
A
Von Staudt and his Influence

A.1 Von Staudt

The fundamental criticism of the work of Chasles and Möbius is that in it cross-
ratio is defined as a product of two ratios, and so as an expression involving
four lengths. This makes projective geometry, in their formulation, dependent
on Euclidean geometry, and yet projective geometry is claimed to be more
fundamental, because it does not involve the concept of distance at all. The
way out of this apparent contradiction was pioneered by von Staudt, taken up
by Felix Klein, and gradually made its way into the mainstream, culminating
in the axiomatic treatments of projective geometry between 1890 and 1914.

That a contradiction was perceived is apparent from remarks Klein quotes
in his Zur Nicht-Euklidische Geometrie [136] from Cayley and Ball.1 Thus,
from Cayley: “It must however be admitted that, in applying this theory of
v. Staudt’s to the theory of distance, there is at least the appearance of arguing
in a circle.” And from Ball: “In that theory [the non-Euclidean geometry] it
seems as if we try to replace our ordinary notion of distance between two points
by the logarithm of a certain anharmonic ratio. But this ratio itself involves the
notion of distance measured in the ordinary way. How then can we supersede
the old notion of distance by the non-Euclidean one, inasmuch as the very
definition of the latter involves the former?”

The way forward was to define projective concepts entirely independently
of Euclidean geometry. The way this was done was inevitably confused at first,
1 In Klein, Gesammelte mathematische Werke, I [135, pp. 353–383], the quotations

are on p. 354.
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because it is a complicated process. An investigator has to decide what can
be assumed, and what indeed is to be proved. Initially, the understanding
was that the subject matter was that of real projective geometry in two and
three dimensions – ideas about complex projective geometry were not at all
those one would expect today. Then one has to decide how coordinates enter
the picture: are they given in advance or to be derived from some logically
antecedent structure? How are constructions related to transformations? What
projective transformations are there? Two ideas in particular were to cause
problems. One was continuity, the other the connection between coordinates
and transformations. If the coordinates are to be real numbers, recall that
Dedekind’s rigorous ideas about them were published only in 1872, and if the
transformations are to form a group, note that Jordan’s major book on group
theory came out only in 1870.

A.1.1 Von Staudt’s Geometrie der Lage

The first mathematician to advance the study of projective geometry in its
own right, independent of metrical considerations, was Karl Georg Christian
von Staudt, who lived a quiet life working in the small university of Erlangen.
It was a backwater, with few students, and his two major books crept almost
unobserved onto the shelves, where they remained until after his death in 1867
and it became gradually clear that he had gone a long way to solve the problem
of giving independent foundations to real projective geometry. Among the first
to rescue him from obscurity was the young Felix Klein, at the time a student
at Berlin, who was alerted by his friend Otto Stolz to the significance of von
Staudt’s work for questions he was interested in.

Von Staudt’s first book, his Geometrie der Lage [225], is based on the idea
that there are entities called points, lines and planes. Lines in the same plane
may meet or be parallel – the presence of parallelism in his geometry is a
complication that Klein was later to show can be written out of the theory.
So one might say that von Staudt took over from Euclid all and only the non-
metrical concepts of the Elements. He began by observing that if three points
lie on a line then one is between the other two, and that if four points lie
on a line then they form two separated pairs. Both statements are reasonable
because he had not yet introduced points “at infinity”. He noted that there is
a unique line joining any two points. He could now define points at infinity in
terms of a pencil of parallel lines in a plane, and he showed how to extend his
earlier ideas to the new setting. He invoked the idea of figures in perspective
as a typical transformation of figures, noting that a pencil of lines through a
point can correspond to a pencil of parallel lines.
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Now he introduced the idea of a reciprocity (his word) or duality between
points and planes in space. Quite generally von Staudt preferred to work on
the geometry of three dimensions, deducing results about plane geometry as
a consequence. So he stated his version of Desargues’ theorem as a theorem
about figures in two different planes, and used it to show [225, ch. 8] that given
three distinct points on a line there is a point which is the fourth harmonic
point with respect to these three, and moreover it is unique. Such a set of four
points he called a harmonic set of points, and he showed that a harmonic set
of points is mapped to another harmonic set of points by a perspectivity.

