
Appendix A

Vector Spaces

This appendix reviews some of the basic definitions and properties of vector spaces.
It is presumed that, with the possible exception of Theorem A.14, all of the material
presented here is familiar to the reader.

Definition A.1. A set M is a vector space if, for any x,y,z ∈ M and scalars
α,β , operations of vector addition and scalar multiplication are defined such that:

(1) (x+ y)+ z = x+(y+ z).
(2) x+ y = y+ x.
(3) There exists a vector 0 ∈ M such that x+0 = x = 0+ x for any x ∈ M .
(4) For any x ∈ M , there exists y ≡−x such that x+ y = 0 = y+ x.
(5) α(x+ y) = αx+αy.
(6) (α +β )x = αx+βx.
(7) (αβ )x = α(βx).
(8) There exists a scalar ξ such that ξ x = x. (Typically, ξ = 1.)

In nearly all of our applications, we assume M ⊂ Rn.

Definition A.2. Let M be a vector space, and let N be a set with N ⊂ M . N
is a subspace of M if and only if N is a vector space.

Vectors in Rn will be considered as n× 1 matrices. The 0 vector referred to in
Definition A.1 is just an n×1 matrix of zeros. Think of vectors in three dimensions
as (x,y,z)′, where w′ denotes the transpose of a matrix w. The subspace consisting
of the z axis is

⎧⎨⎩
⎛⎝0

0
z

⎞⎠∣∣∣∣ z ∈ R

⎫⎬⎭ .
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412 A Vector Spaces

The subspace consisting of the x,y plane is⎧⎨⎩
⎛⎝ x

y
0

⎞⎠∣∣∣∣ x,y ∈ R

⎫⎬⎭ .

The subspace consisting of the plane that is perpendicular to the line x = y in the x,y
plane is ⎧⎨⎩

⎛⎝ x
−x

z

⎞⎠∣∣∣∣ x,z ∈ R

⎫⎬⎭ .

Theorem A.3. Let M be a vector space, and let N be a nonempty subset of
M . If N is closed under vector addition and scalar multiplication, then N is a
subspace of M .

Theorem A.4. Let M be a vector space, and let x1, . . . ,xr be in M . The set
of all linear combinations of x1, . . . ,xr, i.e., {v |v = α1x1 + · · ·+ αrxr,αi ∈ R}, is a
subspace of M .

Definition A.5. The set of all linear combinations of x1, . . . ,xr is called the space
spanned by x1, . . . ,xr. If N is a subspace of M , and N equals the space spanned
by x1, . . . ,xr, then {x1, . . . ,xr} is called a spanning set for N .

For example, the space spanned by the vectors

x1 =

⎛⎝1
1
1

⎞⎠ , x2 =

⎛⎝1
0
0

⎞⎠
consists of all vectors of the form (a,b,b)′, where a and b are any real numbers.

Let A be an n× p matrix. Each column of A is a vector in Rn. The space spanned
by the columns of A is called the column space of A and written C(A). (Some people
refer to C(A) as the range space of A and write it R(A).) If B is an n× r matrix, then
C(A,B) is the space spanned by the p+ r columns of A and B.

Definition A.6. Let x1, . . . ,xr be vectors in M . If there exist scalars α1, . . . ,αr
not all zero so that ∑αixi = 0, then x1, . . . ,xr are linearly dependent. If such αis do
not exist, x1, . . . ,xr are linearly independent.

Definition A.7. If N is a subspace of M and if {x1, . . . ,xr} is a linearly inde-
pendent spanning set for N , then {x1, . . . ,xr} is called a basis for N .
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Theorem A.8. If N is a subspace of M , all bases for N have the same number
of vectors.

Theorem A.9. If v1, . . . ,vr is a basis for N , and x∈N , then the characterization
x = ∑r

i=1 αivi is unique.

PROOF. Suppose x = ∑r
i=1 αivi and x = ∑r

i=1 βivi. Then 0 = ∑r
i=1(αi−βi)vi. Since

the vectors vi are linearly independent, αi −βi = 0 for all i. �

Definition A.10. The rank of a subspace N is the number of elements in a basis
for N . The rank is written r(N ). If A is a matrix, the rank of C(A) is called the
rank of A and is written r(A).

The vectors

x1 =

⎛⎝1
1
1

⎞⎠ , x2 =

⎛⎝1
0
0

⎞⎠ , x3 =

⎛⎝2
3
3

⎞⎠
are linearly dependent because 0 = 3x1 − x2 − x3. Any two of x1,x2,x3 form a basis
for the space of vectors with the form (a,b,b)′. This space has rank 2.

Definition A.11. The (Euclidean) inner product between two vectors x and y
in Rn is x′y. Two vectors x and y are orthogonal (written x ⊥ y) if x′y = 0. Two
subspaces N1 and N2 are orthogonal if x ∈ N1 and y ∈ N2 imply that x′y = 0.
{x1, . . . ,xr} is an orthogonal basis for a space N if {x1, . . . ,xr} is a basis for N
and for i �= j, x′ix j = 0. {x1, . . . ,xr} is an orthonormal basis for N if {x1, . . . ,xr}
is an orthogonal basis and x′ixi = 1 for i = 1, . . . ,r. The terms orthogonal and per-
pendicular are used interchangeably. The length of a vector x is ‖x‖ ≡ √

x′x. The
distance between two vectors x and y is the length of their difference, i.e., ‖x− y‖.

The lengths of the vectors given earlier are

‖x1‖ =
√

12 +12 +12 =
√

3, ‖x2‖ = 1, ‖x3‖ =
√

22 .= 4.7.

Also, if x = (2,1)′, its length is ‖x‖ =
√

22 +12 =
√

5. If y = (3,2)′, the distance
between x and y is the length of x− y = (2,1)′ − (3,2)′ = (−1,−1)′, which is ‖x−
y‖ =

√
(−1)2 +(−1)2 =

√
2.

Just prior to Section B.4 and in Sections 2.7 and 6.3 we discuss more general
versions of the concepts of inner product and length. In particular, a more general
version of Definition A.11 is given in Subsection 6.3.5. The remaining results and
definitions in this appendix are easily extended to general inner products.

Our emphasis on orthogonality and our need to find orthogonal projection ma-
trices make both the following theorem and its proof fundamental tools in linear
model theory:
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Theorem A.12. The Gram–Schmidt Theorem.
Let N be a space with basis {x1, . . . ,xr}. There exists an orthonormal basis for N ,
say {y1, . . . ,yr}, with ys in the space spanned by x1, . . . ,xs, s = 1, . . . ,r.

PROOF. Define the yis inductively:

y1 = x1
/√

x′1x1 ,

ws = xs −
s−1

∑
i=1

(x′syi)yi ,

ys = ws
/√

w′
sws .

See Exercise A.1. �

The vectors

x1 =

⎛⎝1
1
1

⎞⎠ , x2 =

⎛⎝1
0
0

⎞⎠
are a basis for the space of vectors with the form (a,b,b)′. To orthonormalize this
basis, take y1 = x1/

√
3. Then take

w2 =

⎛⎝1
0
0

⎞⎠− 1√
3

⎛⎝1/
√

3
1/
√

3
1/
√

3

⎞⎠=

⎛⎝ 2/3
−1/3
−1/3

⎞⎠ .

Finally, normalize w2 to give

y2 = w2

/√
6/9 = (2/

√
6,−1/

√
6,−1/

√
6)′.

Note that another orthonormal basis for this space consists of the vectors

z1 =

⎛⎝ 0
1/
√

2
1/
√

2

⎞⎠ , z2 =

⎛⎝1
0
0

⎞⎠ .

Definition A.13. For N a subspace of M , let N ⊥
M ≡ {y ∈ M |y ⊥ N }. N ⊥

M
is called the orthogonal complement of N with respect to M . If M is taken as Rn,
then N ⊥ ≡ N ⊥

M is simply referred to as the orthogonal complement of N .

Theorem A.14. Let M be a vector space, and let N be a subspace of M . The
orthogonal complement of N with respect to M is a subspace of M ; and if x ∈M ,
x can be written uniquely as x = x0 + x1 with x0 ∈ N and x1 ∈ N ⊥

M . The ranks of
these spaces satisfy the relation r(M ) = r(N )+ r(N ⊥

M ).
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For example, let M = R3 and let N be the space of vectors with the form
(a,b,b)′. It is not difficult to see that the orthogonal complement of N consists of
vectors of the form (0,c,−c)′. Any vector (x,y,z)′ can be written uniquely as⎛⎝x

y
z

⎞⎠=

⎛⎝ x
(y+ z)/2
(y+ z)/2

⎞⎠+

⎛⎝ 0
(y− z)/2
−(y− z)/2

⎞⎠ .

The space of vectors with form (a,b,b)′ has rank 2, and the space (0,c,−c)′ has
rank 1.

For additional examples, let

X0 =

⎡⎣1
1
1

⎤⎦ and X =

⎡⎣1 1
1 2
1 3

⎤⎦ .

In this case,

C(X0)⊥ = C

⎛⎝⎡⎣−1 1
0 −2
1 1

⎤⎦⎞⎠ , C(X0)⊥C(X) = C

⎛⎝⎡⎣−1
0
1

⎤⎦⎞⎠ ,

and

C(X)⊥ = C

⎛⎝⎡⎣ 1
−2

1

⎤⎦⎞⎠ .

PROOF OF THEOREM A.14. It is easily seen that N ⊥
M is a subspace by checking

Theorem A.3. Let r(M ) = n and r(N ) = r. Let v1, . . . ,vr be a basis for N and ex-
tend this with w1, . . . ,wn−r to a basis for M . Apply Gram–Schmidt to get v∗1, . . . ,v

∗
r ,

w∗
1, . . . ,w

∗
n−r an orthonormal basis for M with v∗1, . . . ,v

∗
r an orthonormal basis for

N .
If x ∈ M , then

x =
r

∑
i=1

αiv∗i +
n−r

∑
j=1

β jw∗
j .

Let x0 = ∑r
i=1 αiv∗i and x1 = ∑n−r

j=1 β jw∗
j . Then x0 ∈ N , x1 ∈ N ⊥

M , and x = x0 + x1.
To establish the uniqueness of the representation and the rank relationship, we

need to establish that {w∗
1, . . . ,w

∗
n−r} is a basis for N ⊥

M . Since, by construction, the
w∗

js are linearly independent and w∗
j ∈ N ⊥

M , j = 1, . . . ,n− r, it suffices to show that
{w∗

1, . . . ,w
∗
n−r} is a spanning set for N ⊥

M . If x ∈ N ⊥
M , write

x =
r

∑
i=1

αiv∗i +
n−r

∑
j=1

β jw∗
j .

However, since x ∈ N ⊥
M and v∗k ∈ N for k = 1, . . . ,r,
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0 = x′v∗k =

(
r

∑
i=1

αiv∗i +
n−r

∑
j=1

β jw∗
j

)′
v∗k

=
r

∑
i=1

αiv∗′i v∗k +
n−r

∑
j=1

β jw∗′
j v∗k

= αkv∗′k v∗k = αk

for k = 1, . . . ,r. Thus x = ∑n−r
j=1 β jw∗

j , implying that {w∗
1, . . . ,w

∗
n−r} is a spanning set

and a basis for N ⊥
M .

To establish uniqueness, let x = y0 + y1 with y0 ∈ N and y1 ∈ N ⊥
M . Then y0 =

∑r
i=1 γiv∗i and y1 = ∑n−r

j=1 δ jw∗
j ; so x = ∑r

i=1 γiv∗i + ∑n−r
j=1 δ jw∗

j . By the uniqueness of
the representation of x under any basis, γi = αi and β j = δ j for all i and j; thus
x0 = y0 and x1 = y1.

Since a basis has been found for each of M , N , and N ⊥
M , we have r(M ) = n,

r(N ) = r, and r(N ⊥
M ) = n− r. Thus, r(M ) = r(N )+ r(N ⊥

M ). �

Definition A.15. Let N1 and N2 be vector subspaces. Then the sum of N1 and
N2 is N1 +N2 = {x|x = x1 + x2,x1 ∈ N1,x2 ∈ N2}.

Theorem A.16. N1 +N2 is a vector space and C(A,B) = C(A)+C(B).

Exercises

Exercise A.1 Give a detailed proof of the Gram–Schmidt theorem.

Questions A.2 through A.13 involve the following matrices:

A =

⎡⎢⎣
1 1 0 0
1 1 0 0
0 0 1 0
0 0 1 1

⎤⎥⎦, B =

⎡⎢⎣
1 0 0
1 0 0
0 1 0
0 0 1

⎤⎥⎦, D =

⎡⎢⎣
1 0
1 0
2 5
0 0

⎤⎥⎦, E =

⎡⎢⎣
1 2
1 2
2 7
0 0

⎤⎥⎦,

F =

⎡⎢⎣
1 5 6
1 5 6
0 7 2
0 0 9

⎤⎥⎦, G =

⎡⎢⎣
1 0 5 2
1 0 5 2
2 5 7 9
0 0 0 3

⎤⎥⎦, H =

⎡⎢⎣
1 0 2 2 6
1 0 2 2 6
7 9 3 9 −1
0 0 0 3 −7

⎤⎥⎦,
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K =

⎡⎢⎣
1 0 0
1 0 0
1 1 0
1 0 1

⎤⎥⎦, L =

⎡⎢⎣
2 0 0
2 0 0
1 1 0
1 0 1

⎤⎥⎦, N =

⎡⎢⎣
1
2
3
4

⎤⎥⎦.
Exercise A.2 Is the space spanned by the columns of A the same as the space
spanned by the columns of B? How about the spaces spanned by the columns of
K,L,F,D, and G?

Exercise A.3 Give a matrix whose column space contains C(A).

Exercise A.4 Give two matrices whose column spaces contain C(B).

Exercise A.5 Which of the following equalities are valid: C(A) = C(A,D),
C(D) = C(A,B), C(A,N) = C(A), C(N) = C(A), C(A) = C(F), C(A) = C(G),
C(A) = C(H), C(A) = C(D)?

Exercise A.6 Which of the following matrices have linearly independent
columns: A, B, D, N, F , H, G?

Exercise A.7 Give a basis for the space spanned by the columns of each of the
following matrices: A, B, D, N, F , H, G.

Exercise A.8 Give the ranks of A, B, D, E, F , G, H, K, L, N.

Exercise A.9 Which of the following matrices have columns that are mutually
orthogonal: B, A, D?

Exercise A.10 Give an orthogonal basis for the space spanned by the columns
of each of the following matrices: A, D, N, K, H, G.

Exercise A.11 Find C(A)⊥ and C(B)⊥ (with respect to R4).

Exercise A.12 Find two linearly independent vectors in the orthogonal comple-
ment of C(D) (with respect to R4).

Exercise A.13 Find a vector in the orthogonal complement of C(D) with respect
to C(A).
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Exercise A.14 Find an orthogonal basis for the space spanned by the columns
of

X =

⎡⎢⎢⎢⎢⎢⎣
1 1 4
1 2 1
1 3 0
1 4 0
1 5 1
1 6 4

⎤⎥⎥⎥⎥⎥⎦ .

Exercise A.15 For X as above, find two linearly independent vectors in the
orthogonal complement of C(X) (with respect to R6).

Exercise A.16 Let X be an n× p matrix. Prove or disprove the following state-
ment: Every vector in Rn is in either C(X) or C(X)⊥ or both.

Exercise A.17 For any matrix A, prove that C(A) and the null space of A′ are
orthogonal complements. Note: The null space is defined in Definition B.11.



Appendix B

Matrix Results

This appendix reviews standard ideas in matrix theory with emphasis given to im-
portant results that are less commonly taught in a junior/senior level linear algebra
course. The appendix begins with basic definitions and results. A section devoted
to eigenvalues and their applications follows. This section contains a number of
standard definitions, but it also contains a number of very specific results that are
unlikely to be familiar to people with only an undergraduate background in linear
algebra. The third section is devoted to an intense (brief but detailed) examination
of projections and their properties. The appendix closes with some miscellaneous
results, some results on Kronecker products and Vec operators, and an introduction
to tensors.

