
Appendix A:

Review of Set Theory

In this book, as in most modern mathematics, mathematical statements are couched
in the language of set theory. We give here a brief descriptive summary of the parts
of set theory that we use, in the form that is commonly called “naive set theory.”
The word naive should be understood in the same sense in which it is used by Paul
Halmos in his classic text Naive Set Theory [Hal74]: the assumptions of set theory
are to be viewed much as Euclid viewed his geometric axioms, as intuitively clear
statements of fact from which reliable conclusions can be drawn.

Our description of set theory is based on the axioms of Zermelo–Fraenkel set
theory together with the axiom of choice (commonly known as ZFC), augmented
with a notion of classes (aggregations that are too large to be considered sets in
ZFC), primarily for use in category theory. We do not give a formal axiomatic treat-
ment of the theory; instead, we simply give the definitions and list the basic types of
sets whose existence is guaranteed by the axioms. For more details on the subject,
consult any good book on set theory, such as [Dev93,Hal74,Mon69,Sup72,Sto79].
We leave it to the set theorists to explore the deep consequences of the axioms and
the relationships among different axiom systems.

Basic Concepts

A set is just a collection of objects, considered as a whole. The objects that make
up the set are called its elements or its members. For our purposes, the elements of
sets are always “mathematical objects”: integers, real numbers, complex numbers,
and objects built up from them such as ordered pairs, ordered n-tuples, functions,
sequences, other sets, and so on. The notation x 2 X means that the object x is an
element of the set X . The words collection and family are synonyms for set.

Technically speaking, set and element of a set are primitive undefined terms in
set theory. Instead of giving a general definition of what it means to be a set, or for
an object to be an element of a set, mathematicians characterize each particular set
by giving a precise definition of what it means for an object to be an element of that
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set—what might be called the set’s membership criterion. For example, if Q is the
set of all rational numbers, then the membership criterion for Q could be expressed
as follows:

x 2 Q , x D p=q for some integers p and q with q ¤ 0:

The essential characteristic of sets is that they are determined by their elements.
Thus ifX and Y are sets, to say that X and Y are equal is to say that every element
of X is an element of Y , and every element of Y is an element of X . Symbolically,

X D Y if and only if for all x, x 2X , x 2 Y:
IfX and Y are sets such that every element ofX is also an element of Y , thenX

is a subset of Y , written X � Y . Thus

X � Y if and only if for all x, x 2X ) x 2 Y:
The notation Y 	X (“Y is a superset of X”) means the same as X � Y . It follows
from the definitions that X D Y if and only if X � Y and X 	 Y .

If X � Y but X ¤ Y , we say that X is a proper subset of Y (or Y is a proper
superset of X ). Some authors use the notationsX � Y and Y �X to mean thatX is
a proper subset of Y ; however, since other authors use the symbol “�” to mean any
subset, not necessarily proper, we generally avoid using this notation, and instead
say explicitly when a subset is proper.

Here are the basic types of sets whose existence is guaranteed by ZFC. In each
case, the set is completely determined by its membership criterion.

� THE EMPTY SET: There is a set containing no elements, called the empty set
and denoted by ¿. It is unique, because any two sets with no elements are equal
by our definition of set equality, so we are justified in calling it the empty set.

� SETS DEFINED BY LISTS: Given any list of objects that can be explicitly
named, there is a set containing those objects and no others. It is denoted by
listing the objects between braces: f: : :g. For example, the set f0;1;2g contains
only the numbers 0, 1, and 2. (For now, we are defining this notation only when
the objects can all be written out explicitly; a bit later, we will give a precise
definition of notations such as fx1; : : : ;xng, in which the objects are defined
implicitly with ellipses.) A set containing exactly one element is called a sin-
gleton.

� SETS DEFINED BY SPECIFICATION: Given a set X and a sentence P.x/ that
is either true or false whenever x is any particular element of X , there is a set
whose elements are precisely those x 2 X for which P.x/ is true, denoted by
fx 2X W P.x/g.

� UNIONS: Given any collection C of sets, there is a set called their union, de-
noted by

S
C , with the property that x 2 S

C if and only if x 2 X for some
X 2 C . Other notations for unions are
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X2C

X; X1[X2[ � � � :

� INTERSECTIONS: Given any nonempty collection C of sets, there is a set called
their intersection, denoted by

T
C , with the property that x 2 TC if and only

if x 2X for every X 2 C . Other notations for intersections are\
X2C

X; X1\X2\ � � � :

� SET DIFFERENCES: IfX and Y are sets, their difference, denoted byX XY , is
the set of all elements in X that are not in Y , so x 2X XY if and only if x 2X
and x … Y . If Y � X , the set difference X XY is also called the complement
of Y in X .

� POWER SETS: Given any set X , there is a set P .X/, called the power set of
X , whose elements are exactly the subsets of X . Thus S 2 P .X/ if and only
if S �X .

I Exercise A.1. Suppose A is a set and C is a collection of sets. Prove the following
properties of unions and intersections.

(a) DISTRIBUTIVE LAWS:

A[
 \

X2C

X

!
D \

X2C

.A[X/I

A\
 [

X2C

X

!
D [

X2C

.A\X/:

(b) DE MORGAN’S LAWS:

AX
 \

X2C

X

!
D [

X2C

.AXX/I

AX
 [

X2C

X

!
D \

X2C

.AXX/:

Note that one must be careful to start with a specific set before one can define
a new set by specification. This requirement rules out the possibility of forming
sets out of self-contradictory specifications such as the one discovered by Bertrand
Russell and now known as “Russell’s paradox”: the sentence C D fX W X … Xg
looks as if it might define a set, but it does not, because each of the statements
C 2 C and C … C implies its own negation. Similarly, there does not exist a “set of
all sets,” for if there were such a set S , we could define a set C D fX 2 S WX …Xg
by specification and reach the same contradiction.

There are times when we need to speak of “all sets” or other similar aggrega-
tions, primarily in the context of category theory (see Chapter 7). For this purpose,
we reserve the word class to refer to any well-defined assemblage of mathematical
objects that might or might not constitute a set. We treat classes informally, but there
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are various ways they can be axiomatized. (One such is the extension of ZFC due to
von Neumann, Bernays, and Gödel, known as NBG set theory; see [Men10].) For
example, we can speak of the class of all sets or the class of all vector spaces. Every
set is a class, but not every class is a set. A class that is not a set is called a proper
class. If C is a class and x is a mathematical object, we use the terminology “x is
an element of C” and the notation x 2 C to mean that x is one of the objects in C ,
just as we do for sets. The main restriction on using classes is that a proper class
cannot be an element of any set or class; this ensures that it is impossible to form
the equivalent of Russell’s paradox with classes instead of sets.

Cartesian Products, Relations, and Functions

Another primitive concept that we use without a formal definition is that of an or-
dered pair. Think of it as a pair of objects (which could be the same or different),
together with a specification of which is the first and which is the second. An or-
dered pair is denoted by writing the two objects in parentheses and separated by a
comma, as in .a;b/. The objects a and b are called the components of the ordered
pair. The defining characteristic is that two ordered pairs are equal if and only if
their first components are equal and their second components are equal:

.a;b/D .a0;b0/ if and only if aD a0 and b D b 0:

Given two sets, we can form a new set consisting of the ordered pairs whose
components are taken one from each set in a specified order. This is another type of
set whose existence is guaranteed by ZFC:

� CARTESIAN PRODUCTS: Given sets X and Y , there exists a set X �Y , called
their Cartesian product, whose elements are precisely all the ordered pairs of
the form .x;y/ with x 2X and y 2 Y .

Relations

Cartesian products are used to give rigorous definitions of the most important con-
structions in mathematics: relations and functions. Let us begin with the simpler of
these two concepts. A relation between sets X and Y is a subset of X �Y . If R is a
relation, it is often convenient to use the notation x R y to mean .x;y/ 2 R.

An important special case arises when we consider a relation between a set X
and itself, which is called a relation on X . For example, both “equals” and “less
than” are relations on the set of real numbers. If R is a relation on X and Y � X ,
we obtain a relation on Y , called the restriction of R to Y , consisting of the set of
all ordered pairs .x;y/ 2 R such that both x and y are in Y .
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Let � denote a relation on a set X . It is said to be reflexive if x � x for all x 2X ,
symmetric if x � y implies y � x, and transitive if x � y and y � z imply x � z. A
relation that is reflexive, symmetric, and transitive is called an equivalence relation.
The restriction of an equivalence relation to a subset S �X is again an equivalence
relation.

Given an equivalence relation � on X , for each x 2 X the equivalence class of
x is defined to be the set

Œx�D fy 2X W y � xg:
(The use of the term class here is not meant to suggest that equivalence classes
are not sets; the terminology was established before a clear distinction was made
between classes and sets.) The set of all equivalence classes is denoted by X=�.

Closely related to equivalence relations is the notion of a partition. Given any
collection C of sets, if A\B D ¿ whenever A;B 2 C and A ¤ B , the sets in C

are said to be disjoint. If X is a set, a partition of X is a collection C of disjoint
nonempty subsets of X whose union is X . In this situation one also says that X is
the disjoint union of the sets in C .

I Exercise A.2. Given an equivalence relation � on a set X , show that the set X=� of
equivalence classes is a partition of X . Conversely, given a partition of X , show that there
is a unique equivalence relation whose set of equivalence classes is exactly the original
partition.

If R is any relation on a set X , the next exercise shows that there is a “small-
est” equivalence relation � such that x R y ) x � y. It is called the equivalence
relation generated by R.

I Exercise A.3. LetR�X�X be any relation onX , and define � to be the intersection
of all equivalence relations inX �X that contain R.

(a) Show that � is an equivalence relation.
(b) Show that x � y if and only if at least one of the following statements is true: x D

y, or x R0 y, or there is a finite sequence of elements z1; : : :;zn 2 X such that
x R0 z1 R

0 � � �R0 zn R
0 y, where x R0 y means “x R y or y R x.” (See below for

the formal definition of a finite sequence.)

Another particularly important type of relation is a partial ordering: this is a
relation � on a set X that is reflexive, transitive, and antisymmetric, which means
that x � y and y � x together imply xD y. If in addition at least one of the relations
x � y or y � x holds for each pair of elements x;y 2X , it is called a total ordering
(or sometimes a linear or simple ordering). The notation x < y is defined to mean
x � y and x ¤ y, and the notations x > y and x � y have the obvious meanings. If
X is a set endowed with an ordering, one often says that X is a totally or partially
ordered set, with the ordering being understood from the context.

The most common examples of totally ordered sets are number systems such as
the real numbers and the integers (see below). An important example of a partially
ordered set is the set P .X/ of subsets of a given setX , with the partial order relation
defined by containment:A�B if and only ifA�B . It is easy to see that any subset
of a partially ordered set is itself partially ordered with (the restriction of) the same
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order relation, and if the original ordering is total, then the subset is also totally
ordered.

If X is a partially ordered set and S �X is any subset, an element x 2X is said
to be an upper bound for S if x � s for every s 2 S . If S has an upper bound, it is
said to be bounded above. If x is an upper bound for S and every other upper bound
x0 satisfies x0 � x, then x is called a least upper bound. The terms lower bound,
bounded below, and greatest lower bound are defined similarly.

An element s 2S is said to be maximal if there is no s 0 2S such that s0 > s, and it
is the largest element of S if s 0 � s for every s 0 2 S . Minimal and smallest elements
are defined similarly. A largest or smallest element of S is also called a maximum or
minimum of S , respectively. A largest element, if it exists, is automatically unique
and maximal, and similarly for a smallest element.

Note the important difference between a maximal element and a maximum: in
a subset S of a partially ordered set X , an element s 2 S may be maximal without
being a maximum, because there might be elements in S that are neither larger nor
smaller than s. On the other hand, if S is totally ordered, then a maximal element is
automatically a maximum.

A totally ordered setX is said to be well ordered if every nonempty subset S �X

has a smallest element. For example, the set of positive integers is well ordered, but
the set of all integers and the set of positive real numbers are not.

Functions

Suppose X and Y are sets. A function from X to Y is a relation f � X �Y with
the property that for every x 2 X there is a unique y 2 Y such that .x;y/ 2 f .
This unique element of Y is called the value of f at x and denoted by f .x/, so
that y D f .x/ if and only if .x;y/ 2 f . The sets X and Y are called the domain
and codomain of f , respectively. We consider the domain and codomain to be part
of the definition of the function, so to say that two functions are equal is to say
that they have the same domain and codomain, and both give the same value when
applied to each element of the domain. The words map and mapping are synonyms
for function.

The notation f W X ! Y means “f is a function from X to Y ” (or, depending
on how it is used in a sentence, “f , a function fromX to Y ,” or “f , fromX to Y ”).
The equation y D f .x/ is also sometimes written f W x 7! y or, if the name of the
function is not important, x 7! y. Note that the type of arrow ( 7!) used to denote
the action of a function on an element of its domain is different from the arrow (!)
used between the domain and codomain.

Given two functions g W X ! Y and f W Y !Z, their composition is the function
f ıg W X ! Z defined by .f ıg/.x/ D f .g.x// for each x 2 X . It follows from
the definition that composition is associative: .f ıg/ıhD f ı .g ıh/.

A map f W X ! Y is called a constant map if there is some element c 2 Y such
that f .x/D c for every x 2X . This is sometimes written symbolically as f .x/� c,
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and read “f .x/ is identically equal to c.” For each set X , there exists a natural map
IdX W X !X called the identity map of X , defined by IdX .x/D x for all x 2X . It
satisfies f ı IdX D f D IdY ıf whenever f W X ! Y . If S �X is a subset, there is
a function �S W S !X called the inclusion map of S in X , given by �S .x/D x for
x 2 S . We sometimes use the notation �S W S ,! X to emphasize the fact that it is
an inclusion map. When the sets are understood, we sometimes denote an identity
map simply by Id and an inclusion map by �.