Von Staudt then introduced projective transformations, which Möbius and
some later writers called collineations, as those 1–1 maps which send lines to
lines (and, in three dimensions, planes to planes) and send sets of four harmonic
points to sets of four harmonic points. A reciprocity may also be a projective
transformation, if it sends a harmonic set of points to a harmonic set of planes
(with the obvious definition). He showed by exhibiting a suitable sequence of
perspectivities that any three distinct collinear points may be mapped to any
three distinct collinear points by a collineation. Next he produced a peculiar
argument [225, §106], much criticised by later writers, in support of the claim
that a map sending three points on a line to three points on the same line
extends to a map of the whole line. He argued that the claim is trivial if the
point A is mapped to the point A′, the point B to the point B′, and the whole
segment between A and B to the whole segment between A′ and B′, because
then every point outside the segment is the harmonic conjugate of a point
inside the segment and the map extends in an obvious way. If on the other
hand the segment AB is not mapped in this fashion, then, he said, exactly one
of the interior and the exterior of AB contains a point that is mapped to itself,
but, by the theorem on the fourth harmonic point, this leads to a contradiction
(the details are perforce omitted here). Klein was to argue that this requires a
discussion of continuity.

Subsequent generations of mathematicians and historians of mathematics
have been most impressed by von Staudt’s insistence on duality. Von Staudt
insisted on speaking of a figure and its dual simultaneously. For him, a duality
(which he called a correlation) was a 1–1 correspondence between points and
lines in a plane which sends harmonic sets of points to harmonic sets of lines and
vice versa. Such a transformation he called a polarity. For example, one might
have a self-polar triangle in which, for each vertex, the line that corresponds
to a vertex of the triangle is the corresponding side of the triangle. Given a
polarity, it might be that a point P lies on the line � to which it corresponds.
This led von Staudt to his remarkable definition of a conic section as a locus
of points each of which lies on its corresponding line. Indeed, for von Staudt,
a conic was both its locus as a set of points and the corresponding dual locus
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of lines (such a conic, as he noted, may well be an empty set, and here is an
example: x2+y2+z2 = 0). Möbius had noted that in a space of even dimension
the self-dual figures are conics, but in spaces of odd dimension there are self-
dual figures that are not conics – the so-called null systems – and von Staudt
did the same.

The upshot of all this work is that von Staudt showed in his Geometrie der
Lage [225] that the familiar, real projective geometry can be built up from the
non-metrical concepts of Euclidean geometry – or rather, and more precisely,
he had mapped out a way in which that might be done. However, many details
remained to be established properly.

He showed how one could as it were measure the cross-ratio of four points
(at least if they lie in a chain) by moving three of them into a standard position
and noting the coordinate of the fourth point. This shows that cross-ratios may
be used as lengths are in Euclidean geometry to give necessary and sufficient
conditions for one set of four points to be equivalent to another.2

He then showed how one could iterate the construction of the fourth har-
monic point, to obtain what he called a chain of harmonic points on a line, and
to obtain a Möbius net from any four coplanar points (no three on a line). The
Möbius net permits the introduction of coordinates which are rational multi-
ples of an arbitrary constant. He then assumed without discussion that a map
from a Möbius net in one plane onto a Möbius net in another plane extended
to a unique map of the one plane onto the other.

The difficulties with this work all lie beneath the surface. Some may even
strike the reader as artificial, and so they are if the aim is to establish real
projective geometry on its own terms, as von Staudt’s was. But artificial or
not, the incidence axioms for plane projective geometry say things like this:
through any two distinct points there passes exactly one line; any two distinct
lines meet in exactly one point. They do not say that there are infinitely many
points on a line, or infinitely many lines through a point. They do not, for
example, guarantee that there are even four points on a line, and if there were
to be only three then the whole construction of the fourth harmonic point
would of course fail. (As we saw when discussing Fano’s work, see page 264,
it is entirely possible to have a projective geometry with only three points on
each line, so there is something to do here.) Understandably, on occasions like
this, von Staudt assumed things that eventually later mathematicians felt the
need to prove, or to dispatch with an axiom. The same is true of Desargues’
theorem. Von Staudt was operating in a context, not all of which he explicitly
recognised, which permitted him to prove Desargues’ theorem in the plane. We
shall return to this point later.