B.1 Basic Ideas

Definition B.1. Any matrix with the same number of rows and columns is called
a square matrix.

Definition B.2. Let A = [ai j] be a matrix. The transpose of A, written A′, is the
matrix A′ = [bi j], where bi j = a ji.

Definition B.3. If A = A′, then A is called symmetric. Note that only square
matrices can be symmetric.

Definition B.4. If A = [ai j] is a square matrix and ai j = 0 for i �= j, then A is a di-
agonal matrix. If λ1, . . . ,λn are scalars, then D(λ j) and Diag(λ j) are used to indicate
an n×n matrix D = [di j] with di j = 0, i �= j, and dii = λi. If λ ≡ (λ1, . . . ,λn)′, then

419
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D(λ ) ≡ D(λ j). A diagonal matrix with all 1s on the diagonal is called an identity
matrix and is denoted I. Occasionally, In is used to denote an n×n identity matrix.

If A = [ai j] is n× p and B = [bi j] is n× q, we can write an n× (p + q) matrix
C = [A,B], where ci j = ai j, i = 1, . . . ,n, j = 1, . . . , p, and ci j = bi, j−p, i = 1, . . . ,n,

j = p+1, . . . , p+q. This notation can be extended in obvious ways, e.g., C′ =
[

A′
B′

]
.

Definition B.5. Let A = [ai j] be an r×c matrix and B = [bi j] be an s×d matrix.
The Kronecker product of A and B, written A⊗B, is an r×c matrix of s×d matrices.
The matrix in the ith row and jth column is ai jB. In total, A⊗B is an rs×cd matrix.

Definition B.6. Let A be an r× c matrix. Write A = [A1,A2, . . . ,Ac], where Ai is
the ith column of A. Then the Vec operator stacks the columns of A into an rc× 1
vector; thus,

[Vec(A)]′ = [A′
1,A

′
2, . . . ,A

′
c].

EXAMPLE B.7.

A =
[

1 4
2 5

]
, B =

[
1 3
0 4

]
,

A⊗B =

⎡⎢⎢⎣1
(

1 3
0 4

)
4
(

1 3
0 4

)
2
(

1 3
0 4

)
5
(

1 3
0 4

)
⎤⎥⎥⎦=

⎡⎢⎣
1 3 4 12
0 4 0 16
2 6 5 15
0 8 0 20

⎤⎥⎦ ,

Vec(A) = [1,2,4,5]′.

Definition B.8. Let A be an n×n matrix. A is nonsingular if there exists a matrix
A−1 such that A−1A = I = AA−1. If no such matrix exists, then A is singular. If A−1

exists, it is called the inverse of A.

Theorem B.9. An n×n matrix A is nonsingular if and only if r(A) = n, i.e., the
columns of A form a basis for Rn.

Corollary B.10. An×n is singular if and only if there exists x �= 0 such that
Ax = 0.

For any matrix A, the set of all x such that Ax = 0 is easily seen to be a vector
space.

Definition B.11. The set of all x such that Ax = 0 is called the null space of A.
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Theorem B.12. If A is n× n and r(A) = r, then the null space of A has rank
n− r.

B.2 Eigenvalues and Related Results

The material in this section deals with eigenvalues and eigenvectors either in the
statements of the results or in their proofs. Again, this is meant to be a brief review
of important concepts; but, in addition, there are a number of specific results that
may be unfamiliar.

Definition B.13. The scalar λ is an eigenvalue of An×n if A−λ I is singular. λ is
an eigenvalue of multiplicity s if the rank of the null space of A−λ I is s. A nonzero
vector x is an eigenvector of A corresponding to the eigenvalue λ if x is in the null
space of A− λ I, i.e., if Ax = λx. Eigenvalues are also called singular values and
characteristic roots.

For example, [
2 1
1 2

](
1
1

)
= 3
(

1
1

)
and [

2 1
1 2

](−1
1

)
= 1
(−1

1

)
.

Combining the two equations gives[
2 1
1 2

][
1 −1
1 1

]
=
[

1 −1
1 1

][
3 0
0 1

]
.

Note that if λ �= 0 is an eigenvalue of A, the eigenvectors corresponding to λ
(along with the vector 0) form a subspace of C(A). For example, if Ax1 = λx1 and
Ax2 = λx2, then A(x1 + x2) = λ (x1 + x2), so the set of eigenvectors is closed un-
der vector addition. Similarly, it is closed under scalar multiplication, so it forms a
subspace (except that eigenvectors cannot be 0 and every subspace contains 0). If
λ = 0, the subspace is the null space of A.

If A is a symmetric matrix, and γ and λ are distinct eigenvalues, then the eigen-
vectors corresponding to λ and γ are orthogonal. To see this, let x be an eigenvector
for λ and y an eigenvector for γ . Then λx′y = x′Ay = γx′y, which can happen only
if λ = γ or if x′y = 0. Since λ and γ are distinct, we have x′y = 0.

Let λ1, . . . ,λr be the distinct nonzero eigenvalues of a symmetric matrix A with
respective multiplicities s(1), . . . ,s(r). Let vi1, . . . ,vis(i) be a basis for the space of
eigenvectors of λi. We want to show that v11,v12, . . . ,vrs(r) is a basis for C(A). Sup-
pose v11,v12, . . . ,vrs(r) is not a basis. Since vi j ∈C(A) and the vi js are linearly inde-
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pendent, we can pick x∈C(A) with x⊥ vi j for all i and j. Note that since Avi j = λivi j,
we have (A)pvi j = (λi)pvi j. In particular, x′(A)pvi j = x′(λi)pvi j = (λi)px′vi j = 0, so
Apx ⊥ vi j for any i, j, and p. The vectors x, Ax, A2x, . . . cannot all be linearly inde-
pendent, so there exists a smallest value k ≤ n such that

Akx+bk−1Ak−1x+ · · ·+b0x = 0.

Since there is a solution to this, for some real number μ we can write the equation
as

(A−μI)
(

Ak−1x+ γk−2Ak−2x+ · · ·+ γ0x
)

= 0,

and μ is an eigenvalue. (See Exercise B.1.) An eigenvector for μ is y = Ak−1x +
γk−2Ak−2x + · · ·+ γ0x. Clearly, y ⊥ vi j for any i and j. Since k was chosen as the
smallest value to get linear dependence, we have y �= 0. If μ �= 0, y is an eigenvector
that does not correspond to any of λ1, . . . ,λr, a contradiction. If μ = 0, we have
Ay = 0; and since A is symmetric, y is a vector in C(A) that is orthogonal to every
other vector in C(A), i.e., y′y = 0 but y �= 0, a contradiction. We have proven

Theorem B.14. If A is a symmetric matrix, then there exists a basis for C(A)
consisting of eigenvectors of nonzero eigenvalues. If λ is a nonzero eigenvalue of
multiplicity s, then the basis will contain s eigenvectors for λ .

If λ is an eigenvalue of A with multiplicity s, then we can think of λ as being
an eigenvalue s times. With this convention, the rank of A is the number of nonzero
eigenvalues. The total number of eigenvalues is n if A is an n×n matrix.

For a symmetric matrix A, if we use eigenvectors corresponding to the zero eigen-
value, we can get a basis for Rn consisting of eigenvectors. We already have a basis
for C(A), and the eigenvectors of 0 are the null space of A. For A symmetric, C(A)
and the null space of A are orthogonal complements. Let λ1, . . . ,λn be the eigenval-
ues of a symmetric matrix A. Let v1, . . . ,vn denote a basis of eigenvectors for Rn,
with vi being an eigenvector for λi for any i.

Theorem B.15. If A is symmetric, there exists an orthonormal basis for Rn

consisting of eigenvectors of A.

PROOF. Assume λi1 = · · ·= λik are all the λis equal to any particular value λ , and
let vi1, . . . ,vik be a basis for the space of eigenvectors for λ . By Gram–Schmidt there
exists an orthonormal basis wi1, . . . ,wik for the space of eigenvectors corresponding
to λ . If we do this for each distinct eigenvalue, we get a collection of orthonormal
sets that form a basis for Rn. Since, as we have seen, for λi �= λ j, any eigenvector
for λi is orthogonal to any eigenvector for λ j, the basis is orthonormal. �

Definition B.16. A square matrix P is orthogonal if P′ = P−1. Note that if P is
orthogonal, so is P′.
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Some examples of orthogonal matrices are

P1 =
1√
6

⎡⎣√2 −√
3 1√

2 0 −2√
2

√
3 1

⎤⎦ , P2 =
1√
2

[
1 1
1 −1

]
,

P3 =

⎡⎣1 0 0
0 −1 0
0 0 1

⎤⎦ .

Theorem B.17. Pn×n is orthogonal if and only if the columns of P form an
orthonormal basis for Rn.

PROOF. ⇐ It is clear that if the columns of P form an orthonormal basis for Rn,
then P′P = I.

⇒ Since P is nonsingular, the columns of P form a basis for Rn. Since P′P = I,
the basis is orthonormal. �

Corollary B.18. Pn×n is orthogonal if and only if the rows of P form an or-
thonormal basis for Rn.

PROOF. P is orthogonal if and only if P′ is orthogonal if and only if the columns
of P′ are an orthonormal basis if and only if the rows of P are an orthonormal basis.

�

Theorem B.19. If A is an n×n symmetric matrix, then there exists an orthogonal
matrix P such that P′AP = Diag(λi), where λ1,λ2, . . . ,λn are the eigenvalues of A.

PROOF. Let v1,v2, . . . ,vn be an orthonormal set of eigenvectors of A correspond-
ing, respectively, to λ1,λ2, . . . ,λn. Let P = [v1, . . . ,vn]. Then

P′AP =

⎡⎢⎣v′1
...

v′n

⎤⎥⎦ [Av1, . . . ,Avn]

=

⎡⎢⎣v′1
...

v′n

⎤⎥⎦ [λ1v1, . . . ,λnvn]

=

⎡⎢⎣λ1v′1v1 . . . λnv′1vn
...

. . .
...

λ1v′nv1 . . . λnv′nvn

⎤⎥⎦
= Diag(λi). �
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The singular value decomposition for a symmetric matrix is given by the follow-
ing corollary.

Corollary B.20. A = PD(λi)P′.

For example, using results illustrated earlier,[
2 1
1 2

]
=
[

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

][
3 0
0 1

][
1/
√

2 1/
√

2
−1/

√
2 1/

√
2

]
.

Definition B.21. A symmetric matrix A is positive (nonnegative) definite if, for
any nonzero vector v ∈ Rn, v′Av is positive (nonnegative).

Theorem B.22. A is nonnegative definite if and only if there exists a square
matrix Q such that A = QQ′.

PROOF. ⇒ We know that there exists P orthogonal with P′AP = Diag(λi). The
λis must all be nonnegative, because if e′j = (0, . . . ,0,1,0, . . . ,0) with the 1 in the jth
place and we let v = Pe j, then 0 ≤ v′Av = e′jDiag(λi)e j = λ j. Let Q = PDiag

(√
λi
)
.

Then, since PDiag(λi)P′ = A, we have

QQ′ = PDiag(λi)P′ = A.

⇐ If A = QQ′, then v′Av = (Q′v)′(Q′v) ≥ 0. �

Corollary B.23. A is positive definite if and only if Q is nonsingular for any
choice of Q.

PROOF. There exists v �= 0 such that v′Av = 0 if and only if there exists v �= 0 such
that Q′v = 0, which occurs if and only if Q′ is singular. The contrapositive of this is
that v′Av > 0 for all v �= 0 if and only if Q′ is nonsingular. �

Theorem B.24. If A is an n×n nonnegative definite matrix with nonzero eigen-
values λ1, . . . ,λr, then there exists an n× r matrix Q = Q1Q−1

2 such that Q1 has or-
thonormal columns, C(Q1) = C(A), Q2 is diagonal and nonsingular, and Q′AQ = I.

PROOF. Let v1, . . . ,vn be an orthonormal basis of eigenvectors with v1, . . . ,vr cor-
responding to λ1, . . . ,λr. Let Q1 = [v1, . . . ,vr]. By an argument similar to that in the
proof of Theorem B.19, Q′

1AQ1 = Diag(λi), i = 1, . . . ,r. Now take Q2 = Diag(
√

λi)
and Q = Q1Q−1

2 . �

Corollary B.25. Let W = Q1Q2. Then WW ′ = A.
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PROOF. Since Q′AQ = Q−1
2 Q′

1AQ1Q−1
2 = I and Q2 is symmetric, Q′

1AQ1 = Q2Q′
2.

Multiplying gives

Q1Q′
1AQ1Q′

1 = (Q1Q2)(Q′
2Q′

1) = WW ′.

But Q1Q′
1 is a perpendicular projection matrix onto C(A), so Q1Q′

1AQ1Q′
1 = A (cf.

Definition B.31 and Theorem B.35). �

Corollary B.26. AQQ′A = A and QQ′AQQ′ = QQ′.

PROOF. AQQ′A = WW ′QQ′WW ′ = WQ2Q′
1Q1Q−1

2 Q−1
2 Q′

1Q1Q2W ′ = A. More-
over, QQ′AQQ′ = QQ′WW ′QQ′ = QQ−1

2 Q′
1Q1Q2Q2Q′

1Q1Q−1
2 Q′ = QQ′. �

Definition B.27. Let A = [ai j] be an n× n matrix. The trace of A is tr(A) =
∑n

i=1 aii.

Theorem B.28. For matrices Ar×s and Bs×r, tr(AB) = tr(BA).

PROOF. See Exercise B.8. �

Theorem B.29. If A is a symmetric matrix, tr(A) = ∑n
i=1 λi, where λ1, . . . ,λn are

the eigenvalues of A.

PROOF. A = PD(λi)P′ with P orthogonal

tr(A) = tr(PD(λi)P′) = tr(D(λi)P′P)

= tr(D(λi)) =
n

∑
i=1

λi. �

To illustrate, we saw earlier that the matrix
[

2 1
1 2

]
had eigenvalues of 3 and 1.

In fact, a stronger result than Theorem B.29 is true. We give it without proof.

Theorem B.30. tr(A) = ∑n
i=1 λi, where λ1, . . . ,λn are the eigenvalues of A. More-

over, the determinant of A is det(V ) = ∏n
i=1 λi.

B.3 Projections

This section is devoted primarily to a discussion of perpendicular projection opera-
tors. It begins with their definition, some basic properties, and two important char-
acterizations: Theorems B.33 and B.35. A third important characterization, Theo-
rem B.44, involves generalized inverses. Generalized inverses are defined, briefly
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studied, and applied to projection operators. The section continues with the ex-
amination of the relationships between two perpendicular projection operators and
closes with discussions of the Gram–Schmidt theorem, eigenvalues of projection
operators, and oblique (nonperpendicular) projection operators.

We begin by defining a perpendicular projection operator (ppo) onto an arbitrary
space. To be consistent with later usage, we denote the arbitrary space C(X) for
some matrix X .

Definition B.31. M is a perpendicular projection operator (matrix) onto C(X) if
and only if

(i) v ∈C(X) implies Mv = v (projection),
(ii) w ⊥C(X) implies Mw = 0 (perpendicularity).

For example, consider the subspace of R2 determined by vectors of the form
(2a,a)′. It is not difficult to see that the orthogonal complement of this subspace
consists of vectors of the form (b,−2b)′. The perpendicular projection operator onto
the (2a,a)′ subspace is

M =
[

0.8 0.4
0.4 0.2

]
.

To verify this note that

M
(

2a
a

)
=
[

0.8 0.4
0.4 0.2

](
2a
a

)
=
(

(0.8)2a+0.4a
(0.4)2a+0.2a

)
=
(

2a
a

)
and

M
(

b
−2b

)
=
[

0.8 0.4
0.4 0.2

](
b

−2b

)
=
(

0.8b+0.4(−2b)
0.4b+0.2(−2b)

)
=
(

0
0

)
.

Notationally, M is used to indicate the ppo onto C(X). If A is another matrix, MA
denotes the ppo onto C(A). Thus, M ≡ MX . When using X with a subscript, say 0,
write the ppo onto C(X0) as M0 ≡ MX0 .