If f W X ! Y is a function, we can obtain new functions from f by changing the
domain or codomain. First consider the domain. For any subset S � X , there is a
naturally defined function from S to Y , denoted by f jS W S ! Y and called the re-
striction of f to S , obtained by applying f only to elements of S : f jS .x/D f .x/

for all x 2 S . In terms of ordered pairs, f jS is just the subset of S �Y consisting of
ordered pairs .x;y/ 2 f such that x 2 S . It is immediate that f jS D f ı �S , and �S
is just the restriction of IdX to S .

On the other hand, given f W X ! Y , there is no natural way to expand the
domain of f without giving a new definition for the action of f on elements that
are not in X . If W is a set that contains X , and g W W ! Y is a function whose
restriction to X is equal to f , we say that g is an extension of f . If W ¤X , there
are typically many possible extensions of f .

Next consider changes of codomain. Given a function f W X ! Y , if Z is any
set that contains Y , we automatically obtain a new function zf W X ! Z, just by
letting zf .x/ D f .x/ for each x 2 X . It is also sometimes possible to shrink the
codomain, but this requires more care: if T � Y is a subset such that f .x/ 2 T for
every x 2X , we get a new function xf W X ! T , defined by xf .x/D f .x/ for every
x 2 X . In terms of ordered pairs, all three functions f , zf , and xf are represented
by exactly the same set of ordered pairs as f itself; but it is important to observe
that they are all different functions because they have different codomains. This ob-
servation notwithstanding, it is a common practice (which we usually follow) to
denote any function obtained from f by expanding or shrinking its codomain by
the same symbol as the original function. Thus in the situation above, we might
have several different functions denoted by the symbol f : the original function
f W X ! Y , a function f W X ! Z obtained by expanding the codomain, and a
function f W X ! T obtained by restricting the codomain. In any such situation, it
is important to be clear about which function is intended.

Let f W X ! Y be a function. If S � X , the image of S under f , denoted by
f .S/, is the subset of Y defined by

f .S/D fy 2 Y W y D f .x/ for some x 2 Sg:
It is common also to use the shorter notation

ff .x/ W x 2 Sg
to mean the same thing. The set f .X/� Y , the image of the entire domain, is also
called the image of f or the range of f . (Warning: in some contexts—including
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the previous edition of this book—the word range is used to denote what we here
call the codomain of a function. Because of this ambiguity, we avoid using the word
range in favor of image.)

If T is a subset of Y , the preimage of T under f (also called the inverse image)
is the subset f �1.T /�X defined by

f �1.T /D fx 2X W f .x/ 2 T g:
If T D fyg is a singleton, it is common to use the notation f �1.y/ in place of the
more accurate but more cumbersome f �1.fyg/.

I Exercise A.4. Let f W X ! Y and g W W ! X be maps, and suppose R � W ,
S;S 0 �X , and T;T 0 � Y . Prove the following:

(a) T � f.f �1.T //.
(b) T � T 0 ) f �1.T /� f �1.T 0/.
(c) f �1.T [T 0/D f �1.T /[f �1.T 0/.
(d) f �1.T \T 0/D f �1.T /\f �1.T 0/.
(e) f �1.T XT 0/D f �1.T /Xf �1.T 0/.
(f) S � f �1.f .S//.
(g) S � S 0 ) f.S/� f.S 0/.
(h) f.S [S 0/D f.S/[f.S 0/.
(i) f.S \S 0/� f.S/\f.S 0/.
(j) f.S XS 0/� f.S/Xf.S 0/.
(k) f.S/\T D f.S \f �1.T //.
(l) f.S/[T � f.S [f �1.T //.

(m) S\f �1.T /� f �1.f .S/\T /.
(n) S[f �1.T /� f �1.f .S/[T /.
(o) .f ıg/�1.T /D g�1.f �1.T //.
(p) .f ıg/.R/D f.g.R//.

I Exercise A.5. With notation as in the previous exercise, give counterexamples to show
that the following equalities do not necessarily hold true.

(a) T D f.f �1.T //.
(b) S D f �1.f .S//.
(c) f.S \S 0/D f.S/\f.S 0/.
(d) f.S XS 0/D f.S/Xf.S 0/.

A function f W X ! Y is said to be injective or one-to-one if f .x1/ D f .x2/

implies x1 D x2 whenever x1;x2 2 X . It is said to be surjective or to map X onto
Y if f .X/D Y , or in other words if every y 2 Y is equal to f .x/ for some x 2X .
A function that is both injective and surjective is said to be bijective or a one-to-
one correspondence. Maps that are injective, surjective, or bijective are also called
injections, surjections, or bijections, respectively. A bijection from a set X to itself
is also called a permutation of X .

I Exercise A.6. Show that a composition of injective functions is injective, a composi-
tion of surjective functions is surjective, and a composition of bijective functions is bijective.

I Exercise A.7. Show that equality (a) in Exercise A.5 holds for every T � Y if and
only if f is surjective, and each of the equalities (b)–(d) holds for every S;S0 �X if and
only if f is injective.
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Given f W X ! Y , if there exists a map g W Y ! X such that f ıg D IdY and
g ıf D IdX , then g is said to be an inverse of f . Since inverses are unique (see the
next exercise), the inverse map is denoted unambiguously by f �1 when it exists.

I Exercise A.8. Let f W X ! Y be a function.

(a) Show that f has an inverse if and only if it is bijective.
(b) Show that if f has an inverse, its inverse is unique.
(c) Show that if f W X ! Y and g W Y ! Z are both bijective, then .g ıf /�1 D

f �1 ıg�1.

Beware: given a function f W X ! Y , because the same notation f �1 is used for
both the inverse function and the preimage of a set, it is easy to get confused. When
f �1 is applied to a subset T � Y , there is no ambiguity: the notation f �1.T /
always means the preimage. If f happens to be bijective, f �1.T / could also be
interpreted to mean the (forward) image of T under the function f �1; but a little
reflection should convince you that the two interpretations yield the same result.

A little more care is required with the notation f �1.y/ when y is an element of
Y . If f is bijective, this generally means the value of the inverse function applied to
the element y, which is an element of X . But we also sometimes use this notation
to mean the preimage set f �1.fyg/, which makes sense regardless of whether f is
bijective. In such cases, the intended meaning should be made clear in context.

Given f W X ! Y , a left inverse for f is a function g W Y ! X that satisfies
g ıf D IdX . A right inverse for f is a function g W Y !X satisfying f ıgD IdY .

Lemma A.9. If f W X ! Y is a function and X ¤ ¿, then f has a left inverse if
and only if it is injective, and a right inverse if and only if it is surjective.

Proof. Suppose g is a left inverse for f . If f .x/D f .x 0/, applying g to both sides
implies x D x0, so f is injective. Similarly, if g is a right inverse and y 2 Y is
arbitrary, then f .g.y//D y, so f is surjective.

Now suppose f is injective. Choose any x0 2 X , and define g W Y ! X by
g.y/ D x if y 2 f .X/ and y D f .x/, and g.y/ D x0 if y … f .X/. The injectiv-
ity of f ensures that g is well defined, and it is immediate from the definition that
g ıf D IdX . The proof that surjectivity implies the existence of a right inverse re-
quires the axiom of choice, so we postpone it until later in this appendix (Exercise
A.15). ut

I Exercise A.10. Show that if f W X ! Y is bijective, then any left or right inverse for
f is equal to f �1.

For the purposes of category theory, it is necessary to extend some of the concepts
of relations and functions to classes as well as sets. If C and D are classes, a relation
between C and D is just a class of ordered pairs of the form .x;y/ with x 2 C

and y 2 D . A mapping from C to D is a relation F between C and D with the
property that for every x 2 C there is a unique y 2 D such that .x;y/ 2 F . We use
the same notations in this context as for relations and mappings between sets. Thus,
for example, F W C ! D means that F is a mapping from C to D , and y D F .x/

means that .x;y/ 2 F .
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Number Systems and Cardinality

So far, most of the set-theoretic constructions we have introduced describe ways of
obtaining new sets from already existing ones. Before the theory will have much
content, we need to know that some interesting sets exist. We take the set of real
numbers as our starting point. The properties that characterize it are the following:

(i) It is a field in the algebraic sense: a set with binary operations C and � satis-
fying the usual associative, commutative, and distributive laws, containing an
additive identity 0 and a multiplicative identity 1¤ 0, such that every element
has an additive inverse and every nonzero element has a multiplicative inverse.

(ii) It is endowed with a total ordering that makes it into an ordered field, which
means that y < z ) xCy < xC z and x > 0; y > 0) xy > 0.

(iii) It is complete, meaning that every nonempty subset with an upper bound has a
least upper bound.

ZFC guarantees the existence of such a set.

� EXISTENCE OF THE REAL NUMBERS: There exists a complete ordered field,
called the set of real numbers and denoted by R.

I Exercise A.11. Show that the real numbers are unique, in the sense that any complete
ordered field admits a bijection with R that preserves addition, multiplication, and order.

Let S � R be a nonempty subset with an upper bound. The least upper bound ofS
is also called the supremum of S , and is denoted by supS . Similarly, any nonempty
set T with a lower bound has a greatest lower bound, also called its infimum and
denoted by infT .

We work extensively with the usual subsets of R:

� the set of natural numbers, N (the positive counting numbers), defined as the
smallest subset of R containing 1 and containing nC1 whenever it contains n

� the set of integers, Z D fn 2 R W nD 0 or n 2 N or �n 2 Ng
� the set of rational numbers, Q D fx 2 R W x D p=q for some p;q 2 Zg
We consider the set C of complex numbers to be simply R�R, in which the real

numbers are identified with the subset R � f0g � C and i stands for the imaginary
unit .0;1/. Multiplication and addition of complex numbers are defined by the usual
rules with i2 D �1; thus xC iy is another notation for .x;y/.

For any pair of integersm� n, we define the set fm;: : : ;ng � Z by

fm;: : : ;ng D fk 2 Z Wm� k � ng:
For subsets of the real numbers, we use the following standard notations when a <b:
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.a;b/D fx 2 R W a < x < bg (open interval);

Œa;b�D fx 2 R W a � x � bg (closed interval);

.a;b�D fx 2 R W a < x � bg (half-open interval);

Œa;b/D fx 2 R W a � x < bg (half-open interval):

(The two conflicting meanings of .a;b/—as an ordered pair or as an open interval—
have to be distinguished from the context.) We also use the notations Œa;1/, .a;1/,
.�1;b�, .�1;b/, and .�1;1/, with the obvious meanings. A subset J � R is
called an interval if it contains more than one element, and whenever a;b 2 J , every
c such that a < c < b is also in J .

I Exercise A.12. Show that an interval must be one of the nine types of sets Œa;b�,
.a;b/, Œa;b/, .a;b�, .�1;b�, .�1;b/, Œa;1/, .a;1/, or .�1;1/.

The natural numbers play a special role in set theory, as a yardstick for measuring
sizes of sets. Two sets are said to have the same cardinality if there exists a bijection
between them. A set is finite if it is empty or has the same cardinality as f1; : : : ;ng
for some n 2 N (in which case it is said to have cardinality n), and otherwise it is
infinite. A set is countably infinite if it has the same cardinality as N , countable if
it is either finite or countably infinite, and uncountable otherwise. The sets N , Z,
and Q are countable, but R and C are not.

I Exercise A.13. Prove that any subset of a countable set is countable.

I Exercise A.14. Prove that the Cartesian product of two countable sets is countable.

Indexed Families

Using what we have introduced so far, it is easy to extend the notion of ordered pair
to more than two objects. Given a natural number n and a set S , an ordered n-tuple
of elements of S is a function x W f1; : : : ;ng ! S . It is customary to write x i instead
of x.i/ for the value of x at i , and the whole n-tuple is denoted by either of the
notations

.x1; : : : ;xn/ or .xi /
n
iD1:

The elements xi 2 S are called the components of the n-tuple. Similarly, an (infi-
nite) sequence of elements of S is a function x W N ! S , written as

.x1;x2; : : : /; .xi /i2N ; or .xi /
1
iD1:

A doubly infinite sequence is a function x W Z ! S , written

.: : : ;x�1;x0;x1; : : : /; .xi /i2Z; or .xi /
1
iD�1:
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An ordered n-tuple is sometimes called a finite sequence. For all such sequences,
we sometimes write .xi / if the domain of the associated function (f1; : : : ;ng, N , or
Z) is understood.

It is also useful to adapt the notations for sequences to refer to the image set of
a finite or infinite sequence, that is, the set of values x1;x2; : : : , irrespective of their
order and disregarding repetitions. For this purpose we replace the parentheses by
braces. Thus any of the notations

fx1; : : : ;xng; fxi gniD1; or fxi W i D 1; : : : ;ng
denotes the image set of the function x W f1; : : : ;ng ! S . Similarly,

fx1;x2; : : : g; fxigi2N; fxig1
iD1; or fxi W i 2 Ng

all represent the image set of the infinite sequence .x i /i2N .
A subsequence of a sequence .xi /i2N is a sequence of the form .xij /j2N , where

.ij /j2N is a sequence of natural numbers that is strictly increasing, meaning that
j < j 0 implies ij < ij 0 .

We sometimes need to consider collections of objects that are indexed, not by
the natural numbers or subsets of them, but by arbitrary sets, potentially even un-
countable ones. An indexed family of elements of a set S is just a function from a
set A (called the index set) to S , and in this context is denoted by .x˛/˛2A. (Thus a
sequence is just the special case of an indexed family in which the index set is N .)
Occasionally, when the index set is understood or is irrelevant, we omit it from the
notation and simply denote the family as .x˛/. As in the case of sequences, we use
braces to denote the image set of the function:

fx˛g˛2A D fx˛ W ˛ 2 Ag D fx 2 S W x D x˛ for some ˛ 2 Ag:
Any set A of elements of S can be converted to an indexed family, simply by taking
the index set to be A itself and the indexing function to be the inclusion map A ,!S .