2 See also the discussion in Part II of the Beiträge [226] on sums, products, and
powers of transformations.
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A.1.2 Klein’s response to von Staudt

It is rather more understandable that von Staudt would slip into imprecision
over the passage from Möbius nets in the projective plane to collineations of
the whole projective plane. Given a proper set of definitions, it is elementary
to show that a continuous function defined on a dense set of points on the
line extends to a continuous map on the closure of the dense set, but none of
that body of theory was available to von Staudt, and even a rigorous definition
of the real numbers had still to be given. Klein saw early on that it was not
only possible to develop von Staudt’s ideas without introducing the idea of
parallel lines, but it was advisable to do so, because this opened the way to
connections between non-Euclidean geometry and projective geometry. He was
also of the opinion that something had to be done to establish the claim that
the projective map sending three given distinct collinear points to three given
distinct collinear points is unique (there is no problem, he agreed, in establishing
its existence). Von Staudt had also shown that the sequence of fourth harmonic
points established by a triple of points cannot suddenly stop (by closing up).
But he did not show that it necessarily had points in every interval in the
line. Klein therefore proposed in his article of 1973 [129] to insist that it did,
whereupon Lüroth and Zeuthen wrote to him to say that his some of his worries
were unnecessary.

Klein replied in an article of 1874 [131]. He accepted Zeuthen’s argument
completely, even quoting it in his paper word for word in the original French.
Zeuthen took four harmonic points A, B, C, D, where A and B separate C

and D, and supposed there was a maximal segment FG on the line which the
succession of fourth harmonic points obtained from A, B and C never entered.
So if F is not a point of this interval, it is a limit of points in a chain of fourth
harmonic points. He now argued by contradiction, as follows.

Let H be the fourth harmonic point of the points A, F and G, and let J

be the point such that A and G harmonically separate F and J . Let B be a
point of the chain suitably close to F and let K be the point such that A and
H harmonically separate B and K. It is possible to chose B so that K is in the
segment GJ and so close to G that KJ contains a point of the chain. Call this
point C. Let L be the point such that A and L harmonically separate B and J ,
so L will be in HG. Now let D be the point such that A and D harmonically
separate B and C. The point D lies not only in the segment HL but also in
the segment FG, thus establishing the requisite contradiction.

This shows that a harmonic chain is a dense set of points on a projective
line. Does it follow that a projective map defined on such a set extends to a
unique map on the remaining points? Klein was now able to say that whatever
it meant for a set of points on a line to be “continuous”, the same applied to
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points on a projective line, because the matter had recently been clarified by
Heine, Cantor and Dedekind. Since we now apply the adjective “continuous” to
functions rather than sets of points, we must interpret this as concerning sets of
points which are connected. But even so, he said, the answer was self-evidently
“no”, just as it was clear there was no way a function defined on the rational
numbers could be extended to a continuous function on the whole real line. It
was necessary, he insisted, to add to von Staudt’s definition of a collineation
that it be continuous.

There the matter rested until 1880, when Darboux wrote to Klein (who
promptly published the relevant part of the letter in Mathematische Annalen,
a journal he now edited) [133]. Darboux said that while everyone had agreed
with Klein, the only flaw in von Staudt’s original presentation was with the
method of proof, not the claim itself. In other words, collineations as defined
by von Staudt were automatically continuous. Darboux’s argument was very
elegant. It was required to show that a map φ which maps three points to
themselves is the identity map on all points. First, he said, suppose we are
allowed metrical arguments. Then a simple argument from the information
that φ(0) = 0, φ(1) = 1 and φ(∞) = ∞ shows that φ satisfies the functional
equation φ(x) + φ(y) = φ(x + y). (There is no problem with the use of ∞,
which merely simplifies the formulae.) Now, he said, this conclusion on its own
would not show that φ(x) = x and therefore is continuous, as Cauchy had been
the first to notice. But the conclusion would follow if φ satisfied some extra
conditions, and in fact the functional equation had been derived without using
all the properties of φ. A little more work showed that φ(x) was positive when
x was positive, and this was enough to rule out pathological behaviour and
show that indeed the function φ was continuous.

He then gave a non-metrical argument to the same conclusion, which in-
voked Zeuthen’s result discussed above, and for good measure showed that
some other theorems of a similar kind are true without the need for assump-
tions of continuity. For example, Möbius had shown that a continuous map of
the plane sending circles to circles is an inversion or a sequence of inversions,
but the assumption that the map be continuous was unnecessary.