Proposition B.32. If M is a perpendicular projection operator onto C(X), then
C(M) = C(X).

PROOF. See Exercise B.2. �

Note that both columns of

M =
[

0.8 0.4
0.4 0.2

]
have the form (2a,a)′.
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Theorem B.33. M is a perpendicular projection operator on C(M) if and only if
MM = M and M′ = M.

PROOF. ⇒ Write v = v1 + v2, where v1 ∈ C(M) and v2 ⊥ C(M), and let w =
w1 + w2 with w1 ∈ C(M) and w2 ⊥ C(M). Since (I −M)v = (I −M)v2 = v2 and
Mw = Mw1 = w1, we get

w′M′(I −M)v = w′
1M′(I −M)v2 = w′

1v2 = 0.

This is true for any v and w, so we have M′(I−M) = 0 or M′ = M′M. Since M′M is
symmetric, M′ must also be symmetric, and this implies that M = MM.

⇐ If M2 = M and v ∈C(M), then since v = Mb we have Mv = MMb = Mb = v.
If M′ = M and w ⊥ C(M), then Mw = M′w = 0 because the columns of M are in
C(M). �

In our example,

MM =
[

0.8 0.4
0.4 0.2

][
0.8 0.4
0.4 0.2

]
=
[

0.8 0.4
0.4 0.2

]
= M

and

M =
[

0.8 0.4
0.4 0.2

]
= M′.

Proposition B.34. Perpendicular projection operators are unique.

PROOF. Let M and P be perpendicular projection operators onto some space M .
Let v ∈ Rn and write v = v1 + v2, v1 ∈ M , v2 ⊥ M . Since v is arbitrary and Mv =
v1 = Pv, we have M = P. �

For any matrix X , we will now find two ways to characterize the perpendicu-
lar projection operator onto C(X). The first method depends on the Gram–Schmidt
theorem; the second depends on the concept of a generalized inverse.

Theorem B.35. Let o1, . . . ,or be an orthonormal basis for C(X), and let
O = [o1, . . . ,or]. Then OO′ = ∑r

i=1 oio′i is the perpendicular projection operator onto
C(X).

PROOF. OO′ is symmetric and OO′OO′ = OIrO′ = OO′; so, by Theorem B.33, it
only remains to show that C(OO′) =C(X). Clearly C(OO′)⊂C(O) =C(X). On the
other hand, if v ∈C(O), then v = Ob for some vector b ∈ Rr and v = Ob = OIrb =
OO′Ob; so clearly v ∈C(OO′). �
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For example, to find the perpendicular projection operator for vectors of the form
(2a,a)′, we can find an orthonormal basis. The space has rank 1 and to normalize
(2a,a)′, we must have

1 = (2a,a)′
(

2a
a

)
= 4a2 +a2 = 5a2;

so a2 = 1/5 and a = ±1/
√

5. If we take (2/
√

5,1/
√

5)′ as our orthonormal basis,
then

M =
(

2/
√

5
1/
√

5

)
(2/

√
5,1/

√
5) =

[
0.8 0.4
0.4 0.2

]
,

as was demonstrated earlier.
One use of Theorem B.35 is that, given a matrix X , one can use the Gram–

Schmidt theorem to get an orthonormal basis for C(X) and thus obtain the perpen-
dicular projection operator.

We now examine properties of generalized inverses. Generalized inverses are a
generalization on the concept of the inverse of a matrix. Although the most common
use of generalized inverses is in solving systems of linear equations, our interest lies
primarily in their relationship to projection operators. The discussion below is given
for an arbitrary matrix A.

Definition B.36. A generalized inverse of a matrix A is any matrix G such that
AGA = A. The notation A− is used to indicate a generalized inverse of A.

Theorem B.37. If A is nonsingular, the unique generalized inverse of A is A−1.

PROOF. AA−1A = IA = A, so A−1 is a generalized inverse. If AA−A = A, then
AA− = AA−AA−1 = AA−1 = I; so A− is the inverse of A. �

Theorem B.38. For any symmetric matrix A, there exists a generalized inverse
of A.

PROOF. There exists P orthogonal so that P′AP = D(λi) and A = PD(λi)P′. Let

γi =
{

1/λi, if λi �= 0
0, if λi = 0 ,

and G = PD(γi)P′. We now show that G is a generalized inverse of A. P is orthogo-
nal, so P′P = I and

AGA = PD(λi)P′PD(γi)P′PD(λi)P′

= PD(λi)D(γi)D(λi)P′

= PD(λi)P′

= A. �
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Although this is the only existence result we really need, later we will show that
generalized inverses exist for arbitrary matrices.

Theorem B.39. If G1 and G2 are generalized inverses of A, then so is G1AG2.

PROOF. A(G1AG2)A = (AG1A)G2A = AG2A = A. �

For A symmetric, A− need not be symmetric.

EXAMPLE B.40. Consider the matrix[
a b
b b2/a

]
.

It has a generalized inverse [
1/a −1

1 0

]
,

and in fact, by considering the equation[
a b
b b2/a

][
r s
t u

][
a b
b b2/a

]
=
[

a b
b b2/a

]
,

it can be shown that if r = 1/a, then any solution of at +as+bu = 0 gives a gener-
alized inverse.

Corollary B.41. For a symmetric matrix A, there exists A− such that A−AA− =
A− and (A−)′ = A−.

PROOF. Take A− as the generalized inverse in the proof of Theorem B.38. Clearly,
A− = PD(γi)P′ is symmetric and

A−AA− = PD(γi)P′PD(λi)P′PD(γi)P′ = PD(γi)D(λi)D(γi)P′ = PD(γi)P′ = A−.
�

Definition B.42. A generalized inverse A− for a matrix A that has the property
A−AA− = A− is said to be reflexive.

Corollary B.41 establishes the existence of a reflexive generalized inverse for any
symmetric matrix. Note that Corollary B.26 previously established the existence of
a reflexive generalized inverse for any nonnegative definite matrix.

Generalized inverses are of interest in that they provide an alternative to the char-
acterization of perpendicular projection matrices given in Theorem B.35. The two
results immediately below characterize the perpendicular projection matrix onto
C(X).
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Lemma B.43. If G and H are generalized inverses of (X ′X), then

(i) XGX ′X = XHX ′X = X ,
(ii) XGX ′ = XHX ′.

PROOF. For v ∈ Rn, let v = v1 + v2 with v1 ∈ C(X) and v2 ⊥ C(X). Also let
v1 = Xb for some vector b. Then

v′XGX ′X = v′1XGX ′X = b′(X ′X)G(X ′X) = b′(X ′X) = v′X .

Since v and G are arbitrary, we have shown (i).
To see (ii), observe that for the arbitrary vector v above,

XGX ′v = XGX ′Xb = XHX ′Xb = XHX ′v. �

Since X ′X is symmetric, there exists a generalized inverse (X ′X)− that is symmetric.
For this generalized inverse, X(X ′X)−X ′ is symmetric; so, by the above lemma,
X(X ′X)−X ′ must be symmetric for any choice of (X ′X)−.

Theorem B.44. X(X ′X)−X ′ is the perpendicular projection operator onto C(X).

PROOF. We need to establish conditions (i) and (ii) of Definition B.31. (i) For v ∈
C(X), write v = Xb, so by Lemma B.43, X(X ′X)−X ′v = X(X ′X)−X ′Xb = Xb = v.
(ii) If w ⊥C(X), X(X ′X)−X ′w = 0. �

For example, one spanning set for the subspace of vectors with the form (2a,a)′
is (2,1)′. It follows that

M =
(

2
1

)[
(2,1)

(
2
1

)]−1

(2,1) =
[

0.8 0.4
0.4 0.2

]
,

as was shown earlier.
The next five results examine the relationships between two perpendicular pro-

jection matrices.

Theorem B.45. Let M1 and M2 be perpendicular projection matrices on Rn.
(M1 + M2) is the perpendicular projection matrix onto C(M1,M2) if and only if
C(M1) ⊥C(M2).

PROOF. ⇐ If C(M1) ⊥C(M2), then M1M2 = M2M1 = 0. Because

(M1 +M2)2 = M2
1 +M2

2 +M1M2 +M2M1 = M2
1 +M2

2 = M1 +M2
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and
(M1 +M2)′ = M′

1 +M′
2 = M1 +M2,

M1 + M2 is the perpendicular projection matrix onto C(M1 + M2). Clearly C(M1 +
M2) ⊂ C(M1,M2). To see that C(M1,M2) ⊂ C(M1 + M2), write v = M1b1 + M2b2.
Then, because M1M2 = M2M1 = 0, (M1 + M2)v = v. Thus, C(M1,M2) = C(M1 +
M2).

⇒ If M1 +M2 is a perpendicular projection matrix, then

(M1 +M2) = (M1 +M2)2 = M2
1 +M2

2 +M1M2 +M2M1

= M1 +M2 +M1M2 +M2M1.

Thus, M1M2 +M2M1 = 0.
Multiplying by M1 gives 0 = M2

1 M2 + M1M2M1 = M1M2 + M1M2M1 and thus
−M1M2M1 = M1M2. Since −M1M2M1 is symmetric, so is M1M2. This gives M1M2 =
(M1M2)′ = M2M1, so the condition M1M2 + M2M1 = 0 becomes 2(M1M2) = 0 or
M1M2 = 0. By symmetry, this says that the columns of M1 are orthogonal to the
columns of M2. �

Theorem B.46. If M1 and M2 are symmetric, C(M1) ⊥ C(M2), and (M1 + M2)
is a perpendicular projection matrix, then M1 and M2 are perpendicular projection
matrices.

PROOF.
(M1 +M2) = (M1 +M2)2 = M2

1 +M2
2 +M1M2 +M2M1.

Since M1 and M2 are symmetric with C(M1) ⊥C(M2), we have M1M2 +M2M1 = 0
and M1 +M2 = M2

1 +M2
2 . Rearranging gives M2−M2

2 = M2
1 −M1, so C(M2−M2

2) =
C(M2

1 −M1). Now C(M2 −M2
2) ⊂ C(M2) and C(M2

1 −M1) ⊂ C(M1), so C(M2 −
M2

2) ⊥C(M2
1 −M1). The only way a vector space can be orthogonal to itself is if it

consists only of the zero vector. Thus, M2 −M2
2 = M2

1 −M1 = 0, and M2 = M2
2 and

M1 = M2
1 . �

Theorem B.47. Let M and M0 be perpendicular projection matrices with
C(M0) ⊂C(M). Then M−M0 is a perpendicular projection matrix.

PROOF. Since C(M0)⊂C(M), MM0 = M0 and, by symmetry, M0M = M0. Check-
ing the conditions of Theorem B.33, we see that (M−M0)2 = M2 −MM0 −M0M +
M2

0 = M−M0 −M0 +M0 = M−M0, and (M−M0)′ = M−M0. �

Theorem B.48. Let M and M0 be perpendicular projection matrices with
C(M0) ⊂ C(M). Then C(M − M0) is the orthogonal complement of C(M0) with
respect to C(M), i.e., C(M−M0) = C(M0)⊥C(M).
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PROOF. C(M−M0)⊥C(M0) because (M−M0)M0 = MM0−M2
0 = M0−M0 = 0.

Thus, C(M−M0) is contained in the orthogonal complement of C(M0) with respect
to C(M). If x∈C(M) and x⊥C(M0), then x = Mx = (M−M0)x+M0x = (M−M0)x.
Thus, x∈C(M−M0), so the orthogonal complement of C(M0) with respect to C(M)
is contained in C(M−M0). �

Corollary B.49. r(M) = r(M0)+ r(M−M0).

One particular application of these results involves I, the perpendicular projection
operator onto Rn. For any other perpendicular projection operator M, I −M is the
perpendicular projection operator onto the orthogonal complement of C(M) with
respect to Rn.

For example, the subspace of vectors with the form (2a,a)′ has an orthogonal
complement consisting of vectors with the form (b,−2b)′. With M as given earlier,

I −M =
[

1 0
0 1

]
−
[

0.8 0.4
0.4 0.2

]
=
[

0.2 −0.4
−0.4 0.8

]
.

Note that

(I −M)
(

b
−2b

)
=
(

b
−2b

)
and (I −M)

(
2a
a

)
= 0;

so by definition I −M is the perpendicular projection operator onto the space of
vectors with the form (b,−2b)′.

At this point, we examine the relationship between perpendicular projection op-
erations and the Gram–Schmidt theorem (Theorem A.12). Recall that in the Gram–
Schmidt theorem, x1, . . . ,xr denotes the original basis and y1, . . . ,yr denotes the or-
thonormal basis. Let

Ms =
s

∑
i=1

yiy′i.

Applying Theorem B.35, Ms is the ppo onto C(x1, . . . ,xs). Now define

ws+1 = (I −Ms)xs+1.

Thus, ws+1 is the projection of xs+1 onto the orthogonal complement of C(x1, . . . ,xs).
Finally, ys+1 is just ws+1 normalized.

Consider the eigenvalues of a perpendicular projection operator M. Let v1, . . . ,vr
be a basis for C(M). Then Mvi = vi, so vi is an eigenvector of M with eigenvalue 1.
In fact, 1 is an eigenvalue of M with multiplicity r. Now, let w1, . . . ,wn−r be a basis
for C(M)⊥. Mw j = 0, so 0 is an eigenvalue of M with multiplicity n− r. We have
completely characterized the n eigenvalues of M. Since tr(M) equals the sum of the
eigenvalues, we have tr(M) = r(M).

In fact, if A is an n× n matrix with A2 = A, any basis for C(A) is a basis for
the space of eigenvectors for the eigenvalue 1. The null space of A is the space of
eigenvectors for the eigenvalue 0. The rank of A and the rank of the null space of A
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add to n, and A has n eigenvalues, so all the eigenvalues are accounted for. Again,
tr(A) = r(A).

Definition B.50.

(a) If A is a square matrix with A2 = A, then A is called idempotent.
(b) Let N and M be two spaces with N ∩M = {0} and r(N )+ r(M ) = n.

The square matrix A is a projection operator onto N along M if 1) Av = v for
any v ∈ N , and 2) Aw = 0 for any w ∈ M .

If the square matrix A has the property that Av = v for any v ∈C(A), then A is the
projection operator (matrix) onto C(A) along C(A′)⊥. (Note that C(A′)⊥ is the null
space of A.) It follows immediately that if A is idempotent, then A is a projection
operator onto C(A) along N (A) = C(A′)⊥.

The uniqueness of projection operators can be established like it was for perpen-
dicular projection operators. Note that x ∈ Rn can be written uniquely as x = v+ w
for v ∈N and w ∈M . To see this, take basis matrices for the two spaces, say N and
M, respectively. The result follows from observing that [N,M] is a basis matrix for
Rn. Because of the rank conditions, [N,M] is an n×n matrix. It is enough to show
that the columns of [N,M] must be linearly independent.

0 = [N,M]
[

b
c

]
= Nb+Mc

implies Nb = M(−c) which, since N ∩M = {0}, can only happen when Nb =
0 = M(−c), which, because they are basis matrices, can only happen when b = 0 =

(−c), which implies that
[

b
c

]
= 0, and we are done.

Any projection operator that is not a perpendicular projection is referred to as an
oblique projection operator.

To show that a matrix A is a projection operator onto an arbitrary space, say
C(X), it is necessary to show that C(A) = C(X) and that for x ∈ C(X), Ax = x. A
typical proof runs in the following pattern. First, show that Ax = x for any x ∈C(X).
This also establishes that C(X) ⊂C(A). To finish the proof, it suffices to show that
Av ∈C(X) for any v ∈ Rn because this implies that C(A) ⊂C(X).