If .X˛/˛2A is an indexed family of sets,
S
˛2AX˛ is just another notation for

the union of the (unindexed) collection fX˛g˛2A. If the index set is finite, the union
is usually written as X1 [ � � � [Xn. A similar remark applies to the intersectionT
˛2AX˛ or X1\ � � �\Xn.
The definition of Cartesian product now extends easily from two sets to arbi-

trarily many. If .X1; : : : ;Xn/ is an ordered n-tuple of sets, their Cartesian product
X1 � � � � �Xn is the set of all ordered n-tuples .x1; : : : ;xn/ such that xi 2 Xi for
i D 1; : : : ;n. If X1 D �� � D Xn D X , the n-fold Cartesian product X � � � � �X is
often written simply as X n.

Every Cartesian product comes naturally equipped with canonical projection
maps �i W X1� � � ��Xn ! Xi , defined by �i .x1; : : : ;xn/D xi . Each of these maps
is surjective, provided the sets Xi are all nonempty. If f W S !X1� � � ��Xn is any
function into a Cartesian product, the composite functions f i D �i ıf W S !Xi are
called its component functions. Any such function f is completely determined by
its component functions, via the formula
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f .y/D .f1.y/; : : : ;fn.y//:

More generally, the Cartesian product of an arbitrary indexed family .X ˛/˛2A of
sets is defined to be the set of all functions x W A! S

˛2AX˛ such that x˛ 2X˛ for
each ˛. It is denoted by

Q
˛2AX˛. Just as in the case of finite products, each Carte-

sian product comes equipped with canonical projection maps � ˇ W Q˛2AX˛ !Xˇ ,
defined by �ˇ .x/D xˇ .

Our last set-theoretic assertion from ZFC is that it is possible to choose an ele-
ment from each set in an arbitrary indexed family.

� AXIOM OF CHOICE: If .X˛/˛2A is a nonempty indexed family of nonempty
sets, there exists a function c W A! S

˛2AX˛, called a choice function, such
that c.˛/ 2X˛ for each ˛.

In other words, the Cartesian product of a nonempty indexed family of nonempty
sets is nonempty.

Here are some immediate applications of the axiom of choice.

I Exercise A.15. Complete the proof of Lemma A.9 by showing that every surjective
function has a right inverse.

I Exercise A.16. Prove that if there exists a surjective map from a countable set onto S ,
then S is countable.

I Exercise A.17. Prove that the union of a countable collection of countable sets is count-
able.

The axiom of choice has a number of interesting equivalent reformulations; the
relationships among them make fascinating reading, for example in [Hal74]. The
only other formulations we make use of are the following two (the well-ordering
theorem in Problem 4-6 and Zorn’s lemma in Lemma 13.42).

Theorem A.18 (The Well-Ordering Theorem). Every set can be given a total or-
dering with respect to which it is well ordered.

Theorem A.19 (Zorn’s Lemma). Let X be a partially ordered set in which every
totally ordered subset has an upper bound. Then X contains a maximal element.

For proofs, see any of the set theory texts mentioned at the beginning of this
appendix.

Abstract Disjoint Unions

Earlier, we mentioned that given a set X and a partition of it, X is said to be the dis-
joint union of the subsets in the partition. It sometimes happens that we are given a
collection of sets, which may or may not be disjoint, but which we want to consider
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as disjoint subsets of a larger set. For example, we might want to form a set consist-
ing of “five copies of R,” in which we consider the different copies to be disjoint
from each other. We can accomplish this by the following trick. Suppose .X ˛/˛2A is
an indexed family of nonempty sets. For each ˛ in the index set, imagine “tagging”
the elements of X˛ with the index ˛, in order to make the sets X˛ and Xˇ disjoint
when ˛ ¤ ˇ, even if they were not disjoint to begin with.

Formally, we can make sense of an element x with a tag ˛ as an ordered pair
.x;˛/. Thus we define the (abstract) disjoint union of the indexed family, denoted
by
`
˛2AX˛, to be the seta

˛2A
X˛ D f.x;˛/ W ˛ 2A and x 2X˛g:

If the index set is finite, the disjoint union is usually written as X1q�� �qXn.
For each index ˛, there is a natural map �˛ W X˛ !`

˛2AX˛, called the canon-
ical injection of X˛, defined by �˛.x/D .x;˛/. Each such map is injective, and its
image is the set X �̨ D f.x;˛/ W x 2 X˛g, which we can think of as a “copy” of X˛
sitting inside the disjoint union. For ˛ ¤ ˇ, the sets X �̨ and X�

ˇ
are disjoint from

each other by construction. In practice, we usually blur the distinction between X ˛

and X �̨, and thus think of X˛ itself as a subset of the disjoint union, and think of
the canonical injection �˛ as an inclusion map. With this convention, this usage of
the term disjoint union is consistent with our previous one.
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Review of Metric Spaces

Metric spaces play an indispensable role in real analysis, and their properties pro-
vide the underlying motivation for most of the basic definitions in topology. In this
section we summarize the important properties of metric spaces with which you
should be familiar. For a thorough treatment of the subject, see any good undergrad-
uate real analysis text such as [Rud76] or [Apo74].

Euclidean Spaces

Most of topology, in particular manifold theory, is modeled on the behavior of Eu-
clidean spaces and their subsets, so we begin with a quick review of their properties.

The Cartesian product Rn D R � � � � � R of n copies of R is known as n-
dimensional Euclidean space. It is the set of all ordered n-tuples of real numbers.
An element of Rn is denoted by .x1; : : : ;xn/ or simply x. The numbers xi are called
its components or coordinates. Zero-dimensional Euclidean space R0 is, by con-
vention, the singleton f0g.

We use without further comment the fact that Rn is an n-dimensional real vector
space with the usual operations of scalar multiplication and vector addition. We
refer to an element of Rn either as a point or as a vector, depending on whether
we wish to emphasize its location or its direction and magnitude. The geometric
properties of Rn are derived from the Euclidean dot product, defined by x � y D
x1y1C�� �Cxnyn. In particular, the norm or length of a vector x 2 Rn is given by

jxj D .x �x/1=2 D �
.x1/

2C�� �C .xn/
2
�1=2

:

I Exercise B.1. Show that the following inequalities hold for any x D .x1; : : :;xn/ 2
Rn:

maxfjx1j; : : :; jxnjg � jxj � p
nmaxfjx1j; : : :; jxnjg: (B.1)

If x and y are nonzero vectors in Rn, the angle between x and y is defined to
be cos�1�.x �y/=.jxj jyj/�. Given two points x;y 2 Rn, the line segment from x to

395
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y is the set fxC t.y�x/ W 0� t � 1g, and the distance between x and y is jx�yj.
A (closed) ray in Rn is any set of the form fxC t.y �x/ W t � 0g for two distinct
points x;y 2 Rn, and the corresponding open ray is the same set with x deleted.

Continuity and convergence in Euclidean spaces are defined in the usual ways.
A map f W U ! V between subsets of Euclidean spaces is continuous at x 2 U

if for any " > 0 there exists ı > 0 such that for all y 2 U , jx � yj < ı implies
jf .x/�f .y/j < ". Such a map is said to be continuous if it is continuous at every
point of its domain. A sequence .xi / of points in Rn converges to x 2 Rn if for
any " > 0 there exists N 2 N such that i � N implies jxi �xj < ". A sequence is
bounded if there is some R 2 R such that jxi j �R for all i .

I Exercise B.2. Prove that if S is a nonempty subset of R that is bounded above and
aD supS , then there is a sequence in S converging to a.

Metrics

Metric spaces are generalizations of Euclidean spaces, in which none of the vector
space properties are present and only the distance function remains. Suppose M
is any set. A metric on M is a function d W M �M ! R, also called a distance
function, satisfying the following three properties for all x;y;z 2M :

(i) SYMMETRY: d.x;y/D d.y;x/.
(ii) POSITIVITY: d.x;y/ � 0, and d.x;y/D 0 if and only if x D y.

(iii) TRIANGLE INEQUALITY: d.x;z/ � d.x;y/Cd.y;z/.

If M is a set and d is a metric on M , the pair .M;d/ is called a metric space.
(Actually, unless it is important to specify which metric is being considered, one
often just says “M is a metric space,” with the metric being understood from the
context.)

Example B.3 (Metric Spaces).

(a) If M is any subset of Rn, the function d.x;y/ D jx � yj is a metric on M
(see Exercise B.4 below), called the Euclidean metric. Whenever we consider
a subset of Rn as a metric space, it is always with the Euclidean metric unless
we specify otherwise.

(b) Similarly, if M is any metric space and X is a subset of M , then X inherits a
metric simply by restricting the distance function ofM to pairs of points in X .

(c) If X is any set, define a metric on X by setting d.x;y/ D 1 unless x D y, in
which case d.x;y/D 0. This is called the discrete metric on X . //

I Exercise B.4. Prove that d.x;y/D jx�yj is a metric on any subset of Rn.

Here are some of the standard definitions used in metric space theory. Let M be
a metric space.
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� For any x 2M and r > 0, the (open) ball of radius r around x is the set

Br.x/D fy 2M W d.y;x/ < rg;
and the closed ball of radius r around x is

xBr .x/D fy 2M W d.y;x/ � rg:
� A subset A �M is said to be an open subset of M if it contains an open ball

around each of its points.
� A subset A�M is said to be a closed subset of M if M XA is open.

The next two propositions summarize the most important properties of open and
closed subsets of metric spaces.

Proposition B.5 (Properties of Open Subsets of a Metric Space). Let M be a
metric space.

(a) Both M and ¿ are open subsets of M .
(b) Any intersection of finitely many open subsets of M is an open subset of M .
(c) Any union of arbitrarily many open subsets of M is an open subset of M .

Proposition B.6 (Properties of Closed Subsets of a Metric Space). Let M be a
metric space.

(a) Both M and ¿ are closed subsets of M .
(b) Any union of finitely many closed subsets of M is a closed subset of M .
(c) Any intersection of arbitrarily many closed subsets of M is a closed subset of

M .

I Exercise B.7. Prove the two preceding propositions.

I Exercise B.8. Suppose M is a metric space.

(a) Show that an open ball in M is an open subset, and a closed ball in M is a closed
subset.

(b) Show that a subset of M is open if and only if it is the union of some collection of
open balls.

I Exercise B.9. In each part below, a subset S of a metric space M is given. In each
case, decide whether S is open, closed, both, or neither.

(a) M D R, and S D Œ0;1/.
(b) M D R, and S D N.
(c) M D Z, and S D N.
(d) M D R2, and S is the set of points with rational coordinates.
(e) M D R2, and S is the unit disk f.x;y/ 2 R2 W x2 Cy2 < 1g.
(f) M D R3, and S is the unit disk f.x;y;z/2 R3 W z D 0 and x2 Cy2 < 1g.
(g) M D f.x;y/ 2 R2 W x > 0 and y > 0g, and S D f.x;y/ 2M W x2 Cy2 � 1g.

I Exercise B.10. Suppose A� R is closed and nonempty. Show that if A is bounded
above, then it contains its supremum, and if it is bounded below, then it contains its infimum.
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Suppose M is a metric space and A is a subset of M . We say that A is bounded
if there exists a positive number R such that d.x;y/ � R for all x;y 2 A. If A
is a nonempty bounded subset of M , the diameter of A is the number diamA D
supfd.x;y/ W x;y 2 Ag.

I Exercise B.11. Let M be a metric space and A � M be any subset. Prove that the
following are equivalent:

(a) A is bounded.
(b) A is contained in some closed ball.
(c) A is contained in some open ball.

Continuity and Convergence

The definition of continuity in the context of metric spaces is a straightforward gen-
eralization of the Euclidean definition. If .M1;d1/ and .M2;d2/ are metric spaces
and x is a point inM1, a map f W M1 !M2 is said to be continuous at x if for any
" > 0 there exists ı > 0 such that d1.x;y/ < ı implies d2.f .x/;f .y// < " for all
y 2M1; and f is continuous if it is continuous at every point of M1.

Similarly, suppose .xi /1iD1 is a sequence of points in a metric space .M;d/.
Given x 2M , the sequence is said to converge to x, and x is called the limit of the
sequence, if for any " > 0 there exists N 2 N such that i �N implies d.xi ;x/ < ".
If this is the case, we write xi ! x or limi!1xi D x.

I Exercise B.12. Let M and N be metric spaces and let f W M !N be a map. Show
that f is continuous if and only if it takes convergent sequences to convergent sequences
and limits to limits, that is, if and only if xi ! x inM implies f.xi /! f.x/ inN .

I Exercise B.13. Suppose A is a closed subset of a metric space M , and .xi / is a se-
quence of points inA that converges to a point x 2M . Show that x 2A.

A sequence .xi /1iD1 in a metric space is said to be bounded if its image fxi g1
iD1

is a bounded subset ofM . The sequence is said to be a Cauchy sequence if for every
"> 0, there existsN 2 N such that i;j �N implies d.xi ;xj / < ". Every convergent
sequence is Cauchy (Exercise B.14), but the converse is not true in general. A metric
space in which every Cauchy sequence converges is said to be complete.

I Exercise B.14. Prove that every convergent sequence in a metric space is Cauchy, and
every Cauchy sequence is bounded.

I Exercise B.15. Prove that every closed subset of a complete metric space is complete,
when considered as a metric space in its own right.