The proof of Desargues’ theorem that von Staudt offered also worried Klein.
He noted that it was essentially an incidence proof, in which the key ingredients
were that two “points” lie on a unique “line”, two “planes” meet in a “line”,
and so forth, where the quotation marks are to indicate that it is the incidence
properties that make the argument work, not any other properties of lines or
planes. So one could imagine the theorem being true of figures drawn with
the appropriate kinds of curved lines and planes, to be precise curved surfaces
which are determined by three distinct points and have the property that if
two such surfaces meet in a curve, then any surface through two points on
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that curve contains the whole curve. Indeed, recall that the incidence proof of
Desargues’ theorem goes as follows. The lines OAA′ and OBB′ lie in a plane,
and the lines AB and A′B′ in that plane meet in a point N . Similarly, the lines
BC and B′C ′ meet at the point L and the lines CA and C ′A′ meet at the
point M . The points L, M and N lie in the planes of the triangles ABC and
A′B′C ′, and so lie on the line common to these two planes. It is easy to see that
the proof works for points, curves and surfaces subject to suitable restrictions;
straightness and flatness are not involved.

What worried Klein was that Desargues’ theorem in von Staudt’s hands was
the key to introducing coordinates in such a way that the surfaces involved had
linear equations. This, Klein saw, invited an obvious generalisation down to two
dimensions. One would discuss curves with the property that any two curves
met in a point, and any two points determined a unique curve, and presumably
deduce that Desargues’ theorem allowed one to introduce coordinates in such
a way that the curves were given by linear equations. But Klein knew that this
could not be done, because Beltrami had shown that among the curves with
that property in a disc-like region were geodesics with respect to a metric, and
they could only be given linear equations if the metric had constant curvature.

This meant that von Staudt’s trick of proving theorems in the projective
geometry of two dimensions by passing to three dimensions could not be used.
This suggested to Klein that projective geometry in three dimensions could be
established more directly than projective geometry in only two dimensions, but
he did not, as Enriques was later to suggest that Klein had done, conjecture
that Desargues’ theorem might even be false in two dimensions.

A.2 Non-orientability

In the course of all this work, a novel and unexpected topic emerged onto the
mathematical scene: orientability. Both Möbius, who is usually credited with
the discovery of non-orientable surfaces, because of the eponymous Möbius
band, and Listing, seem to have been thinking of the band in 1858 – indeed
Listing’s unpublished note of that year [148] pre-dates Möbius’s unpublished
note [163] by a few months. Both men were connected to Gauss, who had died
in 1855, and it might even be that the concept goes back to him. Be that as
it may, the simple idea of orienting a surface is to imagine each point of the
surface surrounded by a small disc. The boundary of each disc is a circle, and
we can order the points on it by choosing three distinct points A, B, C say, and
stating that they occur in that order. We say that the surface is orientable if
all the discs can be oriented in a compatible way, and non-orientable otherwise.
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The cylinder is an example of an orientable surface, and the Möbius band an
example of a non-orientable surface.3

The relationship of the real projective plane to the usual Euclidean plane
was understood in many ways. For example, the projective plane can be thought
of as the Euclidean plane with the addition of a line at infinity. By the early
1870s the work of several authors had promoted another consideration, that
of algebraic topology. Möbius, Listing, Jordan and Riemann in various ways
had produced an analysis of surfaces, including something like a classification of
what, with later terminology and ideas could be called compact surfaces. These
include the surfaces defined by complex algebraic curves, such as the sphere,
the torus (defined, for example, by the equation w2 = z (z − 1) (z − 2) (z − 3)
and in this form familiar from the theory of elliptic functions) and others.
Central to this approach was what Riemann called the order of connectivity of
the surface, and which he defined, impressionistically, as the smallest number
of closed curves that can be drawn on the surface without it falling into two
pieces. The connectivity of the sphere is 0, of the torus 2, and so on.

In the early 1870s, Schläfli and Klein were independently interested in the
surfaces that arise in projective geometry, and they noticed that more com-
plicated behaviour can occur, and this imperilled the intuitive enumeration.
In 1874 Schläfli wrote to Klein to say that order could be restored if one re-
garded the usual plane as a double plane or as the limiting case of a family
of two-sheeted hyperboloids. Klein published his version of these ideas in the
Mathematische Annalen in 1874 [131], but it must be said that they are a lit-
tle obscure, which shows how unfamiliar this point must have been and how
difficult to grasp. It seems better, therefore, to explain it without staying too
close to the text of his paper.