In this book, our use of the word “perpendicular” is based on the standard inner
product, that defines Euclidean distance. In other words, for two vectors x and y,
their inner product is x′y. By definition, the vectors x and y are orthogonal if their
inner product is 0. In fact, for any two vectors x and y, let θ be the angle between x
and y. Then x′y =

√
x′x

√
y′y cosθ . The length of a vector x is defined as the square

root of the inner product of x with itself, i.e., ‖x‖ ≡√
x′x. The distance between two

vectors x and y is the length of their difference, i.e., ‖x− y‖.
These concepts can be generalized. For a positive definite matrix B, we can define

an inner product between x and y as x′By. As before, x and y are orthogonal if their
inner product is 0 and the length of x is the square root of its inner product with
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itself (now ‖x‖B ≡ √
x′Bx). As argued above, any idempotent matrix is always a

projection operator, but which one is the perpendicular projection operator depends
on the inner product. As can be seen from Proposition 2.7.2 and Exercise 2.5, the
matrix X(X ′BX)−X ′B is an oblique projection onto C(X) for the standard inner
product; but it is the perpendicular projection operator onto C(X) with the inner
product defined using the matrix B.

B.4 Miscellaneous Results

Proposition B.51. For any matrix X , C(XX ′) = C(X).

PROOF. Clearly C(XX ′)⊂C(X), so we need to show that C(X)⊂C(XX ′). Let x∈
C(X). Then x = Xb for some b. Write b = b0 +b1, where b0 ∈C(X ′) and b1 ⊥C(X ′).
Clearly, Xb1 = 0, so we have x = Xb0. But b0 = X ′d for some d; so x = Xb0 = XX ′d
and x ∈C(XX ′). �

Corollary B.52. For any matrix X , r(XX ′) = r(X).

PROOF. See Exercise B.4. �

Corollary B.53. If Xn×p has r(X) = p, then the p× p matrix X ′X is nonsingular.

PROOF. See Exercise B.5. �

Proposition B.54. If B is nonsingular, C(XB) = C(X).

PROOF. Clearly, C(XB) ⊂ C(X). To see that C(X) ⊂ C(XB), take x ∈ C(X). It
follows that for some vector b, x = Xb; so x = XB(B−1b) ∈C(XB). �

It follows immediately from Proposition B.54 that the perpendicular projection op-
erators onto C(XB) and C(X) are identical.

We now show that generalized inverses always exist.

Theorem B.55. For any matrix X , there exists a generalized inverse X−.

PROOF. We know that (X ′X)− exists. Set X− = (X ′X)−X ′. Then XX−X =
X(X ′X)−X ′X = X because X(X ′X)−X ′ is a projection matrix onto C(X). �
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Note that for any X−, the matrix XX−is idempotent and hence a projection oper-
ator.

Proposition B.56. When all inverses exist,

[A+BCD]−1 = A−1 −A−1B
[
C−1 +DA−1B

]−1
DA−1.

PROOF.

[A+BCD]
[
A−1 −A−1B

[
C−1 +DA−1B

]−1
DA−1

]
= I −B

[
C−1 +DA−1B

]−1
DA−1 +BCDA−1

−BCDA−1B
[
C−1 +DA−1B

]−1
DA−1

= I −B
[
I +CDA−1B

][
C−1 +DA−1B

]−1
DA−1 +BCDA−1

= I −BC
[
C−1 +DA−1B

][
C−1 +DA−1B

]−1
DA−1 +BCDA−1

= I −BCDA−1 +BCDA−1 = I. �

When we study linear models, we frequently need to refer to matrices and vectors
that consist entirely of 1s. Such matrices are denoted by the letter J with various
subscripts and superscripts to specify their dimensions. Jc

r is an r× c matrix of 1s.
The subscript indicates the number of rows and the superscript indicates the number
of columns. If there is only one column, the superscript may be suppressed, e.g.,
Jr = J1

r . In a context where we are dealing with vectors in Rn, the subscript may
also be suppressed, e.g., J = Jn = J1

n .
A matrix of 0s is always denoted by 0.

B.5 Properties of Kronecker Products and Vec Operators

Kronecker products and Vec operators are extremely useful in multivariate analysis
and some approaches to variance component estimation. They are also often used in
writing balanced ANOVA models. We now present their basic algebraic properties.

1. If the matrices are of conformable sizes, [A⊗ (B+C)] = [A⊗B]+ [A⊗C].
2. If the matrices are of conformable sizes, [(A+B)⊗C] = [A⊗C]+ [B⊗C].
3. If a and b are scalars, ab[A⊗B] = [aA⊗bB].
4. If the matrices are of conformable sizes, [A⊗B][C⊗D] = [AC⊗BD].
5. The transpose of a Kronecker product matrix is [A⊗B]′ = [A′ ⊗B′].
6. The generalized inverse of a Kronecker product matrix is [A⊗B]− = [A−⊗B−].
7. For two vectors v and w, Vec(vw′) = w⊗ v.
8. For a matrix W and conformable matrices A and B, Vec(AWB′) = [B⊗A]Vec(W ).



436 B Matrix Results

Most of these are well-known facts and easy to establish. Two of them are some-
what more unusual, and we present proofs.

ITEM 8. We show that for a matrix W and conformable matrices A and B,
Vec(AWB′) = [B ⊗ A]Vec(W ). First note that if Vec(AW ) = [I ⊗ A]Vec(W ) and
Vec(WB′) = [B ⊗ I]Vec(W ), then Vec(AWB′) = [I ⊗ A]Vec(WB′) = [I ⊗ A][B ⊗
I]Vec(W ) = [B⊗A]Vec(W ).

To see that Vec(AW ) = [I ⊗A]Vec(W ), let W be r × s and write W in terms of
its columns W = [w1, . . . ,ws]. Then AW = [Aw1, . . . ,Aws] and Vec(AW ) stacks the
columns Aw1, . . . ,Aws. On the other hand,

[I ⊗A]Vec(W ) =

⎡⎣A 0
. . .

0 A

⎤⎦⎡⎣w1
...

ws

⎤⎦=

⎡⎣Aw1
...

Aws

⎤⎦ .

To see that Vec(WB′) = [B⊗ I]Vec(W ), take W as above and write Bm×s = [bi j]
with rows b′1, . . . ,b

′
m. First note that WB′ = [Wb1, . . . ,Wbm], so Vec(WB′) stacks the

columns Wb1, . . . ,Wbm. Now observe that

[B⊗ Ir]Vec(W ) =

⎡⎣ b11Ir · · · b1sIr
...

. . .
...

bm1Ir · · · bmsIr

⎤⎦⎡⎣w1
...

ws

⎤⎦=

⎡⎣Wb1
...

Wbm

⎤⎦ .

ITEM 11. To see that if Ar×r and Bs×s are positive definite, then A ⊗ B is
positive definite, consider the eigenvalues and eigenvectors of A and B. Recall that a
symmetric matrix is positive definite if and only if all of its eigenvalues are positive.
Suppose that Av = φv and Bw = θw. We now show that all of the eigenvalues of
A⊗B are positive. Observe that

[A⊗B][v⊗w] = [Av⊗Bw]
= [φv⊗θw]
= φθ [v⊗w].

This shows that [v⊗w] is an eigenvector of [A⊗B] corresponding to the eigenvalue
φθ . As there are r choices for φ and s choices for θ , this accounts for all rs of the
eigenvalues in the rs× rs matrix [A⊗B]. Moreover, φ and θ are both positive, so all
of the eigenvalues of [A⊗B] are positive.

9. For conformable matrices A and B, Vec(A)′Vec(B) = tr(A′B).

Vec(A)+Vec(B) and Vec(φA) = φVec(A).
11. If A and B are positive definite, then A⊗B is positive definite.

10. The Vec operator commutes with any matrix operation that is performed ele-
mentwise. For example, E{Vec(W )} = Vec{E(W)} when W is a random ma-
trix. Similarly, for conformable matrices A and B and scalar φ ,Vec(A + B) =
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B.6 Tensors

Tensors are simply an alternative notation for writing vectors. This notation has
substantial advantages when dealing with quadratic forms and when dealing with
more general concepts than quadratic forms. Our main purpose in discussing them
here is simply to illustrate how flexibly subscripts can be used in writing vectors.

Consider a vector Y = (y1, . . . ,yn)′. The tensor notation for this is simply yi.
We can write another vector a = (a1, . . . ,an)′ as ai. When written individually, the
subscript is not important. In other words, ai is the same vector as a j. Note that the
length of these vectors needs to be understood from the context. Just as when we
write Y and a in conventional vector notation, there is nothing in the notation yi or
ai to tell us how many elements are in the vector.

If we want the inner product a′Y , in tensor notation we write aiyi. Here we are
using something called the summation convention. Because the subscripts on ai and
yi are the same, aiyi is taken to mean ∑n

i=1 aiyi. If, on the other hand, we wrote aiy j,
this means something completely different. aiy j is an alternative notation for the
Kronecker product [a⊗Y ] = (a1y1, . . . ,a1yn,a2y1, . . . ,anyn)′. In [a⊗Y ] ≡ aiy j, we
have two subscripts identifying the rows of the vector.

Now, suppose we want to look at a quadratic form Y ′AY , where Y is an n vector
and A is n×n. One way to rewrite this is

Y ′AY =
n

∑
i=1

n

∑
j=1

yiai jy j =
n

∑
i=1

n

∑
j=1

ai jyiy j = Vec(A)′[Y ⊗Y ].

Here we have rewritten the quadratic form as a linear combination of the elements
in the vector [Y ⊗Y ]. The linear combination is determined by the elements of the
vector Vec(A). In tensor notation, this becomes quite simple. Using the summation
convention in which objects with the same subscript are summed over,

Y ′AY = yiai jy j = ai jyiy j.

The second term just has the summation signs removed, but the third term, which
obviously gives the same sum as the second, is actually the tensor notation for
Vec(A)′[Y ⊗Y ]. Again, Vec(A) = (a11,a21,a31, . . . ,ann)′ uses two subscripts to iden-
tify rows of the vector. Obviously, if you had a need to consider things like

n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jkyiy jyk ≡ ai jkyiy jyk,

the tensor version ai jkyiy jyk saves some work.
There is one slight complication in how we have been writing things. Suppose A

is not symmetric and we have another n vector W . Then we might want to consider

W ′AY =
n

∑
i=1

n

∑
j=1

wiai jy j.
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From item 8 in the previous subsection,

W ′AY = Vec(W ′AY ) = [Y ′ ⊗W ′]Vec(A).

Alternatively,

W ′AY =
n

∑
i=1

n

∑
j=1

wiai jy j =
n

∑
i=1

n

∑
j=1

ai jy jwi = Vec(A)′[Y ⊗W ]

or W ′AY = Y ′A′W = Vec(A′)′[W ⊗Y ]. However, with A nonsymmetric, W ′A′Y =
Vec(A′)′[Y ⊗W ] is typically different from W ′AY . The Kronecker notation requires
that care be taken in specifying the order of the vectors in the Kronecker product, and
whether or not to transpose A before using the Vec operator. In tensor notation, W ′AY
is simply wiai jy j. In fact, the orders of the vectors can be permuted in any way; so,
for example, ai jy jwi means the same thing. W ′A′Y is simply wia jiy j. The tensor
notation and the matrix notation require less effort than the Kronecker notation.

For our purposes, the real moral here is simply that the subscripting of an indi-
vidual vector does not matter. We can write a vector Y = (y1, . . . ,yn)′ as Y = [yk]
(in tensor notation as simply yk), or we can write the same n vector as Y = [yi j] (in
tensor notation, simply yi j), where, as long as we know the possible values that i
and j can take on, the actual order in which we list the elements is not of much
importance. Thus, if i = 1, . . . , t and j = 1, . . . ,Ni, with n = ∑t

i=1 Ni, it really does
not matter if we write a vector Y as (y1, . . . ,yn), or (y11, . . . ,y1N1 ,y21, . . . ,ytNt )

′ or
(yt1, . . . ,ytNt ,yt−1,1, . . . ,y1N1)

′ or in any other fashion we may choose, as long as
we keep straight which row of the vector is which. Thus, a linear combination a′Y
can be written ∑n

k=1 akyk or ∑t
i=1 ∑Ni

j=1 ai jyi j. In tensor notation, the first of these
is simply akyk and the second is ai jyi j. These ideas become very handy in exam-
ining analysis of variance models, where the standard approach is to use multiple
subscripts to identify the various observations. The subscripting has no intrinsic im-
portance; the only thing that matters is knowing which row is which in the vectors.
The subscripts are an aid in this identification, but they do not create any problems.
We can still put all of the observations into a vector and use standard operations on
them.

B.7 Exercises

Exercise B.1

(a) Show that

Akx+bk−1Ak−1x+ · · ·+b0x = (A−μI)
(

Ak−1x+ τk−2Ak−2x+ · · ·+ τ0x
)

= 0,
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where μ is any nonzero solution of b0 + b1w + · · ·+ bkwk = 0 with bk = 1 and
τ j = −(b0 +b1μ + · · ·+b jμ j)/μ j+1, j = 0, . . . ,k.

(b) Show that if the only root of b0 +b1w+ · · ·+bkwk is zero, then the factor-
ization in (a) still holds.

(c) The solution μ used in (a) need not be a real number, in which case μ is a
complex eigenvalue and the τis are complex; so the eigenvector is complex. Show
that with A symmetric, μ must be real because the eigenvalues of A must be real. In
particular, assume that

A(y+ iz) = (λ + iγ)(y+ iz),

for y, z, λ , and γ real vectors and scalars, respectively, set Ay = λy − γz, Az =
γy+λ z, and examine z′Ay = y′Az.

Exercise B.2 Prove Proposition B.32.

Exercise B.3 Show that any nonzero symmetric matrix A can be written as
A = PDP′, where C(A) = C(P), P′P = I, and D is nonsingular.

Exercise B.4 Prove Corollary B.52.

Exercise B.5 Prove Corollary B.53.

Exercise B.6 Show tr(cIn) = nc.

Exercise B.7 Let a,b,c, and d be real numbers. If ad −bc �= 0, find the inverse
of [

a b
c d

]
.

Exercise B.8 Prove Theorem B.28, i.e., let A be an r× s matrix, let B be an s× r
matrix, and show that tr(AB) = tr(BA).

Exercise B.9 Determine whether the matrices given below are positive definite,
nonnegative definite, or neither.

⎡⎣ 3 2 −2
2 2 −2

−2 −2 10

⎤⎦ ,

⎡⎣ 26 −2 −7
−2 4 −6
−7 −6 13

⎤⎦ ,

⎡⎣26 2 13
2 4 6
13 6 13

⎤⎦ ,

⎡⎣ 3 2 −2
2 −2 −2

−2 −2 10

⎤⎦ .

Exercise B.10 Show that the matrix B given below is positive definite, and find
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a matrix Q such that B = QQ′. (Hint: The first row of Q can be taken as (1,−1,0).)

B =

⎡⎣ 2 −1 1
−1 1 0

1 0 2

⎤⎦ .

Exercise B.11 Let

A =

⎡⎣2 0 4
1 5 7
1 −5 −3

⎤⎦ , B =

⎡⎣1 0 0
0 0 1
0 1 0

⎤⎦ , C =

⎡⎣ 1 4 1
2 5 1

−3 0 1

⎤⎦ .

Use Theorem B.35 to find the perpendicular projection operator onto the column
space of each matrix.

Exercise B.12 Show that for a perpendicular projection matrix M,

∑
i

∑
j

m2
i j = r(M).

Exercise B.13 Prove that if M = M′M, then M = M′ and M = M2.

Exercise B.14 Let M1 and M2 be perpendicular projection matrices, and let M0
be a perpendicular projection operator onto C(M1)∩C(M2). Show that the following
are equivalent:

(a) M1M2 = M2M1.
(b) M1M2 = M0.
(c)

{
C(M1)∩ [C(M1)∩C(M2)]

⊥
}
⊥
{

C(M2)∩ [C(M1)∩C(M2)]
⊥
}

.
Hints: (i) Show that M1M2 is a projection operator. (ii) Show that M1M2 is sym-

metric. (iii) Note that C(M1)∩ [C(M1)∩C(M2)]
⊥ = C(M1 −M0).

