’n—l;B
L((n—-1)/2) 2°2° 2

by Euler’s integral representation of the hypergeometric function. Since 0 <
B < 1/2 the left-hand side is strictly positive. This implies the lemma, with
b(x,y,z) >0for|x—y|<z<x+y. R

Remarks. (a) Similar computations appear in the study of generalized translation

operators by Flensted-Jensen and Koornwinder ([22], or [34] §7.1) in the more
general framework of Jacobi functions.
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(b) The easy Lemma B.2 may be viewed as a flat limit of Lemma B.5. Indeed on the
left-hand side of the integral formula e~! Z(eX,eY) tends to X + Y as & tends
to 0 whereas, replacing x, y, z by €Xx, €y, ez respectively in the right-hand side,
B tends to 0, the hypergeometric factor to 1 and eb(ex, €y, €7) to a(x, y, z).

Proof of Theorem 3.23. We now combine Lemmas B.2 and B.5. The function

b _ chz \?? o(2) n—1
Z(x’y’Z)_(chxchy) (a(x)o(y))"_ZZFl(l_ "2 ’B)

x+y+z x+y-—z x—y+z —x+y+z\\"?
e K (e o g
2 2 2 2

(where o () = sht/t and B is defined in the previous lemma) is continuous on the
set of (x,y.z) € R*such that |[x —y| <z < x+ y.Indeed 0 < B < 1/2in
this domain by (B.6), (B.7), and the hypergeometric factor is continuous. Taking ¢
continuous on [|x — y|, x 4+ y] we may therefore replace ¢(z) by ¢(z)(b/a)(x, y,2)
in Lemma B.2, whence

)

SIS
SIS

x+y

b
/ o (1ZGH. k - yH) ) dk = / 02 (.. Dalx, v, 2)dz
K a

lx—yl

b
= [ ot e 3HID) 2 ey + sk

Our claim follows, as explained in the outline (Sect. 3.7.1), with

[(X)j(Y)b
e(x.v) = ZEIC2 X101 + 7).

We now specialize to j = J'/2. In the rank one case any X € p may be written as
X =k -xH withx > 0,k € K. Since e(xH) = x = || X|| the Jacobian of Exp is

J(X) = J(xH) = (Sth)p (Sl;ix)q — o(x)"" (chx)? .

For j = J'/2 we thus obtain

n—1
2

e(X.,Y) = A(x, y, 2" % ,F (1 — %

YIS

;B(x,y, Z))

as claimed, with x = || X,y = |Y|,z = ||[X + Y. Clearly e(k - X,k - Y) =
e(X,Y)fork € K.

Besides, A and B are analytic functions of (x,y,z) € R3, even with
respect to each variable, therefore define analytic functions of (xz, yz, zz). Thus
A(XN Y, 1X + YY) is an analytic function of (X,Y) € p x p and the
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same holds for B. Since |[x — y| < z < x + y for the chosen values we have
0 < B(x,y,z) < 1/2, which implies analyticity of the hypergeometric factor too.
The theorem now follows from Proposition 3.16. W
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