Klein observed that Riemann’s treatment of what happened out towards
infinity had the effect of making infinity a point, and that this could be seen
by stereographic projection. We might add that, topologically, this is the one-
point compactification of the plane. However, in (three-dimensional) projective
geometry one thought of there being a plane at infinity, and in plane projective
geometry one supposed there was a line at infinity. The way forward was unclear
to him, but in an article of 1879 [131] he can be seen groping for ideas like
these. Consider the projective plane as the space of all lines through the origin
in Euclidean three-space, and the Euclidean plane as the plane with equation
z = −1. Each Euclidean point gives rise to a sloping line through the origin (the
line through the origin and the given point). The projective points correspond
to the horizontal lines through the origin. Now, the space of all lines through
3 Listing published his account of the band in 1861, Möbius only in 1865. What is

at stake is the recognition of the mathematical significance of non-orientability;
pictures of the band have been traced as far back as the 3rd century ce.
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the origin is an unpleasant thing to visualise, so represent each line through
the origin by the two antipodal points it marks out on the unit sphere with
centre the origin. We then immediately have a 2–1 map from the sphere to the
real projective plane. The map sends a point on the sphere to the line through
the origin and the given point. The map is 2–1 because antipodal points on the
sphere define the same projective point.

Now, the sphere is also a picture of the plane under stereographic projec-
tion. So one may think of the plane as a double cover of the projective plane.
This is what Schläfli urged upon Klein. The double or Euclidean plane has
an unexpected property: a line drawn upon one plane does not disconnect the
double plane. This is easier to see if we switch over to the modern picture. The
projective plane is, as noted, the image of the sphere under a 2–1 map. This
allows us to see the projective plane as the northern hemisphere with antipodal
points identified. Consider the effect of passing a plane through the origin. It
cuts the sphere in a great circle, of course, but what can we say about the plane
and the projective plane? We have a choice. It might be that we say that the
great circle is mapped 2–1 onto its image, or we might merely look at the image.
If we take the second alternative, we see a curve γ in the northern hemisphere
that meets the equator at two antipodal points. This curve does not disconnect
the projective plane, because of the identifications on the equator, and it lifts
to a semicircle on the sphere which does not disconnect the plane. If we double
the curve, however, we do disconnect the projective plane, and the image of
the doubled curve is a whole line disconnecting the plane.

Klein went on to note that this strange property (there are curves which
close up on doubling) was already visible in the Möbius band (which he did not
call by that name). He did not observe that the cylinder is in the same relation
to the Möbius band as the sphere is to the projective plane, and more tantalis-
ingly he did not observe that the strange connectivity of the projective plane
is connected to the fact that it contains a Möbius band. (Indeed, a thickened
neighbourhood of the curve γ is a Möbius band.) In fact, the Möbius band is
present in every drawing of a hyperbola and its asymptotes, once one knows to
look for it. For example, consider the hyperbola with equation x2 −y2 = 1, and
its asymptotes x = y, x = −y. For definiteness, consider the asymptote x = y.
It goes off to infinity as it were north-east with the hyperbola on its right, and
comes back (from the south-west) with the hyperbola on its left, showing that a
thickened neighbourhood of the asymptote in the projective plane is a Möbius
band, and that the asymptote has not cut the projective plane into two pieces
(a north-west and a south-east part).

In terms of projective geometry, a straight (Euclidean) line extends to a
closed curve, and a conic is also a closed curve in projective geometry. The
difference between them is precisely that the straight projective line does not
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disconnect the projective plane, and the conic of course does. This observation
also rippled through the community of projective geometers (it is visible in
Zeuthen’s article of 1876 [246], for example).

That Klein took these topological considerations to heart is noticeable in
his little book of 1882, Riemann’s Theory of Algebraic Functions and their
Integrals [134], where in §23 the Klein bottle seems to make its first appearance.
It is an amusing exercise to see the torus as a double cover of the Klein bottle.

A.3 Axiomatics – independence

In the years between 1899 and 1914 a number of mathematicians gave more
or less definitive versions of axiomatic projective geometry. The Italians Pieri,
Fano and Enriques were the first, followed in Germany by Hilbert and later
Vahlen, in America by Veblen and Young, and then in England by Russell
and Whitehead. In these years the Italians were widely appreciated, but for a
variety of reasons they were eclipsed by Hilbert in the years after 1918, to the
point where their achievements were almost forgotten, and they have had to
be rediscovered by historians of mathematics.