Exercise B.15 Let M1 and M2 be perpendicular projection matrices. Show that
(a) the eigenvalues of M1M2 have length no greater than 1 in absolute value

(they may be complex);
(b) tr(M1M2) ≤ r(M1M2).
Hints: For part (a) show that with x′Mx ≡ ‖Mx‖2, ‖Mx‖ ≤ ‖x‖ for any per-

pendicular projection operator M. Use this to show that if M1M2x = λx, then
‖M1M2x‖ ≥ |λ |‖M1M2x‖.

Exercise B.16 For vectors x and y, let Mx = x(x′x)−1x′ and My = y(y′y)−1y′.
Show that MxMy = MyMx if and only if C(x) = C(y) or x ⊥ y.
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Exercise B.17 Consider the matrix

A =
[

0 1
0 1

]
.

(a) Show that A is a projection matrix.
(b) Is A a perpendicular projection matrix? Why or why not?
(c) Describe the space that A projects onto and the space that A projects along.

Sketch these spaces.
(d) Find another projection operator onto the space that A projects onto.

Exercise B.18 Let A be an arbitrary projection matrix. Show that C(I −A) =
C(A′)⊥.

Hints: Recall that C(A′)⊥ is the null space of A. Show that (I−A) is a projection
matrix.

Exercise B.19 Show that if A− is a generalized inverse of A, then so is

G = A−AA− +(I −A−A)B1 +B2(I −AA−)

for any choices of B1 and B2 with conformable dimensions.

Exercise B.20 Let A be positive definite with eigenvalues λ1, . . . ,λn. Show that
A−1 has eigenvalues 1/λ1, . . . ,1/λn and the same eigenvectors as A.

Exercise B.21 For A nonsingular, let

A =
[

A11 A12
A21 A22

]
,

and let A1·2 = A11 −A12A−1
22 A21. Show that if all inverses exist,

A−1 =

⎡⎣ A−1
1·2 −A−1

1·2A12A−1
22

−A−1
22 A21A−1

1·2 A−1
22 +A−1

22 A21A−1
1·2A12A−1

22

⎤⎦
and that

A−1
22 +A−1

22 A21A−1
1·2A12A−1

22 =
[
A22 −A21A−1

11 A12
]−1

.
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Some Univariate Distributions

The tests and confidence intervals presented in this book rely almost exclusively on
the χ2, t, and F distributions. This appendix defines each of the distributions.

Definition C.1. Let Z1, . . . ,Zn be independent with Zi ∼ N(μi,1). Then

W =
n

∑
i=1

Z2
i

has a noncentral chi-squared distribution with n degrees of freedom and noncen-
trality parameter γ = ∑n

i=1 μ2
i /2. Write W ∼ χ2(n,γ).

See Rao (1973, Section 3b.2) for a proof that the distribution of W depends only on
n and γ .

It is evident from the definition that if X ∼ χ2(r,γ) and Y ∼ χ2(s,δ ) with X
and Y independent, then (X +Y ) ∼ χ2(r + s,γ + δ ). A central χ2 distribution is a
distribution with a noncentrality parameter of zero, i.e., χ2(r,0). We will use χ2(r)
to denote a χ2(r,0) distribution. The 100αth percentile of a χ2(r) distribution is the
point χ2(α ,r) that satisfies the equation

Pr
[
χ2(r) ≤ χ2(α,r)

]
= α.

Note that if 0 ≤ a < 1, the 100a percentile of a central χ2(b) is denoted χ2(a,b).
However, if a is a positive integer, χ2(a,b) denotes a noncentral chi-squared distri-
bution.

Definition C.2. Let X ∼N(μ ,1) and Y ∼ χ2(n) with X and Y independent. Then

W =
X√
Y/n

443
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has a noncentral t distribution with n degrees of freedom and noncentrality pa-
rameter μ . Write W ∼ t(n,μ). If μ = 0, we say that the distribution is a central
t distribution and write W ∼ t(n). The 100αth percentile of a t(n) distribution is
denoted t(α,n).

Definition C.3. Let X ∼ χ2(r,γ) and Y ∼ χ2(s,0) with X and Y independent.
Then

W =
X/r
Y/s

has a noncentral F distribution with r numerator and s denominator degrees of free-
dom and noncentrality parameter γ . Write W ∼ F(r,s,γ). If γ = 0, write W ∼ F(r,s)
for the central F distribution. The 100αth percentile F(r,s) is denoted F(α,r,s).

As indicated, if the noncentrality parameter of any of these distributions is zero,
the distribution is referred to as a central distribution (e.g., central F distribution).
The central distributions are those commonly used in statistical methods courses. If
any of these distributions is not specifically identified as a noncentral distribution, it
should be assumed to be a central distribution.

It is easily seen from Definition C.1 that any noncentral chi-squared distribution
tends to be larger than the central chi-squared distribution with the same number
of degrees of freedom. Similarly, from Definition C.3, a noncentral F tends to be
larger than the corresponding central F distribution. (These ideas are made rigorous
in Exercise C.1.) The fact that the noncentral F distribution tends to be larger than
the corresponding central F distribution is the basis for many of the tests used in
linear models. Typically, test statistics are used that have a central F distribution if
the reduced (null) model is true and a noncentral F distribution if the full model is
true but the null model is not. Since the noncentral F distribution tends to be larger,
large values of the test statistic are more consistent with the full model than with the
null. Thus, the form of an appropriate rejection region when the full model is true is
to reject the null hypothesis for large values of the test statistic.

The power of these F tests is simply a function of the noncentrality parameter.
Given a value for the noncentrality parameter, there is no theoretical difficulty in
finding the power of an F test. The power simply involves computing the probability
of the rejection region when the probability distribution is a noncentral F . Davies
(1980) gives an algorithm for making these and more general computations.

We now prove a theorem about central F distributions that will be useful in Chap-
ter 5.

Theorem C.4. If s > t, then sF(1−α,s,v) ≥ tF(1−α , t,v).

PROOF. Let X ∼ χ2(s), Y ∼ χ2(t), and Z ∼ χ2(v). Let Z be independent of X
and Y . Note that (X/s)

/
(Z/v) has an F(s,v) distribution; so sF(1−α,s,v) is the

100(1−α) percentile of the distribution of X
/
(Z/v). Similarly, tF(1−α, t,v) is the

100(1−α) percentile of the distribution of Y
/
(Z/v).
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We will first argue that to prove the theorem it is enough to show that

Pr [X ≤ d] ≤ Pr [Y ≤ d] (1)

for all real numbers d. We will then show that (1) is true.
If (1) is true, if c is any real number, and if Z = z, by independence we have

Pr [X ≤ cz/v] = Pr [X ≤ cz/v|Z = z] ≤ Pr [Y ≤ cz/v|Z = z] = Pr [Y ≤ cz/v] .

Taking expectations with respect to Z,

Pr
[
X
/
(Z/v) ≤ c

]
= E(Pr [X ≤ cz/v|Z = z])
≤ E(Pr [Y ≤ cz/v|Z = z])
= Pr

[
Y
/
(Z/v) ≤ c

]
.

Since the cumulative distribution function (cdf) for X
/
(Z/v) is always no greater

than the cdf for Y
/
(Z/v), the point at which a probability of 1−α is attained for

X
/
(Z/v) must be no less than the similar point for Y

/
(Z/v). Therefore,

sF(1−α,s,v) ≥ tF(1−α, t,v).

To see that (1) holds, let Q be independent of Y and Q ∼ χ2(s− t). Then, because
Q is nonnegative,

Pr [X ≤ d] = Pr [Y +Q ≤ d] ≤ Pr [Y ≤ d] . �

Exercise

Definition C.5. Consider two random variables W1 and W2. W2 is said to be
stochastically larger than W1 if for every real number w

Pr [W1 > w] ≤ Pr [W2 > w] .

If for some random variables W1 and W2, W2 is stochastically larger than W1, then
we also say that the distribution of W2 is stochastically larger than the distribution
of W1.

Exercise C.1 Show that a noncentral chi-squared distribution is stochastically
larger than the central chi-squared distribution with the same degrees of freedom.
Show that a noncentral F distribution is stochastically larger than the corresponding
central F distribution.
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Multivariate Distributions

Let (x1, . . . ,xn)′ be a random vector. The joint cumulative distribution function (cdf)
of (x1, . . . ,xn)′ is

F(u1, . . . ,un) ≡ Pr [x1 ≤ u1, . . . ,xn ≤ un] .

If F(u1, . . . ,un) is the cdf of a discrete random variable, we can define a (joint)
probability mass function

f (u1, . . . ,un) ≡ Pr [x1 = u1, . . . ,xn = un] .

If F(u1, . . . ,un) admits the nth order mixed partial derivative, then we can define a
(joint) density function

f (u1, . . . ,un) ≡ ∂ n

∂ u1 · · ·∂un
F(u1, . . . ,un).

The cdf can be recovered from the density as

F(u1, . . . ,un) =
∫ u1

−∞
· · ·
∫ un

−∞
f (w1, . . . ,wn)dw1 · · ·dwn.

For a function g(·) of (x1, . . . ,xn)′ into R, the expected value is defined as

E [g(x1, . . . ,xn)] =
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(u1, . . . ,un) f (u1, . . . ,un)du1 · · ·dun.

We now consider relationships between two random vectors, say x = (x1, . . . ,xn)′
and y = (y1, . . . ,ym)′. Assume that the joint vector (x′,y′)′ = (x1, . . . ,xn,y1, . . . ,ym)′
has a density function

fx,y(u,v) ≡ fx,y(u1, . . . ,un,v1, . . . ,vm).

Similar definitions and results hold if (x′,y′)′ has a probability mass function.
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The distribution of one random vector, say x, ignoring the other vector, y, is called
the marginal distribution of x. The marginal cdf of x can be obtained by substituting
the value +∞ into the joint cdf for all of the y variables:

Fx(u) = Fx,y(u1, . . . ,un,+∞, . . . ,+∞).

The marginal density can be obtained either by partial differentiation of Fx(u) or by
integrating the joint density over the y variables:

fx(u) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
fx,y(u1, . . . ,un,v1, . . . ,vm)dv1 · · ·dvm.

The conditional density of a vector, say x, given the value of the other vector, say
y = v, is obtained by dividing the density of (x′,y′)′ by the density of y evaluated at
v, i.e.,

fx|y(u|v) ≡ fx,y(u,v)
/

fy(v).

The conditional density is a well-defined density, so expectations with respect to it
are well defined. Let g be a function from Rn into R,

E[g(x)|y = v] =
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(u) fx|y(u|v)du,

where du = du1du2 · · ·dun. The standard properties of expectations hold for condi-
tional expectations. For example, with a and b real,

E[ag1(x)+bg2(x)|y = v] = aE[g1(x)|y = v]+bE[g2(x)|y = v] .

The conditional expectation of E[g(x)|y = v] is a function of the value v. Since y
is random, we can consider E[g(x)|y = v] as a random variable. In this context we
write E[g(x)|y]. An important property of conditional expectations is

E[g(x)] = E[E[g(x)|y] ] .

To see this, note that fx|y(u|v) fy(v) = fx,y(u,v) and

E[E[g(x)|y] ] =
∫ ∞

−∞
· · ·
∫ ∞

−∞
E[g(x)|y = v] fy(v)dv

=
∫ ∞

−∞
· · ·
∫ ∞

−∞

[∫ ∞

−∞
· · ·
∫ ∞

−∞
g(u) fx|y(u|v)du

]
fy(v)dv

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(u) fx|y(u|v) fy(v)dudv

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(u) fx,y(u,v)dudv

= E[g(x)] .
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In fact, both the notion of conditional expectation and this result can be gen-
eralized. Consider a function g(x,y) from Rn+m into R. If y = v, we can de-
fine E[g(x,y)|y = v] in a natural manner. If we consider y as random, we write
E[g(x,y)|y]. It can be easily shown that

E[g(x,y)] = E[E[g(x,y)|y]] .

A function of x or y alone can also be considered as a function from Rn+m into R.
A second important property of conditional expectations is that if h(y) is a func-

tion from Rm into R, we have

E[h(y)g(x,y)|y] = h(y)E[g(x,y)|y] . (1)

This follows because if y = v,

E[h(y)g(x,y)|y = v] =
∫ ∞

−∞
· · ·
∫ ∞

−∞
h(v)g(u,v) fx|y(u|v)du

= h(v)
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(u,v) fx|y(u|v)du

= h(v)E[g(x,y)|y = v] .

This is true for all v, so (1) holds. In particular, if g(x,y) ≡ 1, we get

E[h(y)|y] = h(y).

Finally, we can extend the idea of conditional expectation to a function g(x,y)
from Rn+m into Rs. Write g(x,y) = [g1(x,y), . . . ,gs(x,y)]

′. Then define

E[g(x,y)|y] = (E[g1(x,y)|y] , . . . ,E[gs(x,y)|y])′ .

If their densities exist, two random vectors are independent if and only if their
joint density is equal to the product of their marginal densities, i.e., x and y are
independent if and only if

fx,y(u,v) = fx(u) fy(v).

Note that if x and y are independent,

fx|y(u|v) = fx(u).

If the random vectors x and y are independent, then any vector-valued functions
of them, say g(x) and h(y), are also independent. This follows easily from a more
general definition of the independence of two random vectors: The random vectors
x and y are independent if for any two (reasonable) sets A and B,

Pr[x ∈ A,y ∈ B] = Pr[y ∈ A]Pr[y ∈ B].
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To prove that functions of random variables are independent, recall that the set in-
verse of a function g(u) on a set A0 is g−1(A0) = {u|g(u) ∈ A0}. That g(x) and h(y)
are independent follows from the fact that for any (reasonable) sets A0 and B0,

Pr[g(x) ∈ A0,h(y) ∈ B0] = Pr[x ∈ g−1(A0),y ∈ h−1(B0)]
= Pr[x ∈ g−1(A0)]Pr[y ∈ h−1(B0)]
= Pr[g(x) ∈ A0]Pr[h(y) ∈ B0].

The characteristic function of a random vector x = (x1, . . . ,xn)′ is a function from
Rn to C, the complex numbers. It is defined by

ϕx(t1, . . . , tn) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

[
i

n

∑
j=1

t ju j

]
fx(u1, . . . ,un)du1 · · ·dun.

We are interested in characteristic functions because if x = (x1, . . . ,xn)′ and y =
(y1, . . . ,yn)′ are random vectors and if

ϕx(t1, . . . , tn) = ϕy(t1, . . . , tn)

for all (t1, . . . , tn), then x and y have the same distribution.
For convenience, we have assumed the existence of densities. With minor modi-

fications, the definitions and results of this appendix hold for any probability defined
on Rn.

Exercise

Exercise D.1 Let x and y be independent. Show that
(a) E[g(x)|y] = E[g(x)];
(b) E[g(x)h(y)] = E[g(x)]E[h(y)].



Appendix E

Inference for One Parameter

Since the third edition of this book, I have thought hard about the philosophy of test-
ing as a basis for non-Bayesian statistical inference, cf. Christensen (2005, 2008).
This appendix has been modified accordingly. The approach taken is one I call Fish-
erian, as opposed to the Neyman–Pearson approach. The theory presented here has
no formal role for alternative hypotheses.

A statistical testing problem is essentially a form of proof by contradiction. We
have a null model for the data and we determine whether the observed data seem
to contradict that null model or whether they are consistent with it. If the data con-
tradict the null model, something must be wrong with the null model. Having data
consistent with the null model certainly does not suggest that the null model is cor-
rect but may suggest that the model is tentatively adequate. The catch is that we
rarely get an absolute contradiction to the null model, so we use probability to de-
termine the extent to which the data seem inconsistent with the null model.

In the current discussion, it is convenient to break the null model into two parts:
a general model for the data and a particular statement about a single parameter
of interest, called the null hypothesis (H0).

Many statistical tests and confidence intervals for a single parameter are appli-
cations of the same theory. (Tests and confidence intervals for variances are an ex-
ception.) To use this theory we need to know four things: [1] The unobservable
parameter of interest (Par). [2] The estimate of the parameter (Est). [3] The stan-
dard error of the estimate (SE(Est)), wherein SE(Est) is typically an estimate of
the standard deviation of Est, but if we happened to know the actual standard devi-
ation, we would be happy to use it. And [4] an appropriate reference distribution.
Specifically, we need the distribution of

Est−Par
SE(Est)

.