The following criterion for continuity is frequently useful (and in fact, as is ex-
plained in Chapter 2, it is the main motivation for the definition of a topological
space).
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Theorem B.16 (Open Subset Criterion for Continuity). A map f W M1 ! M2

between metric spaces is continuous if and only if the preimage of every open subset
is open: whenever U is an open subset of M2, its preimage f �1.U / is open in M1.

Proof. First assume f is continuous, and let U � M2 be an open set. If x is any
point in f �1.U /, then becauseU is open, there is some " > 0 such thatB".f .x//�
U . Continuity of f implies that there exists ı > 0 such that y 2 Bı .x/ implies
f .y/ 2 B".f .x// � U , so Bı.x/ � f �1.U /. Since this is true for every point of
f �1.U /, it follows that f �1.U / is open.

Conversely, assume that the preimage of every open subset is open. Choose any
x 2M1, and let " > 0 be arbitrary. Because B".f .x// is open inM2, our hypothesis
implies that f �1�B".f .x//� is open in M1. Since x 2 f �1�B".f .x//�, this means
there is some ball Bı .x/ � f �1�B".f .x//�. In other words, y 2 Bı .x/ implies
f .y/ 2 B".f .x//, so f is continuous at x. Because this is true for every x 2 X , it
follows that f is continuous. ut
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Review of Group Theory

We assume only basic group theory such as one is likely to encounter in most under-
graduate algebra courses. You can find much more detail about all of this material
in, for example, [Hun97] or [Her96].

Basic Definitions

A group is a set G together with a map G �G ! G, usually called multiplication
and written .g;h/ 7! gh, satisfying

(i) ASSOCIATIVITY: For all g;h;k 2G, .gh/k D g.hk/.
(ii) EXISTENCE OF IDENTITY: There is an element 1 2 G such that 1g D g1D g

for all g 2G.
(iii) EXISTENCE OF INVERSES: For each g 2 G, there is an element h 2 G such

that ghD hg D 1.

One checks easily that the identity is unique, that each element has a unique
inverse (so the usual notation g�1 for inverses makes sense), and that .gh/�1 D
h�1g�1. For g 2 G and n 2 Z, the notation gn is defined inductively by g0 D 1,
g1 D g, gnC1 D gng for n 2 N , and g�n D .g�1/n.

The order of a group G is its cardinality as a set. The trivial group is the unique
group of order 1; it is the group consisting of the identity alone. A group G is said
to be abelian if ghD hg for all g;h 2 G. The group operation in an abelian group
is frequently written additively, .g;h/ 7! gCh, in which case the identity element
is denoted by 0, the inverse of g is denoted by �g, and we use ng in place of g n.

IfG is a group, a subset ofG that is itself a group with the same multiplication is
called a subgroup of G. It follows easily from the definition that a subset of G is a
subgroup if and only if it is closed under multiplication and contains the inverse of
each of its elements. Thus, for example, the intersection of any family of subgroups
of G is itself a subgroup of G.

401
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If S is any subset of a groupG, we let hSi denote the intersection of all subgroups
of G containing S . It is a subgroup of G—in fact, the smallest subgroup of G
containing S—and is called the subgroup generated by S . If S D fg1; : : : ;gkg is
a finite set, it is common to use the less cumbersome notation hg1; : : : ;gki for the
subgroup generated by S , instead of hfg1; : : : ;gkgi.

I Exercise C.1. SupposeG is a group and S is any subset ofG. Show that the subgroup
generated by S is equal to the set of all finite products of integral powers of elements of S .

If G1; : : : ;Gn are groups, their direct product is the set G1 � � � � �Gn with the
group structure defined by the multiplication law

.g1; : : : ;gn/.g
0
1; : : : ;g

0
n/D .g1g

0
1; : : : ;gng

0
n/

and with identity element .1; : : : ;1/. More generally, the direct product of an arbi-
trary indexed family of groups .G˛/˛2A is the Cartesian product set

Q
˛2AG˛ with

multiplication defined componentwise: .gg 0/˛ D g˛g
0̨ .

If .G˛/˛2A is a family of abelian groups, we also define their direct sum, denoted
by

L
˛G˛ , to be the subgroup of the direct product

Q
˛G˛ consisting of those

elements .g˛/˛2A such that g˛ is the identity element inG˛ for all but finitely many
˛. The direct sum of a finite family is often written G1 ˚ �� �˚Gn. If the family is
finite (or if G˛ is the trivial group for all but finitely many ˛), then the direct sum
and the direct product are identical; but in general they are not.

A map f W G ! H between groups is called a homomorphism if it preserves
multiplication: f .gh/ D f .g/f .h/. A bijective homomorphism is called an iso-
morphism. If there exists an isomorphism between groups G and H , they are said
to be isomorphic, and we writeG ŠH . A homomorphism from a groupG to itself
is called an endomorphism of G , and an endomorphism that is also an isomorphism
is called an automorphism of G .

If f W G !H is a homomorphism, the image of f is the set f .G/ �H , often
written Imf , and its kernel is the set f �1.1/�G, denoted by Kerf .

I Exercise C.2. Let f W G !H be a homomorphism.

(a) Show that f is injective if and only if Kerf D f1g.
(b) Show that if f is bijective, then f �1 is also an isomorphism.
(c) Show that Kerf is a subgroup ofG, and Imf is a subgroup of H .
(d) Show that for any subgroup K �G, the image set f.K/ is a subgroup ofH .

Any element g of a group G defines a map Cg W G ! G by Cg.h/ D ghg�1.
This map, called conjugation by g, is easily shown to be an automorphism of G,
so the image under Cg of any subgroup H � G (written symbolically as gHg�1)
is another subgroup of G. Two subgroupsH;H 0 are conjugate if H 0 D gHg�1 for
some g 2G.

I Exercise C.3. LetG be a group. Show that conjugacy is an equivalence relation on the
set of all subgroups of G.
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The set of subgroups of G conjugate to a given subgroupH is called the conju-
gacy class of H in G .

Cosets and Quotient Groups

Suppose G is a group. Given a subgroup H � G and an element g 2 G, the left
coset of H determined by g is the set

gH D fgh W h 2H g:
The right coset Hg is defined similarly. The relation congruence modulo H is
defined on G by declaring that g � g 0 .mod H/ if and only if g�1g0 2H .

I Exercise C.4. Show that congruence modulo H is an equivalence relation, and its
equivalence classes are precisely the left cosets of H .

The set of left cosets of H in G is denoted by G=H . (This is just the partition of
G defined by congruence modulo H .) The cardinality of G=H is called the index
of H in G .

A subgroupK � G is said to be normal if it is invariant under all conjugations,
that is, if gKg�1 DK for all g 2G. Clearly, every subgroup of an abelian group is
normal.

I Exercise C.5. Show that a subgroup K �G is normal if and only if gK DKg for
every g 2G.

I Exercise C.6. Show that the kernel of any homomorphism is a normal subgroup.

I Exercise C.7. If G is a group, show that the intersection of any family of normal sub-
groups of G is itself a normal subgroup of G.

Normal subgroups give rise to one of the most important constructions in group
theory. Given a normal subgroupK �G, define a multiplication operator on the set
G=K of left cosets by

.gK/.g0K/D .gg0/K:

Theorem C.8 (Quotient Theorem for Groups). If K is a normal subgroup of G,
this multiplication is well defined on cosets and turns G=K into a group.

Proof. First we need to show that the product does not depend on the representatives
chosen for the cosets: if gKD g 0K and hKD h0K , we show that .gh/KD .g0h0/K .
From Exercise C.4, the fact that g and g 0 determine the same coset means that
g�1g0 2K , which is the same as saying g 0 D gk for some k 2K . Similarly, h0 D hk0
for k0 2K . Because K is normal, h�1kh is an element of K . Writing this element
as k00, we have khD hk 00. It follows that

g0h0 D gkhk0 D ghk00k0;
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which shows that g0h0 and gh determine the same coset.
Now we just note that the group properties are satisfied: associativity of the mul-

tiplication in G=K follows from that of G; the element 1K DK of G=K acts as an
identity; and g�1K is the inverse of gK . ut

WhenK is a normal subgroup ofG, the groupG=K is called the quotient group
of G by K . The natural projection map � W G ! G=K that sends each element to
its coset is a surjective homomorphism whose kernel is K .

The following theorem tells how to define homomorphisms from a quotient
group.

Theorem C.9. Let G be a group and let K � G be a normal subgroup. Given a
homomorphism f W G !H such thatK � Kerf , there is a unique homomorphism
zf W G=K !H such that the following diagram commutes:

G

G=K

�
�

zf
� H:

f
� (C.1)

(A diagram such as (C.1) is said to commute, or to be commutative, if the maps
between two sets obtained by following arrows around either side of the diagram
are equal. So in this case commutativity means that zf ı� D f .)

Proof. Since �.g/ D gK , if such a map exists, it has to be given by the formula
zf .gK/ D f .g/; this proves uniqueness. To prove existence, we wish to define zf

by this formula. As long as this is well defined, it will certainly make the diagram
commute. To see that it is well defined, note that if g � g 0 .mod K/, then g0 D gk

for some k 2K , and therefore f .g 0/D f .gk/D f .g/f .k/D f .g/. It follows from
the definition of multiplication in G=K that zf is a homomorphism. ut

In the situation of the preceding theorem, we say that f passes to the quotient
or descends to the quotient.

The most important fact about quotient groups is the following result, which says
in essence that the projection onto a quotient group is the model for all surjective
homomorphisms.

Theorem C.10 (First Isomorphism Theorem for Groups). SupposeG andH are
groups, and f W G !H is a homomorphism. Then f descends to an isomorphism
from G=Kerf to Imf . Thus if f is surjective, then G=Kerf is isomorphic to H .

Proof. LetKD Kerf andG 0 D Imf . From the preceding theorem, zf .gK/D f .g/

defines a homomorphism zf W G=K ! G0. Because G 0 is the image of f , it follows
that zf is surjective. To show that zf is injective, suppose 1D zf .gK/D f .g/. This
means that g 2 Kerf DK , so gK DK is the identity element of G=K . ut
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I Exercise C.11. Suppose f W G !H is a surjective group homomorphism, and K �
G is a normal subgroup. Show that f.K/ is normal inH .

I Exercise C.12. Suppose f1 W G!H1 and f2 W G!H2 are group homomorphisms
such that f1 is surjective and Kerf1 � Kerf2. Show that there is a unique homomorphism
f W H1 !H2 such that the following diagram commutes:

G

H1

f1

�

f

� H2:

f2

�

Cyclic Groups

LetG be a group. IfG is generated by a single element g 2G, thenG is said to be a
cyclic group, and g is called a generator of G . More generally, for any groupG and
element g 2G, the subgroup hgi D ˚

gn W n 2 Z
��G is called the cyclic subgroup

generated by g.

Example C.13 (Cyclic Groups).

(a) The group Z of integers (under addition) is an infinite cyclic group generated
by 1.

(b) For any n2 Z, the cyclic subgroup hni � Z is normal because Z is abelian. The
quotient group Z=hni (often abbreviated Z=n) is called the group of integers
modulo n. It is easily seen to be a cyclic group of order n, with the coset of 1
as a generator. //

I Exercise C.14. Show that every infinite cyclic group is isomorphic to Z and every
finite cyclic group is isomorphic to Z=n, where n is the order of the group.

I Exercise C.15. Show that every subgroup of a cyclic group is cyclic.

I Exercise C.16. Suppose G is a cyclic group and f W G !G is any homomorphism.
Show there is an integer n such that f.�/D �n for all � 2G. Show that if G is infinite,
then n is uniquely determined by f .
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[Rad25] Tibor Radó, Über den Begriff der Riemannschen Fläche, Acta Litt. Sci. Szeged. 2

(1925), 101–121.
[Ran96] A. A. Ranicki, On the Hauptvermutung, The Hauptvermutung Book, Kluwer Aca-

demic, Dordrecht, 1996, pp. 3–31.
[Ric63] Ian Richards, On the classification of noncompact surfaces, T. Am. Math. Soc. 106

(1963), 259–269.
[Rud76] Walter Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New York,

1976.
[Rud79] Mary Ellen Rudin, The undecidability of the existence of a perfectly normal nonmetriz-

able manifold, Houston J. Math. 5 (1979), no. 2, 249–252.
[SFL98] John M. Sullivan, George Francis, and Stuart Levy, The optiverse, National Center for

Supercomputing Applications (video), Champaign–Urbana, IL, 1998.
[Sie92] Allan J. Sieradski, An Introduction to Topology and Homotopy, PWS-KENT, Boston,

1992.
[Sma58] Stephen Smale, A classification of immersions of the two-sphere, T. Am. Math. Soc. 90

(1958), 281–290.
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Notation Index

Œ�� (equivalence class), 385
Œ�� (homology class), 343
Œ�� (path class), 187
Œ�� (simplex), 148
f�g (braces in set notation), 382, 390, 392
. / (empty word), 234
.�; �/ (ordered pair), 384
.�; �/ (open interval), 390
Œ�; �� (closed interval), 390
Œ�; �/ (half-open interval), 390
.�; �� (half-open interval), 390
X (set difference), 383
D (set equality), 382
� (identically equal), 386
� (congruent modulo a subgroup), 403

 (homeomorphic), 28

 (topologically equivalent), 168
� (path-homotopic), 187
' (homotopic), 184
' (homotopy equivalent), 200
Š (isomorphic), 402
� (subset), 382

 (proper subset), 382
� (superset), 382
� (proper superset), 382
� (free product), 235¨

˛2AG˛ (free product), 235
j � j (geometric realization), 167
j � j (norm on a vector space), 125
j � j (norm or length in Rn), 395
j � j (polyhedron of a simplicial complex), 150
h�i (subgroup generated by a set), 402
h� j �i (group presentation), 241
h� j �i (polygonal presentation), 166