What these mathematicians accomplished in various ways was the identifi-
cation of projective geometry conceived analytically with a synthetic presenta-
tion given by axioms. By an analytic presentation is meant an account like this:
projective space of dimension n consists of all the lines through the origin in
an n + 1-dimensional space over the real numbers, the allowed transformations
form the group PSL(n + 1; R) and so forth. The question for all these investi-
gators was: what should an appropriate axioms system be? Rather than pursue
the historical development, let us jump to the end of the story and consider a
set of suitable axioms for projective geometry. The treatment that follows is
taken from Hartshorne’s Foundations of Projective Geometry [106].

Four are entirely unproblematic:

A1. Two distinct points lie on exactly one line.

A2. Two distinct lines meet in at most one point.

A3. There are three non-collinear points.

A4. Every line contains at least three points.

It is clear that axiom A2 is equivalent to the assumption that two distinct lines
meet in exactly one point, which is more obviously the dual version of A1.
Axiom A3 says that the geometry is at least two-dimensional. Axiom A4 is
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needed to rule out the space consisting of three points and the three lines
joining them in pairs as a projective space.

The next axioms are more substantial:

A5. Desargues theorem holds.

A6. Pappus’s theorem holds.

A7. (Fano’s axiom): the diagonal points of a complete quadrilateral are not
collinear.

It is striking that Desargues’ theorem must be assumed. It is not a consequence
of the first four axioms of projective geometry. This is all the more remarkable
when one considers the incidence proof of it, and indeed if one writes down the
obvious axioms for projective geometry in three or more dimensions then De-
sargues’ theorem is a consequence of those axioms. But it is not a consequence
of the axioms of plane projective geometry, and there are projective planes in
which it is false.

It is also the case that Pappus’s theorem implies Desargues’ – a result
known as Hessenberg’s theorem after its discoverer, see Hessenberg [114]. So
in any (necessarily plane) projective geometry in which Desargues’ theorem
does not hold, Pappus’s theorem also fails. On the other hand, if Pappus’s
theorem (and therefore Desargues’) is true and Fano’s axiom holds, then one
can prove the fundamental theorem of plane projective geometry: that there is
a unique projective transformation taking any four points, no three of which are
collinear, to any four points, no three of which are collinear. Conversely, given
axioms A1–A4, Desargues’ theorem and Fano’s axiom, one can prove Pappus’s
theorem.

What about the uniqueness of the fourth harmonic point? It doesn’t hold in
the Moulton plane. Moulton implies no fourth harmonic point, so the theorem
of the fourth harmonic point implies that the plane is not a Moulton plane.
What about Desargues’ theorem in general?

It may be helpful to note that, in the presence of A1–A4, the only impli-
cation between axioms A5, A6 and A7 is that A6 implies A5 (Pappus implies
Desargues). To establish the independence of the remaining axioms, examples
must be given of geometries satisfying all the remaining possible combinations
of axioms:

1. None of A5, A6 and A7 holds;

2. A5 holds, but not A6 or A7;

3. A6 holds (and therefore A5 holds) but not A7;

4. A7 holds, but not A5 or A6;

5. A5 and A6 hold, but not A7;
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6. A5 and A7 hold, but not A6;

7. A5, A6, and A7 all hold.

These are all duly given in Hartshorne’s book [106, ch. 6].
Another route, more in keeping with the Kleinian approach to geometry,

is to accept the first four axioms and then to specify the existence of enough
transformations. This is the approach of Artin in his Geometric Algebra [4].
Artin preferred to study projective geometry via affine geometry, so he allowed
himself the concept of parallel lines. (An affine plane is obtained from a projec-
tive plane by singling out a line (to be called the line at infinity) and restricting
attention to transformations that map this line to itself. Two lines are said to
be parallel if they meet in the line at infinity.) He defined a map to be a di-
latation if it maps the points P and Q, say, to P ′ and Q′ respectively, in such
a way that the line through P ′ parallel to PQ passes through Q′. Degenerate
cases aside, a dilatation maps a line to a parallel line. Artin called a dilatation
a translation if it is either the identity map or has no fixed points.