If the SE(Est) is estimated, the reference distribution is usually the t distribution
with some known number of degrees of freedom df , say, t(df ). If the SE(Est) is
known, then the distribution is usually the standard normal distribution, i.e., a t(∞).
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In some problems (e.g., problems involving the binomial distribution) large sample
results are used to get an approximate distribution and then the technique proceeds
as if the approximate distribution were correct. When appealing to large sample
results, the known distribution of part [4] is the standard normal (although I suspect
that a t(df ) distribution with a reasonable, finite number of degrees of freedom
would give more realistic results).

These four required items are derived from the model for the data (although
sometimes the standard error incorporates the null hypothesis). For convenience,
we may refer to these four items as “the model.”

The 1−α percentile of a distribution is the point that cuts off the top α of the
distribution. For a t distribution, denote this t(1−α,df ) as seen in Figure E.1. For-
mally, we can write

Pr
[

Est−Par
SE(Est)

≥ t(1−α,df )
]

= α.

By symmetry about zero, we also have

Pr
[

Est−Par
SE(Est)

≤−t(1−α ,df )
]

= α.

To keep the discussion as simple as possible, numerical examples have been re-
stricted to one-sample normal theory. However, the results also apply to inferences
on each individual mean and the difference between the means in two-sample prob-
lems, contrasts in analysis of variance, coefficients in regression, and, in general, to
one-dimension estimable parametric functions in arbitrary linear models.

E.1 Testing

We want to test the null hypothesis

H0 : Par = m,

where m is some known number. In significance (Fisherian) testing, we cannot do
that. What we can do is test the null model, which is the combination of the model
and the null hypothesis. The test is based on the assumption that both the model
and H0 are true. As mentioned earlier, it is rare that data contradict the null model
absolutely, so we check to see if the data seem inconsistent with the null model.

What kind of data are inconsistent with the null model? Consider the test statistic

Est−m
SE(Est)

.

With m known, the test statistic is an observable random variable. If the null model is
true, the test statistic has a known t(df ) distribution as illustrated in Figure E.1. The
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t(1 − α, df)0

0

1 − α α

Fig. E.1 Percentiles of t(df ) distributions.

t(df ) distribution is likely to give values near 0 and is increasingly less likely to give
values far from 0. Therefore, weird data, i.e., those that are most inconsistent with
the null model, are large positive and large negative values of [Est−m]/SE(Est).
The density (shape) of the t(df ) distribution allows us to order the possible values
of the test statistic in terms of how weird they are relative to the null model.

To decide on a formal test, we need to decide which values of the test statistic will
cause us to reject the null model and which will not. In other words, “How weird
must data be before we question the null model?” We solve this problem by picking
a small probability α that determines a rejection region, sometimes called a critical
region. The rejection region consists of the weirdest test statistic values under the
null model, but is restricted to have a probability of only α under the null model.
Since a t(df ) distribution is symmetric about 0 and the density decreases as we go
away from 0, the α critical region consists of points less than −t(1−α/2,df ) and
points larger than t(1−α/2,df ). In other words, the α level test for the model with
H0 : Par = m is to reject the null model if

Est−m
SE(Est)

≥ t
(

1− α
2

,df
)
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or if
Est−m
SE(Est)

≤−t
(

1− α
2

,df
)

.

This is equivalent to rejecting the null model if

|Est−m|
SE(Est)

≥ t
(

1− α
2

,df
)

.

What causes us to reject the null model? Either having a true model that is so dif-
ferent from the null that the data look “weird,” or having the null model true and
getting unlucky with the data.

Observing weird data, i.e., data that are inconsistent with the null model, gives us
cause to question the validity of the null model. Specifying a small α level merely
ensures that everything in the rejection region really constitutes weird data. More
properly, specifying a small α level is our means of determining what constitutes
weird data. Although α can be viewed as a probability, it is better viewed as a
measure of how weird the data must be relative to the null model before we will
reject. We want α small so that we only reject the null model for data that are truly
weird, but we do not want α so small that we fail to reject the null model even when
very strange data occur.

Rejecting the null model means that either the null hypothesis or the model is
deemed incorrect. Only if we are confident that the model is correct can we conclude
that the null hypothesis is wrong. If we want to make conclusions about the null
hypothesis, it is important to do everything possible to assure ourselves that the
model is reasonable.

If we do not reject the null model, we merely have data that are consistent with
the null model. That in no way implies that the null model is true. Many other
models will also be consistent with the data. Typically, Par = m + 0.00001 fits the
data about as well as the null model. Not rejecting the test does not imply that the
null model is true any more than rejecting the null model implies that the underlying
model is true.

EXAMPLE E.1. Suppose that 16 independent observations are taken from a normal
population. Test H0 : μ = 20 with α level 0.01. The observed values of ȳ· and s2

were 19.78 and 0.25, respectively.

[1] Par = μ ,
[2] Est = ȳ·,
[3] SE(Est) =

√
s2/16. In this case, the SE(Est) is estimated.

[4] [Est−Par]/SE(Est) = [ȳ· −μ ]
/√

s2/16 has a t(15) distribution.

With m = 20, the α = 0.01 test is to reject the H0 model if

|ȳ· −20|/[s/4] ≥ 2.947 = t(0.995,15).

Having ȳ· = 19.78 and s2 = 0.25, we reject if
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|19.78−20|√
.25/16

≥ 2.947.

Since |19.78−20|/√.25/16 = |−1.76| is less than 2.947, we do not reject the null
model at the α = 0.01 level.

Nobody actually does this! Or at least, nobody should do it. Although this proce-
dure provides a philosophical basis for our statistical inferences, there are two other
procedures, both based on this, that give uniformly more information. This proce-
dure requires us to specify the model, the null hypothesis parameter value m, and
the α level. For a fixed model and a fixed null parameter m, P values are more infor-
mative because they allow us to report test results for all α levels. Alternatively, for
a fixed model and a fixed α level, confidence intervals report the values of all pa-
rameters that are consistent with the model and the data. (Parameter values that are
inconsistent with the model and the data are those that would be rejected, assuming
the model is true.) We now discuss these other procedures.

E.2 P values

The P value of a test is the probability under the null model of seeing data as weird
or weirder than we actually saw. Weirdness is determined by the distribution of the
test statistic. If the observed value of the test statistic from Section 1 is tobs, then the
P value is the probability of seeing data as far or farther from 0 than tobs. In general,
we do not know if tobs will be positive or negative, but its distance from 0 is |tobs|.
The P value is the probability that a t(df ) distribution is less than or equal to −|tobs|
or greater than or equal to |tobs|.

In Example E.1, the value of the test statistic is −1.76. Since t(0.95,15) = 1.75,
the P value of the test is approximately (just smaller than) 0.10. An α = 0.10 test
would use the t(0.95,15) value.

It is not difficult to see that the P value is the α level at which the test would just
barely be rejected. So if P ≤ α , the null model is rejected, and if P > α , the data
are deemed consistent with the null model. Knowing the P value lets us do all α
level tests of the null model. In fact, historically and philosophically, P values come
before α level tests. Rather than noticing that the α level test has this relationship
with P values, it is more general to define the α level test as rejecting precisely when
P ≤ α . We can then observe that, for our setup, the α level test has the form given
in Section 1.

While an α level constitutes a particular choice about how weird the data must
be before we decide to reject the null model, the P value measures the evidence
against the null hypothesis. The smaller the P value, the more evidence against the
null model.
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E.3 Confidence Intervals

A (1−α)100% confidence interval (CI) for Par is defined to be the set of all pa-
rameter values m that would not be rejected by an α level test. In Section 1 we gave
the rule for when an α level test of H0 : Par = m rejects. Conversely, the null model
will not be rejected if

−t
(

1− α
2

,df
)

<
Est−m
SE(Est)

< t
(

1− α
2

,df
)

. (1)

Some algebra, given later, establishes that we do not reject the null model if and
only if

Est− t
(

1− α
2

,df
)

SE(Est) < m < Est+ t
(

1− α
2

,df
)

SE(Est). (2)

This interval consists of all the parameter values m that are consistent with the data
and the model as determined by an α level test. The endpoints of the CI can be
written

Est± t
(

1− α
2

,df
)

SE(Est).

On occasion (as with binomial data), when doing an α level test or a P value,
we may let the standard error depend on the null hypothesis. To obtain a confidence
interval using this approach, we need a standard error that does not depend on m.

EXAMPLE E.2. We have 10 independent observations from a normal population
with variance 6. ȳ· is observed to be 17. We find a 95% CI for μ , the mean of the
population.

[1] Par = μ ,
[2] Est = ȳ·,
[3] SE(Est) =

√
6/10. In this case, SE(Est) is known and not estimated.

[4] [Est−Par]/SE(Est) = [ȳ· −μ ]
/√

6/10 ∼ N(0,1) = t(∞).

The confidence coefficient is 95% = (1−α)100%, so 1−α = 0.95 and α = 0.05.
The percentage point from the normal distribution that we require is t

(
1− α

2 ,∞
)

=
t(0.975,∞) = 1.96. The limits of the 95% CI are, in general,

ȳ· ±1.96
√

6/10

or, since ȳ· = 17,
17±1.96

√
6/10.

The μ values in the interval (15.48,18.52) are consistent with the data and the nor-
mal random sampling model as determined by an α = 0.05 test.

To see that statements (1) and (2) are algebraically equivalent, the argument runs
as follows:
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−t
(

1− α
2

,df
)

<
Est−m
SE(Est)

< t
(

1− α
2

,df
)

if and only if −t
(
1− α

2 ,df
)

SE(Est) < Est−m < t
(
1− α

2 ,df
)

SE(Est);
if and only if t

(
1− α

2 ,df
)

SE(Est) > −Est+m > −t
(
1− α

2 ,df
)

SE(Est);
if and only if Est+ t

(
1− α

2 ,df
)

SE(Est) > m > Est− t
(
1− α

2 ,df
)

SE(Est);
if and only if Est− t

(
1− α

2 ,df
)

SE(Est) < m < Est+ t
(
1− α

2 ,df
)

SE(Est).

E.4 Final Comments on Significance Testing

The most arbitrary element in Fisherian testing is the choice of a test statistic. Al-
though alternative hypotheses do not play a formal role in significance testing, in-
teresting possible alternative hypotheses do inform the choice of test statistic.

For example, in linear models we often test a full model Y = Xβ + e against a
reduced model Y = X0γ + e, with e ∼ N(0,σ 2I) and C(X0) ⊂ C(X). Although we
choose a test statistic based on comparing these models, the significance test is only
a test of whether the data are consistent with the reduced model. Rejecting the F
test does not suggest that the full model is correct, it only suggests that the reduced
model is wrong. Nonetheless, it is of interest to see how the test behaves if the
full model is correct. But models other than the full model can also cause the test
to reject, see Appendix F, especially Section F.2. For example, it is of interest to
examine the power of a test. The power of an α level test at some alternative model
is the probability of rejecting the null model when the alternative model is true. But
in significance testing, there is no thought of accepting any alternative model. Any
number of things can cause the rejection of the null model. Similar comments hold
for testing generalized linear models.

When testing a null model based on a single parameter hypothesis H0 : Par = m,
interesting possible alternatives include Par �= m. Our test statistic is designed to be
sensitive to these alternatives, but problems with the null model other than Par �= m
can cause us to reject the null model.

In general, a test statistic can be any function of the data for which the distribu-
tion under the null model is known (or can be approximated). But finding a usable
test statistic can be difficult. Having to choose between alternative test statistics for
the same null model is something of a luxury. For example, to test the null model
of equal means in a balanced one-way ANOVA, we can use either the F test of
Chapter 4 or the Studentized range test of Section 5.4
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Significantly Insignificant Tests

Philosophically, the test of a null model occurs almost in a vacuum. Either the data
contradict the null model or they are consistent with it. The discussion of model
testing in Section 3.2 largely assumes that the full model is true. While it is inter-
esting to explore the behavior of the F test statistic when the full model is true, and
indeed it is reasonable and appropriate to choose a test statistic that will work well
when the full model is true, the act of rejecting the null model in no way implies
that the full model is true. It is perfectly reasonable that the null (reduced) model
can be rejected when the full model is false.

Throughout this book we have examined standard approaches to testing in which
F tests are rejected only for large values. The rationale for this is based on the full
model being true. We now examine the significance of small F statistics. Small F
statistics can be caused by an unsuspected lack of fit or, when the mean structure of
the reduced model is correct, they can be caused by not accounting for negatively
correlated data or not accounting for heteroscedasticity. We also demonstrate that
large F statistics can be generated by not accounting for positively correlated data
or heteroscedasticity, even when the mean structure of the reduced model is correct.

Christensen (1995, 2005, 2008) argues that (non-Bayesian) testing should be
viewed as an exercise in examining whether or not the data are consistent with a
particular (predictive) model. While possible alternative hypotheses may drive the
choice of a test statistic, any unusual values of the test statistic should be considered
important. By this standard, perhaps the only general way to decide which values
of the test statistic are unusual is to identify as unusual those values that have small
probabilities or small densities under the model being tested.

The F test statistic is driven by the idea of testing the reduced model against
the full model. However, given the test statistic, any unusual values of that statistic
should be recognized as indicating data that are inconsistent with the model being
tested. If the full model is true, values of F much larger than 1 are inconsistent with
the reduced model. Values of F much larger than 1 are consistent with the full model
but, as we shall see, they are consistent with other models as well. Similarly, values
of F much smaller than 1 are also inconsistent with the reduced model and we will
examine models that can generate small F statistics.
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I have been hesitant to discuss what I think of as a Fisherian F test, since no-
body actually performs them. (That includes me, because it is so much easier to use
the reported P values provided by standard computer programs.) Although the test
statistic comes from considering both the reduced (null) model and the full model,
once the test statistic is chosen, the full model no longer plays a role. From Theo-
rem 3.2.1(ii), if the reduced model is true,

F ≡ Y ′(M−M0)Y/r(M−M0)
Y ′(I −M)Y/r(I −M)

∼ F(r(M−M0),r(I −M),0) .

We use the density to define “weird” values of the F distribution. The smaller the
density, the weirder the observation. Write r1 ≡ r(M−M0) and r2 ≡ r(I−M), denote
the density g( f |r1,r2), and let Fobs denote the observed value of the F statistic. Since
the P value of a test is the probability under the null model of seeing data as weird
or weirder than we actually saw, and weirdness is defined by the density, the P value
of the test is

P = Pr[g(F |r1,r2) ≤ g(Fobs|r1,r2)],

wherein Fobs is treated as fixed and known. This is computed under the only distri-
bution we have, the F(r1,r2) distribution. An α level test is defined as rejecting the
null model precisely when P ≤ α .

If r1 > 2, the F(r1,r2) density has the familiar shape that starts at 0, rises to a
maximum in the vicinity of 1, and drops back down to zero for large values. Unless
Fobs happens to be the mode, there are two values f1 < f2 that have

g(Fobs|r1,r2) = g( f1|r1,r2) = g( f2|r1,r2).

(One of f1 and f2 will be Fobs.) In this case, the P value reduces to

P = Pr[F ≤ f1]+Pr[F ≥ f2].

In other words, the Fisherian F test is a two-sided F test, rejecting both for very
small and very large values of Fobs. For r1 = 1,2, the Fisherian test agrees with
the usual test because then the F(r1,r2) density starts high and decreases as f gets
larger.

I should also admit that there remain open questions about the appropriateness
of using densities, rather than actual probabilities, to define the weirdness of obser-
vations. The remainder of this appendix is closely related to Christensen (2003).