0 (identity in an additive abelian group), 401
1 (identity in a group), 401

1˛ (identity in group G˛), 234

˛ (antipodal map), 229, 309
A0 (set of limit points), 46xA (closure), 24xA (set of closures), 109
A.v0; : : :;vp/ (affine singular simplex), 341
Ab (category of abelian groups), 210
Ab.G/ (abelianization of G), 266
AutG.S/ (G-set automorphism group), 290
Autq.E/ (covering automorphism group), 308

ˇp.X/ (Betti number), 374
Bn (open unit ball), 21xBn (closed unit ball), 22
Bp.X/ (group of boundaries), 341
Bp.X IG/ (group of coboundaries), 375
Br .x/ (open ball in a metric space), 397xBr .x/ (closed ball in a metric space), 397

C (set of complex numbers), 10, 390
Cn (complex Euclidean space), 10
C� (chain complex), 344
Cg (conjugation by g), 402
cp (constant loop), 187
CPn (complex projective space), 83
CU

p .X/ (U-small chains), 359, 360
Cp.X/ (singular chain group), 340
Cp.X IG/ (cochain group), 374
CX (cone onX ), 67
CovX (category of coverings of X ), 336
CRng (category of commutative rings), 210
CW (category of CW complexes), 210

@ (manifold boundary), 43
@ (singular boundary operator), 341
@ (topological boundary), 24

409
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@� (connecting homomorphism), 356
ı (coboundary operator), 375
�p (standard simplex), 340
D.M/ (double of a manifold with boundary),

76
d.�; �/ (metric), 396
deg (degree of a continuous map), 227, 366
deg (degree of an endomorphism), 227

2 (element of a set), 381
2 (element of a class), 384
" (exponential quotient map), 81
"n (universal covering of Tn), 280
E (figure-eight space), 199
Ext (exterior), 24

'� (induced fundamental group map), 197
˚g (change of base point isomorphism), 190
F � (dual homomorphism), 212
F � (transpose of a linear map), 211
f � (induced cohomology map), 375
f� (induced homology map), 343
f1 �f2 (free product of homomorphisms),

249
f �g (path product), 188
Œf � � Œg� (path class product), 189
xf (reverse path), 189
zfe (lift of f starting at e), 282
Fi;p (face map), 341
f �1 (inverse map), 389
f �1.T / (preimage of a subset), 388
f �1.y/ (preimage of a singleton), 388
f ıg (composition in a category), 209
f ıg (composition of functions), 386
f.S/ (image of a subset), 387
f jS (restriction of a function), 387
f # (cochain map), 375
f# (chain map), 343
Œf �U� (basis subset for the universal covering

space), 298
f W X ! Y (function), 386
f W X ! Y (morphism), 210
f W x 7! y (function), 386
F .S/ (free group on a set S ), 240
F .�/ (free group generated by � ), 239

� (Hurewicz homomorphism), 352
� .f / (graph of a function), 55
g� (covariant induced morphism), 211
g� (contravariant induced morphism), 211
ŒG;G� (commutator subgroup), 265
G=H (set of left cosets), 403
g�1 (inverse in a group), 401
gn (nth power of a group element), 401

Gs (isotropy group of s), 288
Gtor (torsion subgroup), 246
g �U (image set under a group action), 312
g �x (left action by a group), 78
G1 �G2 (free product), 235
G1 �H G2 (amalgamated free product), 253
gH (left coset), 403
gHg�1 (conjugate subgroup), 402
GL.n;C/ (complex general linear group), 77
GL.n;R/ (general linear group), 10, 77
Grp (category of groups), 210

Hn (upper half-space), 42
HU

p .X/ (homology of U-small chains), 359,
360

Hp.X/ (homology group), 343
Hp.X IG/ (cohomology group), 375
Ht (homotopy at time t ), 184
Hg (right coset), 403
Hom.C/ (morphisms in a category), 209
HomC.X;Y / (morphisms in a category), 209
Hom.X;Y / (group of homomorphisms), 212,

374

\ (intersection), 383T
˛X˛ (intersection), 392

� (inclusion map), 387
�˛ (injection into coproduct), 213
�˛ (injection into disjoint union), 394
�˛ (injection into free product), 237
�S (inclusion map), 387
i (imaginary unit), 390
I (unit interval), 21
Id (identity map), 387
IdX (identity map), 387
IdX (identity morphism), 209
Im (image), 402
Ind.V;p/ (index of a vector field), 231
inf (infimum), 390
Int (interior of a manifold with boundary), 43
Int (interior of a subset), 24

Ker (kernel), 402

Lg (left translation), 78
L.n;m/ (lens space), 322
lim (limit of a sequence), 26, 398

fm;: : : ;ng (integers from m to n), 390
Man (category of topological manifolds), 210

N (set of natural numbers), 390
N.f / (winding number), 224
NG.H/ (normalizer ofH in G), 291
N.V;f / (winding number of a vector field),

231
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¿ (empty set), 382
˚ (direct sum), 402L

˛G˛ (direct sum), 402
! (loop in S1), 192

.X;p/ (set of loops), 187
O (orbit relation), 84
O.n/ (orthogonal group), 10, 78
Ob.C/ (objects in a category), 209

�0.X/ (set of path components), 208
�0.X;p/ (set of path components), 208
�1.X/ (fundamental group), 191
�1.X;p/ (fundamental group), 188
�i (projection from a product), 392
�i (projection in a category), 213
�n.X;p/ (homotopy group), 208Q

˛X˛ (Cartesian product), 393
P2 (projective plane), 67, 159
Pn (real projective space), 66
pn (nth power map), 228
P .X/ (power set), 383

Q (set of rational numbers), 390

R (set of real numbers), 390
Rn (Euclidean space), 1, 395
R1 (infinite direct sum of copies of R), 335
R (set of reduced words), 235xR (normal closure of a subgroup), 241
Rg (right translation), 78
Ri (reflection map), 367
R �W (reduction map), 236
Rng (category of rings), 210

� (stereographic projection), 56
S1 (unit circle), 22
Sn (unit n-sphere), 22
S1 (infinite-dimensional sphere), 141
Sat (saturation), 107
Set (category of sets), 210
SetG (category of transitive rightG-sets), 336
SL.n;C/ (complex special linear group), 10
SL.n;R/ (special linear group), 10
Smp (category of simplicial complexes), 210
SO.n/ (special orthogonal group), 10
SU.n/ (special unitary group), 10
sup (supremum), 390
supp (support), 114

	 (theta space), 203
T2 (torus), 62
Tn (n-torus), 62
Top (topological category), 210
Top� (pointed topological category), 210

[ (union), 382S
˛X˛ (union), 392

q (disjoint union), 394`
˛X˛ (disjoint union), 64, 394

U.n/ (unitary group), 10

_ (wedge sum), 67
VecC (category of complex vector spaces),

210
VecR (category of real vector spaces), 210
Vol.U/ (volume), 304

W (set of words), 234, 235
w �˛ (cone on an affine simplex), 360
w �L (cone on a Euclidean simplicial

complex), 158
w �� (cone on a Euclidean simplex), 158

� (Cartesian product), 384
�.M/ (Euler characteristic of a surface), 268
�.X/ (Euler characteristic of a complex), 178
�.X/ (Euler characteristic of a space), 374
X� (one-point compactification), 125
X=� (set of equivalence classes), 385
X=A (A collapsed to a point), 67
X=G (orbit space), 80
x �g (right action by a group), 78
xi (component of an n-tuple), 391
xi ! x (convergent sequence), 26, 398
Xn (n-fold Cartesian product), 392
Xn (n-skeleton of a complex), 133
X [f Y (adjunction space), 73
ŒX;Y � (homotopy classes of maps), 185
x �y (dot product), 395
.xi / (finite or infinite sequence), 392
.xi /

n
iD1

(ordered n-tuple), 391
.xi /

1
iD1

(sequence), 391
.xi /i2N (sequence), 391
.x˛/˛2A (indexed family), 392
fxi gn

iD1
(image of an n-tuple), 392

fxi g1
iD1

(image of a sequence), 392
fxi gi2N (image of a sequence), 392
fx˛g˛2A (image of an indexed family), 392
.x1; : : :;xn/ (ordered n-tuple), 391
fx1; : : :;xng (image of an n-tuple), 392
.x1;x2; : : :/ (sequence), 391
fx1;x2; : : :g (image of a sequence), 392
fxi W i 2 Ng (image of a sequence), 392
fx˛ W ˛ 2Ag (image of an indexed family),

392
fxi W i D 1; : : :;ng (image of an n-tuple), 392

Z (set of integers), 390
Zf (mapping cylinder), 206
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Z=hni (integers modulo n), 405
Z=n (integers modulo n), 405
Zp.X/ (group of cycles), 341

Zp.X IG/ (group of cocycles), 375
ZS (free abelian group), 244



Subject Index

abelian group, 244, 401
category of, 210
free, 244–248
rank of, 247

abelianization, 266
characteristic property of, 266
of a free group, 275
of a free product, 275
of fundamental groups of surfaces, 266
uniqueness, 275

abelianization functor, 274
abstract simplex, 153
abstract simplicial complex, 153

finite, 153
finite-dimensional, 153
locally finite, 153

abstract simplicial map, 153
accumulation point, 25
action of a group, see group action
adjunction space, 73
affine chain, 341
affine map, 152

of a simplex, 152
affine singular simplex, 341
affine subspace, 147
affinely independent, 147

point and simplex, 157
algebraic geometry, 12
algebraic topology, 6
algebraic variety, 12
amalgamated free product, 253, 275

presentation of, 253
ambient Euclidean space, 19
analysis situs, 4
angle, 218, 395
angle-sum theorem, 9
antipodal map, 229, 309, 367

homotopic to identity, 368
antisymmetric relation, 385
associativity

in a category, 209
in a group, 401
of composition, 386
of the path class product, 189

attaching
a handle, 165
a space along a map, 73
along boundaries, 74
cells, 129, 138, 264, 369
disks, 262

attaching map, 73
automorphism

of aG-set, 290
of a covering, 308
of a group, 402

automorphism group of a G-set, 290
algebraic characterization, 291

automorphism group of a covering, 308
normal case, 310
simply connected case, 310
structure theorem, 310
transitivity, 309

axiom of choice, 381, 393

Baire category theorem, 106, 126
Baire space, 106
Baire, René, 107
ball

closed, 397
is a closed subset, 397
is a manifold with boundary, 81

coordinate, 38
regular, 103–104

in a metric space, 397

413
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open, 21, 397
is an open subset, 397

unit, 21, 22
barycenter, 361
barycentric coordinates, 148
base of a covering, 278
base point, 67, 187

change of, 190
nondegenerate, 255

based at a point, 187
basis

and continuity, 34
countable, 36
for a free abelian group, 245
for a topology, 33
for some topology, 34
for the discrete topology, 33
for the Euclidean topology, 33
for the metric topology, 33
for the product topology, 60, 61
for the subspace topology, 51, 53
for the trivial topology, 33
neighborhood, 36
of coordinate balls, 48
standard, for Zn, 245
topology generated by, 34

basis criterion, 33
Betti number, 374
bijection, 388
bijective, 388
Bolzano–Weierstrass theorem, 100
Borsuk–Ulam theorem, 303
bound

greatest lower, 386
least upper, 386
lower, 386
upper, 386

boundary
invariance of, 44, 122, 230, 379
is closed, 44
manifold with, 42
of a boundary, 342
of a manifold with boundary, 43, 81
of a simplex, 149
of a singular simplex, 341
of a subset, 24
singular, 341
topological, 43

boundary chart, 43
boundary face, 149
boundary operator, 341, 344
bounded above, 386
bounded below, 386
bounded sequence

has a convergent subsequence, 100
in Rn, 396
in a metric space, 398

bounded subset, 398
bouquet of circles, 68

as a CW complex, 134
fundamental group, 257

box topology, 63
braces in set notation, 382, 390, 392
branch of the square root, 11
Brouwer fixed point theorem, 230, 379
bump function, 114

Calabi–Yau manifold, 16
canonical injection, 64, 65, 394
canonical projection, 61, 392, 393
cardinality, 391

of fibers of a covering, 281, 292
Cartesian product

finite, 384, 392
infinite, 393

categorical sum, see coproduct
category, 209–214

Baire, 106
equivalence of, 336
first, 107
homotopy, 212
of abelian groups, 210
of commutative rings, 210
of complex vector spaces, 210
of CW complexes, 210
of groups, 210, 216
of pointed spaces, 210
of real vector spaces, 210
of rings, 210
of sets, 210
of simplicial complexes, 210
of topological manifolds, 210
of topological spaces, 210
pointed homotopy, 212
second, 107
small, 209