Artin’s axiom 4a asserts that given any two distinct points P and Q, there
is a translation taking P to Q. His axiom 4b asserts that given three distinct
collinear points P , Q and R, there is a dilation mapping P to itself and Q

to R. The existence of translations imposes conditions on the group of projective
transformations, and so, ultimately, on the coordinates (if any can be admitted)
of points. For example, the group of all translations is a commutative group if
translations exist with different directions. Artin observed that it can be the
case that translations might be confined to a single direction, in which case it
was not known if the corresponding group had to be commutative. The Moulton
plane is such a space because the axis can only be mapped to itself, but here
the corresponding group is commutative.

Artin confined his attention to what he called the “good” case, in which
axioms 4a and 4b were satisfied, and he showed that in this case one can
introduce coordinates for points and linear equations for lines. Naively, the idea
is that one picks an origin O arbitrarily, and then picks distinct translations
in different directions, say τ1 and τ2, and uses τ1(O) and τ2(O) as the units of
length in these directions.

Artin then worked backwards, starting with a division ring, taking pairs
of elements from the division ring as coordinates of points, thus obtaining an
affine plane, and thence a coordinatised projective plane. He now assumed that
the first three of his axioms applied in this setting, but not the fourth, and
instead postulated either Da or DP , that is, either Desargues’ theorem when
the centre of perspective is at infinity (Da) or at a finite point (DP ). He then
established that Da is true if and only if axiom 4a is true, and DP is true if
and only if DP is true.
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If coordinates can be introduced into projective geometry, they form a di-
vision ring. Facts about division rings (from Artin’s Geometric Algebra [4])
include:

A finite division ring is a field (Wedderburn’s theorem).

A weakly ordered division ring (other than 0, 1) is ordered (ordered means
the additive subgroup is a union of three sets of the form −P ∪ {0} ∪ P ,
where P has the property that P + P ⊂ P , P.P ⊂ P ).

There are ordered non-commutative division rings (one was constructed by
Hilbert).

All Archimedean fields are subfields of the real numbers.

There is a unique ordering on the real numbers consistent with the ordering
on the rational numbers.

Artin then established Hilbert’s classic result that the division ring is com-
mutative if and only if Pappus’s theorem is true, and so, by Wedderburn’s
theorem, in a finite Desarguian plane Pappus’s theorem is true – although,
most intriguingly, no synthetic proof of that result was known.

Finally, by consideration of orderings that I have omitted, Artin showed that
for an ordered geometry to come from a field which is isomorphic to a subfield of
the field of real numbers with its natural ordering, it is necessary and sufficient
that the Archimedean postulate holds. It follows that in an Archimedean field
the theorem of Pappus holds and the field is necessarily commutative.

It seems that it is the introduction of non-Archimedean fields that provoked
an attempt to eliminate continuity considerations from abstract projective ge-
ometry, say by the use of segment arithmetic (as done by Hilbert and again
by Hölder). Hilbert showed that in plane projective geometry with congruence
and parallels but not continuity or an Archimedean axiom Pappus’s theorem
can be proved. Also, Pappus’s theorem cannot be proved in simple projective
geometry without continuity or congruence.
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sur les questions proposées par l’Académie royale des sciences et belles-
lettres de Bruxelles tom. 11, Bruxelles.
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[166] Monge, G. 1850 Application de l’analyse à la géométrie. . . , 5th. edn.,
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[173] Newton, I. 1968 The Mathematical Papers of Isaac Newton vol. II: 1667–
1670, ed. D.T. Whiteside, with the assistance in publication of M.A.
Hoskin, Cambridge University Press, London–New York.

[174] Newton, I. 1969 The Mathematical Papers of Isaac Newton vol. III, ed.
D.T. Whiteside, with the assistance in publication of M. A. Hoskin and
A. Prag, Cambridge University Press, London–New York.

[175] O’Connor, J.J., Robertson, E.F. 1996 Non-Euclidean geometry [online]
<www-groups.dcs.st-and.ac.uk/∼history/HistTopics/Non-
Euclidean geometry.html> accessed 3/6/2006.

[176] Olesko, K.M. 1991 Physics as a Calling: Discipline and Practice in the
Königsberg Seminar for Physics, Cornell University Press, Ithaca, N.Y.

[177] O’Neill, B. 1966 Elementary Differential Geometry, Academic Press, New
York.

[178] Ore, O. 1974 Niels Henrik Abel; Mathematician Extraordinary, Chelsea,
New York.

[179] Padoa, A. 1902 Un nouveau système de définitions pour la géométrie
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Poncelet, 1788–1867, pp. 225. Paris. 8o. With a portrait.
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94

Olivier, Théodore, 51
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