F.1 Lack of Fit and Small F Statistics

The standard assumption in testing models is that there is a full model Y = Xβ + e,
E(e) = 0, Cov(e) = σ2I that fits the data. We then test the adequacy of a reduced
model Y = X0γ +e, E(e) = 0, Cov(e) = σ2I in which C(X0)⊂C(X), cf. Section 3.2.
Based on second moment arguments, the test statistic is a ratio of variance estimates.
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We construct an unbiased estimate of σ2, Y ′(I−M)Y/r(I−M), and another statistic
Y ′(M −M0)Y/r(M −M0) that has E[Y ′(M −M0)Y/r(M −M0)] = σ2 + β ′X ′(M −
M0)Xβ/r(M −M0). Under the assumed covariance structure, this second statistic
is an unbiased estimate of σ2 if and only if the reduced model is correct. The test
statistic

F =
Y ′(M−M0)Y/r(M−M0)

Y ′(I −M)Y/r(I −M)

is a (biased) estimate of

σ2 +β ′X ′(M−M0)Xβ/r(M−M0)
σ2 = 1+

β ′X ′(M−M0)Xβ
σ2 r(M−M0)

.

Under the null model, F is an estimate of the number 1. When the full model is true,
values of F much larger than 1 suggest that F is estimating something larger than 1,
which suggests that β ′X ′(M−M0)Xβ/σ2 r(M−M0) > 0, something that occurs if
and only if the reduced model is false. The standard normality assumption leads to
an exact central F distribution for the test statistic under the null model, so we are
able to quantify how unusual it is to observe any F statistic greater than 1. Although
the test is based on second moment considerations, under the normality assumption
it is also the generalized likelihood ratio test, see Exercise 3.1, and a uniformly most
powerful invariant test, see Lehmann (1986, Section 7.1).

In testing lack of fit, the same basic ideas apply except that we start with the
(reduced) model Y = Xβ + e. The ideal situation would be to know that if Y =
Xβ + e has the wrong mean structure, then a model of the form

Y = Xβ +Wδ + e, C(W ) ⊥C(X) (1)

fits the data where assuming C(W ) ⊥ C(X) creates no loss of generality. Unfortu-
nately, there is rarely anyone to tell us the true matrix W . Lack of fit testing is largely
about constructing a full model, say, Y = X∗β∗ + e with C(X) ⊂ C(X∗) based on
reasonable assumptions about the nature of any lack of fit. The test for lack of fit is
simply the test of Y = Xβ +e against the constructed model Y = X∗β∗+e. Typically,
the constructed full model involves somehow generalizing the structure already ob-
served in Y = Xβ + e. Section 6.6 discusses the rationale for several choices of
constructed full models. For example, the traditional lack of fit test for simple lin-
ear regression begins with the replication model yi j = β0 + β1xi + ei j, i = 1, . . . ,a,
j = 1, . . . ,Ni. It then assumes E(yi j) = f (xi) for some function f (·), in other words,
it assumes that the several observations associated with xi have the same expected
value. Making no additional assumptions leads to fitting the full model yi j = μi +ei j
and the traditional lack of fit test. Another way to think of this traditional test views
the reduced model relative to the one-way ANOVA as having only the linear contrast
important. The traditional lack of fit test statistic becomes

F =
SSTrts−SS(lin)

a−2

/
MSE, (2)
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where SS(lin) is the sum of squares for the linear contrast. If there is no lack of fit in
the reduced model, F should be near 1. If lack of fit exists because the more general
mean structure of the one-way ANOVA fits the data better than the simple linear
regression model, the F statistic tends to be larger than 1.

Unfortunately, if the lack of fit exists because of features that are not part of the
original model, generalizing the structure observed in Y = Xβ + e is often inappro-
priate. Suppose that the simple linear regression model is balanced, i.e., all Ni = N,
that for each i the data are taken in time order t1 < t2 < · · · < tN , and that the lack of
fit is due to the true model being

yi j = β0 +β1xi +δ t j + ei j, δ �= 0. (3)

Thus, depending on the sign of δ , the observations within each group are subject to
an increasing or decreasing trend. Note that in this model, for fixed i, the E(yi j)s are
not the same for all j, thus invalidating the assumption of the traditional test. In fact,
this causes the traditional lack of fit test to have a small F statistic. One way to see
this is to view the problem in terms of a balanced two-way ANOVA. The true model
(3) is a special case of the two-way ANOVA model yi j = μ +αi +η j +ei j in which
the only nonzero terms are the linear contrast in the αis and the linear contrast in the
η js. Under model (3), the numerator of the statistic (2) gives an unbiased estimate
of σ2 because SSTrts in (2) is SS(α) for the two-way model and the only nonzero
α effect is being eliminated from the treatments. However, the mean squared error
in the denominator of (2) is a weighted average of the error mean square from the
two-way model and the mean square for the η js in the two-way model. The sum
of squares for the significant linear contrast in the η js from model (3) is included
in the error term of the lack of fit test (2), thus biasing the error term to estimate
something larger than σ2. In particular, the denominator has an expected value of
σ2 +δ 2a∑N

j=1(t j − t̄·)2/a(N −1). Thus, if the appropriate model is (3), the statistic
in (2) estimates σ2/[σ2 + δ 2a∑N

j=1(t j − t̄·)2/a(N − 1)] which is a number that is
less than 1. Values of F much smaller than 1, i.e., very near 0, are consistent with
a lack of fit that exists within the groups of the one-way ANOVA. Note that in this
balanced case, true models involving interaction terms, e.g., models like

yi j = β0 +β1xi +δ t j + γxit j + ei j,

also tend to make the F statistic small if either δ �= 0 or γ �= 0. Finally, if there exists
lack of fit both between the groups of observations and within the groups, if can be
very difficult to identify. For example, if β2 �= 0 and either δ �= 0 or γ �= 0 in the true
model

yi j = β0 +β1xi +β2x2
i +δ t j + γxit j + ei j,

there is both a traditional lack of fit between the groups (the significant β2x2
i term)

and lack of fit within the groups (δ t j + γxit j). In this case, neither the numerator nor
the denominator in (2) is an estimate of σ 2.

More generally, start with a model Y = Xβ + e. This is tested against a larger
model Y = X∗β∗+e with C(X)⊂C(X∗), regardless of where the larger model comes
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from. The F statistic is

F =
Y ′(M∗ −M)Y/r(M∗ −M)
Y ′(I −M∗)Y/r(I −M∗)

.

We assume that the true model is (1). The F statistic estimates 1 if the original
model Y = Xβ + e is correct. It estimates something greater than 1 if the larger
model Y = X∗β∗ + e is correct, i.e., if Wδ ∈C(X)⊥C(X∗). F estimates something less

than 1 if Wδ ∈C(X∗)⊥, i.e., if Wδ is actually in the error space of the larger model,
because then the numerator estimates σ2 but the denominator estimates

σ2 +δ ′W ′(I −M∗)Wδ/r(I −M∗) = σ2 +δ ′W ′Wδ/r(I −M∗).

If Wδ is in neither of C(X)⊥C(X∗) nor C(X∗)⊥, it is not clear how the test will behave
because neither the numerator nor the denominator estimates σ2. Christensen (1989,
1991) contains related discussion of these concepts.

The main point is that, when testing a full model Y = Xβ +e, E(e) = 0, Cov(e) =
σ2I against a reduced model Y = X0γ + e, C(X0) ⊂C(X), if the F statistic is small,
it suggests that Y = X0γ +e may suffer from lack of fit in which the lack of fit exists
in the error space of Y = Xβ + e. We will see in the next section that other possible
explanations for a small F statistic are the existence of “negative correlation” in the
data or heteroscedasticity.

F.2 The Effect of Correlation and Heteroscedasticity on F
Statistics

The test of a reduced model assumes that the full model Y = Xβ + e, E(e) = 0,
Cov(e) = σ 2I holds and tests the adequacy of a reduced model Y = X0γ +e, E(e) =
0, Cov(e) = σ 2I, C(X0) ⊂ C(X). Rejecting the reduced model does not imply that
the full model is correct. The mean structure of the reduced model may be perfectly
valid, but the F statistic can become large or small because the assumed covariance
structure is incorrect.

We begin with a concrete example, one-way ANOVA. Let i = 1, . . . ,a, j =
1, . . . ,N, and n ≡ aN. Consider a reduced model yi j = μ +ei j which in matrix terms
we write Y = Jμ +e, and a full model yi j = μi +ei j, which we write Y = Zγ +e. In
matrix terms the usual one-way ANOVA F statistic is

F =
Y ′[MZ − (1/n)Jn

n ]Y/(a−1)
Y ′(I −MZ)Y/a(N −1)

. (1)

We now assume that the true model is Y = Jμ + e, E(e) = 0, Cov(e) = σ2V and
examine the behavior of the F statistic (1).

For a homoscedastic balanced one-way ANOVA we want to characterize the con-
cepts of overall positive correlation, positive correlation within groups, and positive
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correlation for evaluating differences between groups. Consider first a simple exam-
ple with a = 2, N = 2. The first two observations are a group and the last two are a
group. Consider a covariance structure

V1 =

⎡⎢⎣
1 0.9 0.1 0.09

0.9 1 0.09 0.1
0.1 0.09 1 0.9

0.09 0.1 .9 1

⎤⎥⎦ .

There is an overall positive correlation, high positive correlation between the two
observations in each group, and weak positive correlation between the groups. A
second example,

V2 =

⎡⎢⎣
1 0.1 0.9 0.09

0.1 1 0.09 0.9
0.9 0.09 1 0.1

0.09 0.9 0.1 1

⎤⎥⎦ ,

has an overall positive correlation but weak positive correlation between the two ob-
servations in each group, with high positive correlation between some observations
in different groups.

We now make a series of definitions for homoscedastic balanced one-way ANOVA
based on the projection operators in (1) and V . Overall positive correlation is char-
acterized by Var(ȳ··) > σ2/n, which in matrix terms is written

n
Var(ȳ··)

σ2 = tr[(1/n)JJ′V ] >
1
n

tr(V )tr[(1/n)JJ′] =
1
n

tr(V ). (2)

Overall negative correlation is characterized by the reverse inequality. For ho-
moscedastic models the term tr(V )/n is 1. For heteroscedastic models the term on
the right is the average variance of the observations divided by σ2.

Positive correlation within groups is characterized by ∑a
i=1 Var(ȳi·)/a > σ 2/N,

which in matrix terms is written

a

∑
i=1

N
Var(ȳi·)

σ2 = tr[MZV ] >
1
n

tr(V )tr[MZ ] =
a
n

tr(V ). (3)

Negative correlation within groups is characterized by the reverse inequality.
Positive correlation for evaluating differences between groups is characterized

by
∑a

i=1 Var(ȳi· − ȳ··)
a

>
a−1

a
σ 2

N
.

Note that equality obtains if V = I. In matrix terms, this is written

N
σ2

a

∑
i=1

Var(ȳi· − ȳ··) = tr([MZ − (1/n)JJ′]V )

>
1
n

tr(V )tr[MZ − (1/n)JJ′] =
a−1

n
tr(V ) (4)
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and negative correlation for evaluating differences between groups is characterized
by the reverse inequality. If all the observations in different groups are uncorrelated,
there will be positive correlation for evaluating differences between groups if and
only if there is positive correlation within groups. This follows because having a
block diagonal covariance matrix σ2V implies that tr(MZV ) = tr[(1/N)Z′V Z] =
atr[(1/n)J′V J] = atr[(1/n)JJ′V ].

For our example V1,

2.09 = (1/4)[4(2.09)] = tr[(1/n)Jn
nV1] >

1
n

tr(V1) = 4/4 = 1,

so there is an overall positive correlation,

3.8 = 2(1/2)[3.8] = tr[MZV1] >
a
n

tr(V1) = (2/4)4 = 2,

so there is positive correlation within groups, and

1.71 = 3.8−2.09 = tr([MZ − (1/n)Jn
n ]V1) >

a−1
n

tr(V1) = (1/4)4 = 1,

so there is positive correlation for evaluating differences between groups.
For the second example V2,

2.09 = (1/4)[4(2.09)] = tr[(1/n)Jn
nV2] >

1
n

tr(V2) = 4/4 = 1,

so there is an overall positive correlation,

2.2 = 2(1/2)[2.2] = tr[MZV2] >
a
n

tr(V2) = (2/4)4 = 2,

so there is positive correlation within groups, but

0.11 = 2.2−2.09 = tr([MZ − (1/n)Jn
n ]V2) <

a−1
n

tr(V2) = (1/4)4 = 1,

so positive correlation for evaluating differences between groups does not exist.
The existence of positive correlation within groups and positive correlation for

evaluating differences between groups causes the one-way ANOVA F statistic in (1)
to get large even when there are no differences in the group means. Assuming that
the correct model is Y = Jμ + e, E(e) = 0, Cov(e) = σ2V , by Theorem 1.3.1, the
numerator of the F statistic estimates

E{Y ′[MZ − (1/n)Jn
n ]Y/(a−1)} = tr{[MZ − (1/n)Jn

n ]V}/(a−1)

>
a−1

n
tr(V )/(a−1) = tr(V )/n

and the denominator of the F statistic estimates
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E{Y ′(I −MZ)Y/a(N −1)} = tr{[I −MZ ]V}/a(N −1)
= (tr{V}− tr{[MZ ]V})/a(N −1)

<
(

tr{V}− a
n

tr(V )
)

/a(N −1)

=
n−a

n
tr(V )/a(N −1) = tr(V )/n.

In (1), F is an estimate of

E{Y ′[MZ − (1/n)Jn
n ]Y/(a−1)}

E{Y ′(I −MZ)Y/a(N −1)} =
tr{[MZ − (1/n)Jn

n ]V}/(a−1)
tr{[I −MZ ]V}/a(N −1)

>
tr(V )/n
tr(V )/n

= 1,

so having both positive correlation within groups and positive correlation for evalu-
ating differences between groups tends to make F statistics large. Exactly analogous
computations show that both negative correlation within groups and negative corre-
lation for evaluating differences between groups tends to make F statistics less than
1.

Another example elucidates some additional points. Suppose the observations
have the AR(1) correlation structure discussed in Subsection 13.3.1:

V3 =

⎡⎢⎣
1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

⎤⎥⎦ .

Using the same grouping structure as before, when 0 < ρ < 1, we have overall
positive correlation because

1+
ρ
2

(3+2ρ +ρ2) = tr[(1/n)JJ′V3] > 1,

and we have positive correlation within groups because

2(1+ρ) = tr[MZV3] > 2.

If −1 < ρ < 0, the inequalities are reversed. Similarly, for −1 < ρ < 0 we have
negative correlation for evaluating differences between groups because

1+
ρ
2

(1−2ρ −ρ2)2 = tr([MZ − (1/n)JJ′]V3) < 1.

However, we only get positive correlation for evaluating differences between groups
when 0 < ρ <

√
2− 1. Thus, for negative ρ we tend to get small F statistics, for

0 < ρ <
√

2−1 we tend to get large F statistics, and for
√

2−1 < ρ < 1 the result
is not clear.
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To illustrate, suppose ρ = 1 and the observations all have the same mean, then
with probability 1, all the observations are equal and, in particular, ȳi· = ȳ·· with
probability 1. It follows that

0 = ∑a
i=1 Var(ȳi· − ȳ··)

a
<

a−1
a

σ2

N

and no positive correlation exists for evaluating differences between groups. More
generally, for very strong positive correlations, both the numerator and the denom-
inator of the F statistic estimate numbers close to 0 and both are smaller than they
would be under V = I. On the other hand, it is not difficult to see that, for ρ = −1,
the F statistic is 0.

In the balanced heteroscedastic one-way ANOVA, V is diagonal. This gener-
ates equality between the left sides and right sides of (2), (3), and (4), so under
heteroscedasticity F still estimates the number 1. We now generalize the ideas of
within group correlation and correlation for evaluating differences between groups,
and see that heteroscedasticity can affect unbalanced one-way ANOVA.