Cauchy sequence, 398
versus convergent sequence, 398

cell
closed, 127
of a complex, 131
open, 127

cell complex, 130
regular, 134

cell decomposition, 130
cellular homology, 373
center of a group, 248
center of gravity, 361
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chain
affine, 341
singular, 340
U-small, 360

chain complex, 344
homology groups of, 344

chain group, singular, 340
chain homotopic, 350
chain homotopy, 350, 363
chain map, 345
change of base point, 190
characteristic map, 130
characteristic property

of a free abelian group, 244
of a free group, 240
of infinite product spaces, 64
of the abelianization, 266
of the disjoint union topology, 64
of the free product, 238
of the product topology, 60
of the quotient topology, 71
of the subspace topology, 51

characteristic zero, 376
chart, 38

coordinate, 38
on a manifold with boundary, 43

choice function, 393
circle, 22

as a quotient of R, 66
as a quotient of the unit interval, 66, 73, 100
as coset space of R, 81
fundamental group of, 225, 311
generating, 57
homology groups of, 355
homotopy classification of maps, 229
unit, 22
universal covering of, 298

circle representative, 192, 193, 215
class, 383

equivalence, 385
function between, 389
of all sets, 384
proper, 384
relation between, 389

classical mechanics, 14
classification

of 1-manifolds, 143–147
of 1-manifolds with boundary, 146–147
of 2-manifolds, 6, 174, 267
of 2-manifolds with boundary, 182
of n-manifolds, 8, 181
of coverings, 315
of manifolds, 6–8, 181
of surfaces, 6, 174, 267

of torus coverings, 316
closed ball, 397

is a closed subset, 397
is a manifold with boundary, 81
unit, 22, 43

closed cell, 127
closed cover, 37
closed disk, 22
closed edge path, 258
closed interval, 390
closed map, 30, 71

and closure of a subset, 30
product of, 82
versus homeomorphism, 30

closed map lemma, 100
closed set, see closed subset
closed subset, 23, 397

and continuity, 26
and limit points, 25
intersection of, 23, 397
of a compact space, 96
of a discrete space, 23
of a metric space, 397
of a subspace, 50
of a topological space, 23
relatively, 50
union of, 23, 397

closed unit ball, 22
as a manifold with boundary, 43

closed upper half-space, 42
closure, 24

and closed maps, 30
and continuity, 30
and sequences, 36
in a subspace, 51
normal, 241
of a connected subset, 88

closure finiteness, 132
cluster point, 25
coarser topology, 28
coboundary, 375
cochain complex, 375
cochain map, 375
cochain, singular, 374
cocycle, 375
codomain of a function, 386
coffee cup, 4
coherent topology, 131, 133, 156, 157

and locally finite cover, 156
and open cover, 156
of a compactly generated space, 131
of a disjoint union, 131

cohomology functor, 375
cohomology groups, 374–379
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Mayer–Vietoris sequence, 379
singular, 375
topological invariance of, 375
with field coefficients, 377, 378

collapsing a subset to a point, 67
collection, 381
combinatorial equivalence, 155
combinatorial group theory, 244
combinatorial invariant, 179
combinatorics, 134
commutative diagram, 404
commutative rings, category of, 210
commutator subgroup, 265
compact Hausdorff space

is normal, 111
compactification, one-point, 125
compactly generated space, 120
compactness, 94–104

and continuity, 95
implies boundedness, 96
implies closedness, 96
limit point, 98
local, 104–108
main theorem on, 95
of a closed, bounded interval, 97
of a CW complex, 137
of a discrete space, 95
of a finite space, 94
of a finite union of compact spaces, 94
of a product, 96
of a quotient, 96
of a subspace, 94
of a trivial space, 95
of subsets of Rn, 98
relative, 104
sequential, 98
topological invariance, 95
versus completeness, 100
versus limit point compactness, 98, 100, 124
versus sequential compactness, 99, 100

complement of a subset, 383
complementary edge pair, 175
complete metric space, 398
complete ordered field, 390
completeness

of Rn, 100
of subsets of Rn, 100
versus compactness, 100

complex
cell, 130
chain, 344
CW, 132–143
simplicial, 147–155

complex analysis, 10

complex analytic function, 10, 323
complex general linear group, 10, 77
complex manifold, 39
complex numbers, 390
complex projective space, 13, 83

CW decomposition, 157
homology of, 372

complex special linear group, 10
complex vector spaces, category of, 210
component

of a point in Rn, 395
of a topological space, 91, 92

is closed, 92
of an ordered n-tuple, 391
of an ordered pair, 384
path, 92

component functions, 392
composable paths, 188
composition

continuity of, 26, 27
in a category, 209
of bijections, 388
of functions, 386
of injections, 388
of quotient maps, 70
of surjections, 388

computer graphics, 14
concrete category, 249
cone, 123

on a simplex, 158
on a space, 67, 70, 101
on a sphere, 101
on an affine simplex, 360

conformal transformation, 325
congruence modulo a subgroup, 403
conjugacy class, 403
conjugacy theorem for coverings, 293
conjugate subgroups, 402
conjugation, 228, 402
connected sum, 124, 164

covering of, 302
fundamental group of, 273
polygonal presentation of, 171
uniqueness of, 273
with sphere, 165

connectedness, 86–93
local, 92
of a CW complex, 136
of a product, 88, 90
of a quotient, 88, 90
of a subset, 86
of a union, 88, 90
of an interval, 89
of subsets of R, 89
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topological invariance of, 88
versus other forms of connectedness, 123

connecting homomorphism, 356
naturality, 358

consolidating a polygonal presentation, 169
constant loop, 187
constant map, 27, 386
continuity, 26, 396, 398

and closure, 30
and convergent sequences, 398
and interior, 30
and sequences, 47
at a point, 27, 396, 398
between Euclidean spaces, 396, 398
between metric spaces, 398
between topological spaces, 26
closed subset criterion, 26
in terms of a basis, 34
local criterion for, 27
of a composition, 26, 27
of a constant map, 27
of a restriction, 27
of an identity map, 27
open subset criterion, 399
uniform, 215

continuous, see continuity
continuous deformation, 185
continuous group action, 79
continuous image

of a compact set, 95
of a connected set, 87

contractible space, 202, 215
homology groups of, 350
is simply connected, 202

contravariant functor, 211
convergent sequence

in a metric space, 398
in a topological space, 26
in Euclidean space, 396
is Cauchy, 398
versus continuity, 398

convex hull, 149
convex set

homotopy of maps to, 187
is a cell, 128, 157
is connected, 90
is contractible, 202
is simply connected, 192

coordinate, 395
coordinate ball, 38

regular, 103–104
coordinate chart

on a manifold, 38
on a manifold with boundary, 43

coordinate disk, 38
coordinate domain, 38, 43
coordinate half-ball, regular, 104
coordinate map, 38, 43
coordinate neighborhood, 38
coproduct, 213

in the topological category, 215
of groups, 239
uniqueness, 214

corners, 29
correspondence, one-to-one, 388
coset

left, 403
multiplication of, 403
right, 403

coset space, 81
is topologically homogeneous, 84

countable basis, 36
countable complement topology, 45
countable dense subset, 37
countable neighborhood basis, 36
countable set, 391

product of, 391
subset of, 391

countable subcover, 37
countable union, 393
countable, first, 36
countable, second, 36
countably infinite set, 391
covariant functor, 211
cover

closed, 37
of a space, 37
of a subset, 94
open, 37, 94

covering automorphism, 308
covering automorphism group, 308, 335

normal case, 310
of universal covering, 310
structure theorem, 310
transitivity of, 309

covering group, see covering automorphism
group

covering homomorphism, 294
is a covering map, 294

covering homomorphism criterion, 295
covering isomorphism, 294
covering isomorphism criterion, 296
covering map, 278

cardinality of fibers, 281, 292
classification of, 315
is a local homeomorphism, 278
is a quotient map, 278
is open, 278
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normal, 293
of a connected sum, 302
of a CW complex, 303
of a Hausdorff space, 302
of a manifold, 302
of a simply connected space, 292
of projective space, 280, 302
of the Klein bottle, 302
of the torus, 314, 316
proper, 303
regular, 293
uniqueness, 296
universal, 298

covering space, 278
compact, 303
universal, 298

covering space action, 311
quotient by, 312
restriction of, 312

covering space quotient theorem, 312
covering transformation, 308
Cramer’s rule, 77
cube, open, 33
cubical surface, 29
curve

space-filling, 194
cutting a polygonal presentation, 169
CW complex, 132–143

as a manifold, 142–143
category of, 210
compact subset of, 137
compactness of, 137
connectedness, 136
coverings of, 303
dimension of, 379
fundamental group of, 264
homology of, 371
is compactly generated, 157
is locally path-connected, 157
is paracompact, 141
local compactness of, 137
regular, 134
triangulation of, 158

CW construction theorem, 138
CW decomposition, 132
cycle in a graph, 258
cycle, singular, 341
cyclic group, 239, 405

finite, 405
homomorphism of, 405
infinite, 239, 405
subgroup of, 405

cyclic subgroup, 405
cylinder, mapping, 206

De Morgan’s laws, 383
deck transformation, 308
decomposition

cell, 130
CW, 132

deformation retract, 200
strong, 200

deformation retraction, 200
and homotopy equivalence, 205
strong, 200

deformation, continuous, 185
degree

homological, 366
homotopic, 366
of a constant map, 228, 367
of a continuous map, 227, 228, 366
of a reflection map, 367
of a rotation, 228
of an endomorphism, 227
of the nth power map, 228
of the antipodal map, 229, 367
of the conjugation map, 228
of the identity map, 228, 367

degrees of freedom, 1
Dehn, Max, 173, 243
dense, 25, 81

nowhere, 107
descending to the quotient, 72, 404
diagonal, 82
diagram, commutative, 404
dictionary order, 122
difference of sets, 383
dilation, 28
dimension, 1

invariance of, 40, 122, 230, 379
of a CW complex, 132, 379
of a manifold, 39
of a simplex, 148
of a simplicial complex, 149
of an abstract simplex, 153
of an abstract simplicial complex, 153
of an affine subspace, 147
topological, 116

direct product, 213, 402
direct sum, 215, 402
disconnect, 86
disconnected, 86
discrete group, 77
discrete metric, 396

versus discrete topology, 22
discrete space, 21

closed subsets, 23
homology groups of, 346

discrete subgroup, 313



Subject Index 419

discrete topology, 21
basis for, 33
versus discrete metric, 22

disjoint sets, 385
disjoint union, 64–65, 385, 394

abstract, 394
of first countable spaces, 65
of Hausdorff spaces, 65
of manifolds, 65
of second countable spaces, 65

disjoint union space, 64–65
disjoint union topology, 64, 215

characteristic property of, 64
disk

closed, 22
coordinate, 38
hyperbolic, 323
open, 22
unit, 22

distance
in a metric space, 396
in Rn, 396
to a set, 116

distance function, 396
distributive law for intersections and unions,

383
diverge to infinity, 118, 119
divisible group, 379
domain of a function, 386
dot product, 395
double of a manifold with boundary, 76

compactness, 97
connectedness, 88

doubly infinite sequence, 391
doughnut surface, 57

homeomorphic to the torus, 63, 101
dual homomorphism, 212
dual map, 211
dual space, 211
dual space functor, 211
dynamical system, 15

edge
of a graph, 134, 257
of a polygon, 162
of a presentation, 167
of a simplex, 149

edge pairing transformation, 326
edge path, 258

closed, 258
simple, 258
trivial, 258

effective action, 312
Einstein field equations, 15

Einstein, Albert, 15
element

of a class, 384
of a set, 381

elementary reduction, 234
elementary transformation, 169
embeddability of compact manifolds, 115
embedding, 54
empty set, 382

as a manifold, 40
is closed, 23, 397
is open, 20, 397

empty word, 234
endomorphism of a group, 402
equality

of functions, 386
of ordered pairs, 384
of sets, 382

equivalence
combinatorial, 155
of categories, 336
of words, 235
topological, 3, 28, 168

equivalence class, 65, 385
equivalence relation, 385

generated by a relation, 385
equivariant map, 289
Euclidean dot product, 395
Euclidean geometry, 9
Euclidean metric, 396
Euclidean neighborhood, 38
Euclidean simplicial complex, 149
Euclidean space, 1, 395

ambient, 19
is connected, 90
is second countable, 37
is simply connected, 192
zero-dimensional, 38, 395

Euclidean topology, 21
bases for, 33

Euclidean, locally, 3, 38
Euler characteristic, 178, 182, 374

and cohomology, 378
combinatorial invariance of, 179
homotopy invariance of, 373
of a graph, 275
of a topological space, 374
of compact surfaces, 179, 268
topological invariance of, 268, 373

Euler’s formula, 178
even map, 303
evenly covered, 220, 278
eventually constant sequence, 26
eventually in a subset, 36
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exact functor, 379, 380
exact sequence, 344

in cohomology, 379
in homology, 356
long, 356
Mayer–Vietoris, 356, 379
of chain complexes, 356
short, 344

excluded point topology, 45, 48
exhaustion by compact sets, 110
exhaustion function, 117, 118
expanding the codomain, 52
exponential quotient map, 81, 217–224, 279
extension lemma for fields, 377
extension of a map, 387
exterior, 24
extreme value theorem, 94, 98

face
boundary, 149
of a presentation, 167
of a simplex, 149
of an abstract simplex, 153
proper, 149

face map, 341
family

indexed, 392
synonym for set, 381

fan transformation, 163
fiber, 69
field, 376, 390

characteristic zero, 376
complete, 390
ordered, 390

figure-eight space, 68, 199, 203
finer topology, 28
finite cell complex, 131
finite complement topology, 45, 48
finite cyclic group, 405
finite-dimensional CW complex, 132
finite-dimensional simplicial complex, 153
finite graph, 134
finite rank, 245
finite sequence, 392
finite set, 391
finite simplicial complex, 149, 153
finitely connected, 126
finitely presented, 242
first category, 107
first countability, 36

of a subspace, 53
of locally Euclidean spaces, 48
of metric spaces, 36
of product spaces, 61

first countable, see first countability
first isomorphism theorem, 404
fixed point, 229
fixed point theorem, 229, 368

Brouwer, 230, 379
folding a polygonal presentation, 169
forgetful functor, 211, 249
formal linear combination, 244
free abelian group, 244–248

characteristic property of, 244
on a set, 244
rank of, 245
subgroup of, 245
uniqueness of, 249

free action of a group, 79
free group, 239–241

abelianization of, 275
characteristic property of, 240
generated by a single element, 239
on a set, 240
uniqueness of, 240

free object in a category, 249
free product, 235

abelianization of, 275
amalgamated, 253
characteristic property of, 238
is nonabelian, 248
of homomorphisms, 249
uniqueness of, 239