In general, we test a full model Y = Xβ + e, E(e) = 0, Cov(e) = σ2I against a
reduced model Y = X0γ + e, in which C(X0) ⊂ C(X). We examine the F statistic
when the true model is Y = X0γ + e, E(e) = 0, Cov(e) = σ 2V . Using arguments
similar to those for balanced one-way ANOVA, having

tr[MV ] >
1
n

tr(V )tr[M] =
r(X)

n
tr(V )

and

tr([M−M0]V ) >
1
n

tr(V )tr[M−M0] =
r(X)− r(X0)

n
tr(V )

causes large F statistics even when the mean structure of the reduced model is true,
and reversing the inequalities causes small F statistics. These are merely sufficient
conditions so that the tests intuitively behave certain ways. The actual behavior of
the tests under normal distributions can be determined numerically, cf. Christensen
and Bedrick (1997).

These covariance conditions can be caused by patterns of positive and negative
correlations as discussed earlier, but they can also be caused by heteroscedasticity.
For example, consider the behavior of the unbalanced one-way ANOVA F test when
the observations are uncorrelated but heteroscedastic. For concreteness, assume that
Var(yi j) = σ2

i . Because the observations are uncorrelated, we need only check the
condition

tr[MV ] ≡ tr[MZV ] >
1
n

tr(V )tr[MZ ] =
a
n

tr(V ),

which amounts to
a

∑
i=1

σ2
i
/

a >
a

∑
i=1

Ni

n
σ2

i .

Thus, when the groups’ means are equal, F statistics will get large if many obser-
vations are taken in groups with small variances and few observations are taken on
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groups with large variances. F statistics will get small if the reverse relationship
holds.

The general condition

tr[MV ] >
1
n

tr(V )tr[M] =
r(X)

n
tr(V )

is equivalent to
∑n

i=1 Var(x′iβ̂ )
r(X)

>
∑n

i=1 Var(yi)
n

.

So, under homoscedasticity, positive correlation in the full model amounts to having
an average variance for the predicted values (averaging over the rank of the covari-
ance matrix of the predicted values) that is larger than the common variance of the
observations. Negative correlation in the full model involves reversing the inequal-
ity. Similarly, having positive correlation for distinguishing the full model from the
reduced model means

∑n
i=1 Var(x′iβ̂ − x′0iγ̂)

r(X)− r(X0)
=

tr[(M−M0)V ]
r(M−M0)

>
tr(V )

n
= ∑n

i=1 Var(yi)
n

.



Appendix G

Randomization Theory Models

The division of labor in statistics has traditionally designated randomization the-
ory as an area of nonparametric statistics. Randomization theory is also of special
interest in the theory of experimental design because randomization has been used
to justify the analysis of designed experiments.

It can be argued that the linear models given in Chapter 8 are merely good ap-
proximations to more appropriate models based on randomization theory. One as-
pect of this argument is that the F tests based on the theory of normal errors are a
good approximation to randomization (permutation) tests. Investigating this is be-
yond the scope of a linear models book, cf. Hinkelmann and Kempthorne (1994)
and Puri and Sen (1971). Another aspect of the approximation argument is that
the BLUEs under randomization theory are precisely the least squares estimates. By
Theorem 10.4.5, to establish this we need to show that C(V X)⊂C(X) for the model

Y = Xβ + e, E(e) = 0, Cov(e) = V,

where V is the covariance matrix under randomization theory. This argument will
be examined here for two experimental design models: the model for a completely
randomized design and the model for a randomized complete block design. First,
we introduce the subject with a discussion of simple random sampling.

G.1 Simple Random Sampling

Randomization theory for a simple random sample assumes that observations yi are
picked at random (without replacement) from a larger finite population. Suppose

469
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the elements of the population are s1,s2, . . . ,sN . We can define elementary sampling
random variables for i = 1, . . . ,n and j = 1, . . . ,N,

δ i
j =
{

1, if yi = s j
0, otherwise.

Under simple random sampling without replacement

E[δ i
j] = Pr[δ i

j = 1] =
1
N

.

E[δ i
jδ

i′
j′ ] = Pr[δ i

jδ
i′
j′ = 1] =

⎧⎨⎩1/N, if (i, j) = (i′, j′)
1/N(N −1), if i �= i′ and j �= j′
0, otherwise.

If we write μ = ∑N
j=1 s j/N and σ2 = ∑N

j=1(s j −μ)2/N, then

yi =
N

∑
j=1

δ i
js j = μ +

N

∑
j=1

δ i
j(s j −μ).

Letting ei = ∑N
j=1 δ i

j(s j −μ) gives the linear model

yi = μ + ei.

The population mean μ is a fixed unknown constant. The eis have the properties

E[ei] = E

[
N

∑
j=1

δ i
j(s j −μ)

]
=

N

∑
j=1

E
[
δ i

j
]
(s j −μ) =

N

∑
j=1

(s j −μ)
/

N = 0,

Var(ei) = E[e2
i ] =

N

∑
j=1

N

∑
j′=1

(s j −μ)(s j′ −μ)E[δ i
jδ

i
j′ ] =

N

∑
j=1

(s j −μ)2/N = σ2.

For i �= i′,

Cov(ei,ei′) = E[eiei′ ] =
N

∑
j=1

N

∑
j′=1

(s j −μ)(s j′ −μ)E[δ i
jδ i′

j′ ]

= [N(N −1)]−1 ∑
j �= j′

(s j −μ)(s j′ −μ)

= [N(N −1)]−1

⎛⎝[ N

∑
j=1

(s j −μ)

]2

−
N

∑
j=1

(s j −μ)2

⎞⎠
= −σ 2/(N −1).

In matrix terms, the linear model can be written
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Y = Jμ + e, E(e) = 0, Cov(e) = σ2V,

where

V =

⎡⎢⎢⎢⎢⎣
1 −(N −1)−1 −(N −1)−1 · · · −(N −1)−1

−(N −1)−1 1 −(N −1)−1 · · · −(N −1)−1

−(N −1)−1 −(N −1)−1 1 · · · −(N −1)−1

...
...

...
. . .

...
−(N −1)−1 −(N −1)−1 −(N −1)−1 · · · 1

⎤⎥⎥⎥⎥⎦ .

Clearly V J = [(N −n)/(N −1)]J, so the BLUE of μ is ȳ· .

G.2 Completely Randomized Designs

Suppose that there are t treatments, each to be randomly assigned to N units out of a
collection of n = tN experimental units. A one-way ANOVA model for this design
is

yi j = μi + ei j, (1)

i = 1, . . . , t, j = 1, . . . ,N. Suppose further that the ith treatment has an effect τi and
that the experimental units without treatment effects would have readings s1, . . . ,sn.
The elementary sampling random variables are

δ i j
k =
{

1, if replication j of treatment i is assigned to unit k
0, otherwise.

With this restricted random sampling,

E[δ i j
k ] = Pr[δ i j

k = 1] =
1
n

E[δ i j
k δ i′ j′

k′ ] = Pr[δ i j
k δ i′ j′

k′ = 1] =

⎧⎨⎩1/n, if (i, j,k) = (i′, j′,k′)
1/n(n−1), if k �= k′ and (i, j) �= (i′, j)′
0, otherwise.

We can write

yi j = τi +
n

∑
k=1

δ i j
k sk.

Taking μ = ∑n
k=1 sk/n and μi = μ + τi gives

yi j = μi +
n

∑
k=1

δ i j
k (sk −μ).

To obtain the linear model (1), let ei j = ∑n
k=1 δ i j

k (sk − μ). Write σ2 = ∑n
k=1(sk −

μ)2/n. Then
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E[ei j] = E

[
n

∑
k=1

δ i j
k (sk −μ)

]
=

n

∑
k=1

E
[
δ i j

k

]
(sk −μ) =

n

∑
k=1

(sk −μ)
/

n = 0,

Var(ei j) = E[e2
i j] =

n

∑
k=1

n

∑
k′=1

(sk −μ)(sk′ −μ)E[δ i j
k δ i j

k′ ] =
n

∑
k=1

(sk −μ)2/n = σ2.

For (i, j) �= (i′, j′),

Cov(ei j,ei′ j′) = E[ei jei′ j′ ] =
n

∑
k=1

n

∑
k′=1

(sk −μ)(sk′ −μ)E[δ i j
k δ i′ j′

k′ ]

= [n(n−1)]−1 ∑
k �=k′

(sk −μ)(sk′ −μ)

= [n(n−1)]−1

⎛⎝[ n

∑
k=1

(sk −μ)

]2

−
n

∑
k=1

(sk −μ)2

⎞⎠
= −σ2/(n−1).

In matrix terms, writing Y = (y11,y12, . . . ,ytN)′, we get

Y = X

⎡⎢⎣μ1
...

μt

⎤⎥⎦+ e, E(e) = 0, Cov(e) = σ2V,

where

V =

⎡⎢⎢⎢⎢⎣
1 −1/(n−1) −1/(n−1) · · · −1/(n−1)

−1/(n−1) 1 −1/(n−1) · · · −1/(n−1)
−1/(n−1) −1/(n−1) 1 · · · −1/(n−1)

...
...

...
. . .

...
−1/(n−1) −1/(n−1) −1/(n−1) · · · 1

⎤⎥⎥⎥⎥⎦
=

n
n−1

I − 1
n−1

Jn
n .

It follows that
V X =

n
n−1

X − 1
n−1

Jn
n X .

Since J ∈ C(X), C(V X) ⊂ C(X), and least squares estimates are BLUEs. Standard
errors for estimable functions can be found as in Section 11.1 using the fact that this
model involves only one cluster.

Exercise G.1 Establish whether least squares estimates are BLUEs in a com-
pletely randomized design with unequal numbers of observations on the treatments.
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G.3 Randomized Complete Block Designs

Suppose there are a treatments and b blocks. The experimental units must be
grouped into b blocks, each of a units. Let the experimental unit effects be sk j,
k = 1, . . . ,a, j = 1, . . . ,b. Treatments are assigned at random to the a units in each
block. The elementary sampling random variables are

δ i
k j =
{

1, if treatment i is assigned to unit k in block j
0, otherwise.

E[δ i
k j] = Pr[δ i

k j = 1] =
1
a
.

E[δ i
k jδ

i′
k′ j′ ] = Pr[δ i

k jδ
i′
k′ j′ = 1] =

⎧⎪⎨⎪⎩
1/a, if (i, j,k) = (i′, j′,k′)
1/a2, if j �= j′
1/a(a−1), if j = j′, k �= k′, i �= i′
0, otherwise.

If αi is the additive effect of the ith treatment and β j ≡ s̄· j, then

yi j = αi +β j +
a

∑
k=1

δ i
k j(sk j −β j).

Letting ei j = ∑a
k=1 δ i

k j(sk j −β j) gives the linear model

yi j = αi +β j + ei j. (1)

The column space of the design matrix for this model is precisely that of the model
considered in Section 8.3. Let σ2

j = ∑a
k=1(sk j −β j)2/a. Then

E[ei j] =
a

∑
k=1

(sk j −β j)
/

a = 0,

Var(ei j) =
a

∑
k=1

a

∑
k′=1

(sk j −β j)(sk′ j −β j)E[δ i
k jδ

i
k′ j]

=
a

∑
k=1

(sk j −β j)2/a = σ2
j .

For j �= j′,

Cov(ei j,ei′ j′) =
a

∑
k=1

a

∑
k′=1

(sk j −β j)(sk′ j′ −β j′)E[δ i
k jδ

i′
k′ j′ ]

= a−2
a

∑
k=1

(sk j −β j)
a

∑
k′=1

(sk′ j′ −β j′)
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= 0.

For j = j′, i �= i′,

Cov(ei j,ei′ j′) =
a

∑
k=1

a

∑
k′=1

(sk j −β j)(sk′ j −β j)E[δ i
k jδ

i′
k′ j]

= ∑
k �=k′

(sk j −β j)(sk′ j −β j)
/

a(a−1)

= [a(a−1)]−1

⎛⎝[ a

∑
k=1

(sk j −β j)

]2

−
a

∑
k=1

(sk j −β j)2

⎞⎠
= −σ2

j
/
(a−1).

Before proceeding, we show that although the terms β j are not known, the differ-
ences among these are known constants under randomization theory. For any unit k
in block j, some treatment is assigned, so ∑a

i=1 δ i
k j = 1.

ȳ· j =
1
a

[
a

∑
i=1

(
αi +β j +

a

∑
k=1

δ i
k j(sk j −β j)

)]

=
1
a

[
a

∑
i=1

αi +aβ j +
a

∑
k=1

(sk j −β j)
a

∑
i=1

δ i
k j

]

= ᾱ· +β j +
a

∑
k=1

(sk j −β j)

= ᾱ· +β j .

Therefore, ȳ· j − ȳ· j′ = β j − β j′ = s̄· j − s̄· j′ . Since these differences are fixed and
known, there is no basis for a test of H0 : β1 = · · · = βb. In fact, the linear model is
not just model (1) but model (1) subject to these estimable constraints on the β s.

To get best linear unbiased estimates we need to assume that σ2
1 = σ2

2 = · · · =
σ2

b = σ2. We can now write the linear model in matrix form and establish that
least squares estimates of treatment means and contrasts in the αis are BLUEs. In
the discussion that follows, we use notation from Section 7.1. Model (1) can be
rewritten

Y = Xη + e, E(e) = 0, Cov(e) = V, (2)

where η = [μ,α1, . . . ,αa,β1, . . . ,βb]′. If we let X2 be the columns of X correspond-
ing to β1, . . . ,βb, then (cf. Section 11.1)

V = σ2 [a/(a−1)]
[
I − (1/a)X2X ′

2
]
= σ 2 [a/(a−1)]

[
I −Mμ −Mβ

]
.

If model (2) were the appropriate model, checking that C(V X) ⊂ C(X) would
be trivial based on the fact that C(X2) ⊂ C(X). However, we must account for the
estimable constraints on the model discussed above. In particular, consider
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Mβ Xη = [ti j],

where
ti j = β j − β̄· = ȳ· j − ȳ·· = s̄· j − s̄·· .

This is a fixed known quantity. Proceeding as in Section 3.3, the model is subject to
the estimable constraint

Mβ Xη = MβY.

Normally a constraint has the form Λ ′β = d, where d is known. Here d = MβY ,
which appears to be random but, as discussed, MβY is not random; it is fixed and
upon observing Y it is known.

The equivalent reduced model involves X0 = (I −MMP)X = (I −Mβ )X and a
known vector Xb = MβY . Thus, the constrained model is equivalent to

(Y −MβY ) = (I −Mβ )Xγ + e. (3)

We want to show that least squares estimates of contrasts in the αs based on Y
are BLUEs with respect to this model. First we show that least squares estimates
from model (3) based on (Y −MβY ) = (I−Mβ )Y are BLUEs. We need to show that

C(V (I −Mβ )X) = C[(I −Mμ −Mβ )(I −Mβ )X ] ⊂C[(I −Mβ )X ].

Because (I −Mμ −Mβ )(I −Mβ ) = (I −Mμ −Mβ ), we have

C(V (I −Mβ )X) = C[(I −Mμ −Mβ )X ],

and because C(I −Mμ −Mβ ) ⊂C(I −Mβ ) we have

C[(I −Mμ −Mβ )X ] ⊂C[(I −Mβ )X ].

To finish the proof that least squares estimates based on Y are BLUEs, note that
the estimation space for model (3) is C[(I − Mβ )X ] = C(Mμ + Mα). BLUEs are
based on

(Mμ +Mα)(I −Mβ )Y = (Mμ +Mα)Y.

Thus, any linear parametric function in model (2) that generates a constraint on
C(Mμ +Mα) has a BLUE based on (Mμ +Mα)Y (cf. Exercise 3.9.5). In particular,
this is true for contrasts in the αs. Standard errors for estimable functions are found
in a manner analogous to Section 11.1. This is true even though model (3) is not
the form considered in Section 11.1 and is a result of the orthogonality relationships
that are present.

The assumption that σ2
1 = σ2

2 = · · · = σ2
b is a substantial one. Least squares es-

timates without this assumption are unbiased, but may be far from optimal. It is
important to choose blocks so that their variances are approximately equal.

Exercise G.2 Find the standard error for a contrast in the αis of model (1).
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Muñoz, A., 409

Nachtsheim, C. J., 113
Neill, J. W., 149
Nelder, J. A., 12
Neter, J., 113
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