Freedman, Michael, 7
freedom, degrees of, 1
freely homotopic, 187
full subcategory, 210
function, 386

multiple-valued, 10
functor, 211–212

cohomology, 375
contravariant, 211
covariant, 211
exact, 379, 380
forgetful, 211
fundamental group, 211
homology, 343
takes isomorphisms to isomorphisms, 212

fundamental group, 6, 188–205, 225
and homology, 352
and surface presentations, 264
associativity in, 189
change of base point, 190
homotopy invariance of, 201
identity in, 189
inverses in, 189
is a functor, 211
is a group, 190
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monodromy action of, 287
of R2 Xf0g, 202, 226
of Rn Xf0g, 201
of a connected sum, 273
of a CW complex, 264
of a graph, 260
of a manifold is countable, 196
of a product space, 199
of a surface, 265

abelianized, 266
of a topological group, 214
of a wedge sum, 255, 256
of projective space, 292, 311
of spheres, 195, 273
of the circle, 311
of the projective plane, 292
of the torus, 226
product in, 189
topological invariance of, 197

fundamental theorem of algebra, 230

G-automorphism, 290
G-automorphism group, 290

algebraic characterization, 291
G-equivariant map, 289
G-isomorphic, 290
G-isomorphism, 290
G-set, 288

transitive, 288
G-set isomorphism criterion, 290
Gauss–Bonnet theorem, 9
general linear group, 10, 77, 79

complex, 10, 77
general position, 147
general relativity, 15
generating circle, 57
generator

of a cyclic group, 405
of a group, 239
of a presentation, 241
of a subgroup, 402

genus, 181
geodesic polygon, 325

regular, 325
geodesic, hyperbolic, 323
geometric realization

of a polygonal presentation, 167
of a simplicial complex, 154

geometrization conjecture, 7
geometry

algebraic, 12
Euclidean, 9
plane, 9
Riemannian, 9

solid, 9
gluing lemma, 58, 81, 126, 156
graph, 134, 257

connectedness, 258
Euler characteristic of, 275
finite, 134
fundamental group of, 260
of a complex function, 10
of a continuous function, 55
of a relation, 11
simple, 257

gravity, center of, 361
greatest lower bound, 386, 390
group, 401

abelian, 244
action of, see group action
as a category, 212
complex general linear, 10, 77
complex special linear, 10
covering automorphism, 308
cyclic, 405
direct product, 402
direct sum, 402
discrete, 77
divisible, 379
free, 240, 241
free abelian, 244–248
fundamental, 6, 188–205
general linear, 10, 77, 79
homotopy, 208
injective, 379
Lie, 10
of integers modulo n, 405
orthogonal, 10, 78, 80
presentation of, 242
quotient, 84
special linear, 10
special orthogonal, 10
special unitary, 10
topological, 77
unitary, 10

group action, 78
by homeomorphisms, 79
continuous, 79
covering space, 311
effective, 312
free, 79
left, 78
proper, 318–322, 337
quotient by, 80, 312
right, 78
transitive, 79

group presentation, 241
groups, category of, 210
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hairy ball theorem, 368
half-ball, regular coordinate, 104
half-open interval, 390
half-space, upper, 42
Halmos, Paul, 381
ham sandwich theorem, 303
Hamilton, Richard, 7
handle, 11, 166

attaching, 165
Hatcher, Allan, 312
Hauptvermutung, 155
Hausdorff space, 31

finite, 32
if diagonal is closed, 82
product of, 61
quotient of, 68–69, 102–103, 318, 320
subspace of, 53

Hawaiian earring, 304
Heegaard, Poul, 173
Heine–Borel theorem, 98
hole, 183, 341, 343
holomorphic function, 10, 323
homeomorphic, 3, 28
homeomorphism, 3, 28

local, 30
restriction of, 28
versus closed map, 30
versus open map, 30

homogeneity of a norm, 125
homogeneous, topologically, 78, 156
homological algebra, 345
homological degree, 366
homologous, 343
homology class, 343
homology functor, 343
homology groups, 339–374

and the fundamental group, 352
homotopy invariance of, 347
of a chain complex, 344
of a contractible space, 350
of a disconnected space, 345
of a discrete space, 346
of a retract, 344
of a wedge sum, 379
of compact surfaces, 355, 372
of complex projective space, 372
of CW complexes, 371
of punctured Euclidean spaces, 365
of spheres, 355, 364
of the circle, 355
singular, 343
topological invariance of, 344
zero-dimensional, 346

homology homomorphism

induced by a chain map, 345
induced by a continuous map, 343

homology sequence, long exact, 356
homomorphism

covering, 294, 295
from a quotient group, 404
fundamental group, 197
of cyclic groups, 405
of groups, 402
of topological groups, 313

homotopic degree, 366
homotopic maps, 184

and fundamental group homomorphisms,
203

and homology homomorphisms, 347
freely, 187
relative to a subspace, 187

homotopy, 184
chain, 350, 363
is an equivalence relation, 185
is preserved by composition, 185
path, 187

and composition, 197
relative, 187
stationary on a subset, 186
straight-line, 186

homotopy category, 212
pointed, 212

homotopy classification
of circle maps, 229
of loops in S1, 224
of sphere maps, 369
of torus maps, 231

homotopy equivalence, 200
and deformation retraction, 205
is an equivalence relation, 200

homotopy groups, 208
homotopy invariance

of singular homology, 347
of the Euler characteristic, 373
of the fundamental group, 201
of the path product, 188

homotopy invariant, 200
homotopy inverse, 200
homotopy lifting property, 221, 282
homotopy theory, 209
homotopy type, 200
hull, convex, 149
Hurewicz homomorphism, 352, 355
Hurewicz theorem, 355
Hurewicz, Witold, 355
hyperbolic disk, 323
hyperbolic geodesic, 323
hyperbolic metric, 323
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triangle inequality, 337
hyperbolic neighborhood, regular, 330

ideal point, 125
identification space, 66
identity

in a category, 209
in a group, 401
in the fundamental group, 189

identity map, 387
continuity of, 27

image
inverse, 388
of a function, 387
of a homomorphism, 402
of a normal subgroup, 405
of a subset, 387

imaginary unit, 390
incident edges and vertices, 257
inclusion map, 387

continuity of, 52
is a topological embedding, 54

increasing function, 392
independent

affinely, 147
linearly, 245

index of a subgroup, 403
index of a vector field, 231
index set, 392
indexed family, 392

disjoint union of, 394
intersection of, 392
union of, 392

induced homomorphism
cohomology, 375
fundamental group, 197

by homotopic maps, 203
homology, 343, 345

induced subgroup, 283
infimum, 390
infinite cyclic group, 239, 405
infinite-dimensional CW complex, 132
infinite product, 63
infinite rank abelian group, 245
infinite sequence, 391
infinite set, 391
initial point of a path, 186
initial vertex

of an edge, 167
of an edge path, 258

injection, 388
canonical, into a disjoint union, 64, 65, 394
in a category, 213
into a free group, 240

into a free product, 237
injective function, 388
injective group, 379
injectivity theorem for coverings, 283
inside out sphere, 5
integers, 390

modulo n, 405
interior

and continuity, 30
and open maps, 30
and sequences, 36
in a subspace, 51
of a manifold with boundary, 43, 81
of a simplex, 149
of a subset, 24

interior chart, 43
intermediate value theorem, 86, 89
intersection, 383

of an indexed family, 392
of closed subsets, 23, 397
of open subsets, 20, 397
of topologies, 23

intertwined edge pairs, 177
interval, 391

closed, 390
half-open, 390
is connected, 89
open, 390
unit, 21

invariance of dimension, 40
0-dimensional case, 40
1-dimensional case, 122
2-dimensional case, 230
general case, 379

invariance of the boundary, 44
1-dimensional case, 122
2-dimensional case, 230
general case, 379

invariant
homotopy, 200
topological, 5

inverse
in a group, 401
left, 389
of a map, 389
of a path class, 189
right, 389, 393

inverse image, 388
inverse map, 389
isolated point, 25
isolated singular point, 230
isometry, 9
isomorphic coverings, 294
isomorphic G-sets, 290
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isomorphic groups, 402
isomorphism

in a category, 210
ofG-sets, 290
of coverings, 294
of groups, 402
simplicial, 152, 153

isomorphism problem, 243
isomorphism theorem, first, 404
isotropy group

of a group action, 288
of a transitiveG-set, 288
of the monodromy action, 292

isotropy type, 289

kernel, 402
is a subgroup, 402
is normal, 403

Klein bottle, 164, 181, 335
covering of, 302
homeomorphic to P2 # P2, 174
presentation of, 168
universal covering of, 322

largest element, 386
least upper bound, 386, 390
Lebesgue number, 194
Lebesgue number lemma, 194
left action, 78
left coset, 81, 403
left coset space, 81
leftG-set, 288
left inverse, 389
left translation, 78
length, 395
lens space, 322
Lie group, 10
lift, 217, 218, 282
lifting criterion, 283, 304

from simply connected spaces, 286
to simply connected spaces, 286

lifting problem, 283
lifting property

homotopy, 221, 282
path, 223, 282
unique, 220, 282

limit of a sequence
in a discrete space, 26
in a Hausdorff space, 32
in a metric space, 398
in a topological space, 26

limit point, 25
and closed subsets, 25
in a Hausdorff space, 32

limit point compact, 98
versus compact, 98, 100, 124
versus sequentially compact, 98, 100

Lindelöf space, 37
and second countability, 37

line
long, 122
with infinitely many origins, 125
with two origins, 83

line segment, 395
linear combination, 244

formal, 244
linear ordering, 385
linearly independent, 245
local criterion for continuity, 27
local homeomorphism, 30
local section, 220, 281

of a covering map, 281
locally compact, 104–108, 125
locally compact CW complex, 137
locally compact Hausdorff space, 104–108,

125
locally connected, 92, 93, 122

versus other forms of connectedness, 123
locally Euclidean, 3, 38

implies first countable, 48
locally finite cell complex, 131, 132, 137
locally finite collection of subsets, 109
locally finite family, 114
locally finite simplicial complex, 149, 153
locally path-connected, 92, 93

versus other forms of connectedness, 123
locally simply connected, 298
locally small category, 209
long exact homology sequence, 356
long line, 122
long ray, 122
loop, 187

based at a point, 187
constant, 187

Lorentz metric, 15
lower bound, 386

greatest, 386

main theorem
on compactness, 95
on connectedness, 87

manifold, 1–17, 39
0-dimensional, 39
1-dimensional, 143–147
classification of, 6–8, 143–147, 174, 181,

267
complex, 39
embeddability of, 115
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has a countable fundamental group, 196
is locally compact, 105
is locally path-connected, 93
is paracompact, 110
is topologically homogeneous, 156
product of, 62
Riemannian, 9
smooth, 39
topological, 39
with boundary, 42, 105

manifold boundary, 43
manifold without boundary, 44
map, 386
mapping, 386

between classes, 389
mapping cylinder, 206
Markov, A. A., 8
mathematical object, 381
maximal, 386
maximal tree, 259
maximum, 386
Mayer–Vietoris sequence

in cohomology, 379
in homology, 356

Mayer–Vietoris theorem
in cohomology, 379
in homology, 356
proof, 359

meager subset, 107
mechanics, classical, 14
member of a set, 381
membership criterion for a set, 382
mesh of an affine chain, 363
metric, 396

discrete, 396
Euclidean, 396
hyperbolic, 323
Lorentz, 15

metric space, 396–399
is first countable, 36
is Hausdorff, 31
second countability of, 48
subspace of, 50

metric topology, 21
basis for, 33

metrizable space, 22
minimal, 386
minimum, 386
Möbius band, 180, 181, 215, 274
Möbius group, 324
Möbius transformation, 324
modulo n, 405
Moise, Edwin, 151
monodromy action, 287

free, 292
isotropy groups of, 292

monodromy theorem
for covering spaces, 282

morphism, 209
multigraph, 257
multiple edges, 257
multiple-valued function, 10
multiplication

in a group, 401
of cosets, 403
of paths, 188

n-dimensional topological manifold, 39
n-holed torus, 166

universal covering of, 327
n-manifold, 39
n-sphere, 55

fundamental group of, 195, 273
homology groups of, 355, 364

n-torus, 62
as a coset space of Rn, 81
as a topological group, 78
fundamental group of, 226
universal covering of, 298

n-tuple, ordered, 391
naive set theory, 381
natural numbers, 390
naturality of connecting homomorphisms, 358
NBG set theory, 384
nearness, 20
neighborhood, 20

coordinate, 38
Euclidean, 38
of a point, 20
of a subset, 20
regular hyperbolic, 330
relative, 51

neighborhood basis, 36
countable, 36
nested, 36

nested neighborhood basis, 36
nested sets, 97
nondegenerate base point, 255
nonorientable surface, 181

covering of, 302
norm, 125, 395

topology is independent of, 125
normal closure, 241
normal covering, 293

automorphism group of, 309
normal space, 111–114
normal subgroup, 403

image of, 405
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normal, perfectly, 117
normalizer, 291
north pole, 56
nowhere dense, 107
nth homotopy group, 208
nth power map, 228, 279, 287, 296
null-homotopic loop, 187
null-homotopic map, 184

object
in a category, 209
mathematical, 381

odd map, 303
one-point compactification, 125
one-point union, 67
one-to-one correspondence, 388
one-to-one function, 388
onto, 388
open and closed subsets, 86, 123
open ball, 397

is an open subset, 397
unit, 21

open cell, 127
open cover, 37, 94

of a subset, 94
open cube, 33
open disk, 22
open interval, 390
open map, 30, 71

and interior of a subset, 30
product of, 82
versus homeomorphism, 30

open set, see open subset
open simplex, 149
open subset

as a topological space, 23
intersection of, 20, 397
is a manifold, 39
is Hausdorff, 31
is second countable, 37
of a metric space, 397
of a topological space, 20
relatively, 50
union of, 20, 397

open subset criterion for continuity, 399
orbit, 79, 291
orbit criterion

for G-automorphisms, 291
for covering automorphisms, 309

orbit relation, 84, 320
orbit space, 80, 311

Hausdorff criterion, 318, 320
order of a group, 401
order topology, 47

ordered field, 390
complete, 390

ordered n-tuple, 391
ordered pair, 384

equality of, 384
ordered set

partially, 385
totally, 47, 385

ordering
linear, 385
partial, 385
simple, 385
total, 385

orientable surface, 180, 181, 267, 268, 274
oriented presentation, 180
orthogonal group, 10, 78, 80

special, 10
orthogonal matrix, 78

pair, ordered, 384
pancakes, 278
paracompactness, 110–118, 126

and normality, 112
of a CW complex, 141

paracompactness theorem, 110
parameters, 1
partial ordering, 385
partially ordered set, 385
particular point topology, 45, 48
partition of a set, 385
partition of unity, 114–115
passing to the quotient, 72, 404
pasting a polygonal presentation, 169
path, 90, 186

reverse, 189
path class, 187
path component, 92
path-connected, 90

implies connected, 90
locally, 92
versus other forms of connectedness, 123

path-homotopic, 187
path homotopy, 187

and composition, 197
is an equivalence relation, 187

path homotopy criterion for the circle, 223
path lifting property, 223, 282
path multiplication, 188

grouping, 190
homotopy invariance of, 188

path product, 188
grouping, 190
homotopy invariance of, 188

Perelman, Grigori, 8
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perfectly normal, 117
periodic map, 72
permutation, 388
plane

projective, 67, 159
plane geometry, 9
Poincaré conjecture, 7
Poincaré, Henri, 4, 7
point

at infinity, ideal, 125
in a topological space, 20
in Rn, 395

pointed homotopy category, 212
pointed map, 210
pointed space, 210
pointed topological category, 210
pointwise product, 62
pointwise sum, 62
pole

north, 56
south, 57

polygon, 162
geodesic, 325
regular geodesic, 325

polygonal presentation, 166
geometric realization of, 167
topological equivalence of, 168

polygonal region, 162
polyhedron of a simplicial complex, 150
positivity

of a metric, 396
of a norm, 125

power map, 228, 279, 287, 296
power set, 21, 383

as a partially ordered set, 385
precompact, 104
preimage, 388
presentation

of Z, 242
of Z=m� Z=n, 243
of Z=n, 243
of Z �Z, 243
of a group, 241, 242
of a topological space, 168
polygonal, 166–168
standard, 172
surface, 168

and fundamental group, 264
product

Cartesian, 384, 392, 393
finite, 384, 392
infinite, 393
of countable sets, 391

direct, 402

dot, 395
free, 235
in a category, 213

uniqueness of, 213
of closed maps, 82
of compact spaces, 96
of locally compact spaces, 106
of manifolds, 62
of open maps, 82
of path classes, 189
of paths, 188
of quotient maps, 107
of topological groups, 77
of words, 234
pointwise, 62

product map, 62
continuity of, 62

product open subset, 60
product space, 60, 213

connectedness, 88, 90
first countability, 61
fundamental group of, 199
Hausdorff property, 61
second countability, 62

product topology, 60, 213
associativity of, 61
basis for, 60, 61
characteristic property of, 60, 64
infinite, 63
on Rn, 60
uniqueness of, 61

projection
canonical, 61, 392, 393
from a Cartesian product, 392, 393
from a product space, 61
in a category, 213
onto a quotient group, 404

projective plane, 67, 159
as a quotient of the sphere, 161
as a quotient of the square, 161
covering of, 302
Euler characteristic of, 179
fundamental group of, 265, 292
presentation of, 168
universal covering of, 298, 322

projective space, 13, 66, 83
as a quotient of the sphere, 101
as an orbit space, 80
complex, 13, 83, 157
covering of, 302
CW decomposition, 157
fundamental group of, 292, 311
homology of, 379
is a manifold, 83
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is compact, 101
real, 66
universal covering of, 298

proper action, 318–322, 337
proper class, 384
proper embedding, 119, 121, 126
proper face, 149
proper local homeomorphism, 303
proper map, 118–121

is closed, 121
proper subset, 382
proper superset, 382
properly discontinuous, 312
punctured Euclidean space

fundamental group of, 201
homology groups of, 365
homotopy equivalent to sphere, 201
is connected, 90

punctured plane, 183
classification of loops in, 226
fundamental group of, 202, 226
homotopy equivalent to circle, 201
is connected, 90

pushout, 275

quotient group, 403, 404
quotient map, 65

composition of, 70
disjoint union of, 70
exponential, 81, 279
restriction of, 70

quotient space, 66
by a covering space action, 312
by a group action, 80
connectedness of, 88, 90
descending to, 72
Hausdorff property of, 68–69, 83, 102–103
of a compact Hausdorff space, 102
of a compact space, 96
of a manifold, 321
of a topological group, 84
passing to, 72
second countability of, 68
uniqueness of, 72

quotient theorem for groups, 403
quotient topology, 65

characteristic property of, 71
uniqueness of, 71

Radó, Tibor, 151
range of a function, 387
rank

finite, 245
of a free abelian group, 245

of an abelian group, 247
rank-nullity law, 247
rational numbers, 390
ray, 396

closed, 396
long, 122
open, 396

real numbers, 390
real projective space, see projective space
real vector spaces, category of, 210
realization, geometric

of a polygonal presentation, 167
of a simplicial complex, 154

reduced word, 235
reduction algorithm, 235
reduction, elementary, 234
refinement, 109

open, 109
reflecting a polygonal presentation, 169
reflection map, 367
reflexive relation, 385
region, polygonal, 162
regular cell, 133
regular cell complex, 134
regular coordinate ball, 103–104
regular coordinate half-ball, 104
regular covering, see normal covering
regular CW complex, 134

triangulation of, 158
regular geodesic polygon, 325
regular hyperbolic neighborhood, 330
regular point of a vector field, 230
regular space, 111
relabeling a polygonal presentation, 169
relation, 384

between classes, 389
equivalence, 385

generated by a relation, 385
of a group presentation, 242
on a set, 384

relative homotopy, 187
relative neighborhood, 51
relative topology, 49
relatively closed, 50
relatively compact, 104
relatively open, 50
relatively simply connected, 302
relativity, general, 15
relator, 241
reparametrization, 187
restricting the codomain, 52
restricting the domain, 52
restriction

continuity of, 27, 52
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of a function, 387
of a homeomorphism, 28
of a relation, 384

retract, 198, 215
deformation, 200
homology of, 344
of a simply connected space, 198
strong deformation, 200

retraction, 198
deformation, 200
strong deformation, 200

reverse path, 189
revolution, surface of, 57
Ricci flow, 7
Riemann sphere, 125
Riemann surface, 11
Riemannian geometry, 9
Riemannian manifold, 9
right action, 78
right coset, 403
rightG-set, 288
right inverse, 389, 393
right translation, 78
rings, category of, 210
rotating a polygonal presentation, 169
rotation of the circle, 224
Rudin, Mary Ellen, 117
Russell’s paradox, 383
Russell, Bertrand, 383

� -compact, 124
saturated subset, 69
saturation of a subset, 107
Schönflies theorem, 151
second category, 107
second countability, 36

implies existence of countable subcovers, 37
implies first countability, 37
implies separability, 37
implies the Lindelöf property, 37
of a metric space, 48
of a product space, 62
of a quotient space, 68
of a subspace, 53

section, 220
local, 220, 281

segment, 395
Seifert–Van Kampen theorem, 251–273

applications of, 255–268
proof, 268–273
special cases, 254
statement, 252

self-loop, 257
semilocally simply connected, 302, 304

separable space, 37, 41
and second countability, 37, 48

separated by open subsets, 31, 95, 111
separation properties, 111
sequence, 391

and continuity, 47
convergent, 26, 398
diverging to infinity, 118, 119
doubly infinite, 391
finite, 392
in a discrete space, 26
in a trivial space, 31
infinite, 391
limit of, 26, 398

sequence lemma, 36
sequentially compact, 98

versus compact, 99, 100
versus limit point compact, 98, 100

set difference, 383
set theory, 381–393

naive, 381
von Neumann–Bernays–Gödel (NBG), 384
Zermelo–Fraenkel, 381
ZFC, 381

sets, 381
category of, 210
class of all, 384
defined by a list, 382
defined by specification, 382
equality of, 382

sheet of a covering, 278, 281
short exact sequence, 344
side of a geodesic, 326
simple edge path, 258
simple graph, 257
simple ordering, 385
simplex, 148

abstract, 153
affine singular, 341
is a closed cell, 149
singular, 340
standard, 149, 340

simplices, see simplex
simplicial complex, 147–155

abstract, 153
as a CW complex, 150
category of, 210
Euclidean, 149
finite, 149, 153
finite-dimensional, 153
locally finite, 153

simplicial isomorphism, 152, 153
simplicial map, 152

abstract, 153
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simply connected coverings, 297
simply connected space, 191

coverings of, 292
locally, 298
semilocally, 302

sine curve, topologist’s, 90, 92, 123
singleton, 382
singular boundary operator, 341
singular chain, 340
singular chain groups, 340
singular cochain, 374
singular cohomology, see cohomology groups
singular cycle, 341
singular homology, see homology groups
singular map, 340
singular point

isolated, 230
of vector field, 230

singular simplex, 340
affine, 341

singular subdivision operator, 361
skeleton

of a CW complex, 133
of a simplicial complex, 150

Smale, Stephen, 5, 7
small category, 209
smallest element, 386
smooth dynamical system, 15
smooth manifold, 39
solid geometry, 9
source of a morphism, 209
south pole, 57
space, 20

discrete, 21
disjoint union, 64
Euclidean, 395
Hausdorff, 31
identification, 66
metric, 396
pointed, 210
product, 60
quotient, 66
topological, 20

space-filling curve, 194
space variable, 187
spacetime, 15
spanning tree, 259
special linear group, 10
special loop, 196
special orthogonal group, 10
special unitary group, 10
specification, 382
sphere, 55

as a quotient of the disk, 66, 74, 160

as a quotient of the square, 160
Euler characteristic of, 179
fundamental group of, 195, 273
homology groups of, 355, 364
homotopy equivalent to Rn Xf0g, 201
infinite-dimensional, 140
is connected, 90
is not a retract of the ball, 379
polygonal presentation of, 168, 172
turning inside out, 5
unit, 3, 22, 55
with handles, 166

spline, 14
square lemma, 193
square root, complex, 10, 302
stack of pancakes, 278
standard basis for Zn, 245
standard presentation, 172
standard simplex, 149, 340
star-shaped, 202
stationary homotopy, on a subset, 186
Steinitz, Ernst, 155
stereographic projection, 56, 81, 194

and one-point compactification, 125
straight-line homotopy, 186
strictly increasing, 392
string theory, 16
strong deformation retract, 200
strong deformation retraction, 200
structure theorem, automorphism group, 310

normal case, 310
simply connected case, 310

subbasis, 47
subcategory, 210

full, 210
subcomplex

of a CW complex, 133
of a simplicial complex, 150

subcover, 37, 94
countable, 37

subdividing a polygonal presentation, 169
subdivision of a simplicial complex, 155
subdivision operator, singular, 361
subgraph, 257
subgroup, 401

generated by a subset, 402
normal, 403
of a cyclic group, 405
of a free abelian group, 245
of a topological group, 77, 81, 84

sublevel set, 117
subordinate to a cover, 114
subsequence, 392
subset, 382
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proper, 382
subspace, 49

closed subsets of, 50
of a first countable space, 53
of a Hausdorff space, 53
of a metric space, 50
of a second countable space, 53
of a subspace, 52

subspace topology, 49
basis for, 51, 53
characteristic property of, 51
uniqueness of, 59

sum
categorical, see coproduct
direct, 402
pointwise, 62

superset, 382
proper, 382

support of a function, 114
supremum, 390
surface, 2, 159

classification of, 6, 174, 267
fundamental group of, 265

abelianized, 266
homology of, 372
nonorientable, 181
of genus n, 181
of revolution, 57
orientable, 181
polygonal presentation of, 172–173
Riemann, 11
universal covering of, 322

surface presentation, 168
and fundamental group, 264

surjection, 388
surjective, 388
symmetric relation, 385
symmetry of a metric, 396

target of a morphism, 209
terminal point of a path, 186
terminal vertex

of an edge, 167
of an edge path, 258

tetrahedron, 148
theta space, 203
Thurston geometrization conjecture, 7
Thurston, William, 7
Tietze, Heinrich, 155, 243
time variable, 187
tofu sandwich theorem, 303
topological boundary, 43
topological category, 210

pointed, 210

topological dimension, 116
topological embedding, 54
topological group, 77, 84, 123

discrete, 77
discrete subgroup of, 313
fundamental group of, 214
product of, 77
quotient of, 84
subgroup of, 77, 84

topological invariance
of compactness, 95
of connectedness, 88
of the Euler characteristic, 373
of the fundamental group, 197
of the singular homology groups, 344

topological invariant, 5
topological manifold, 39
topological property, 4, 28
topological space, 20

pointed, 210
topologically equivalent presentations, 168
topologically equivalent spaces, 28
topologically equivalent subsets of Rn, 3
topologically homogeneous, 78, 156
topologist’s sine curve, 90, 92, 123
topology, 4, 20

algebraic, 6
discrete, 21
disjoint union, 64
Euclidean, 21
generated by a basis, 34
generated by a metric, 21
generated by a subbasis, 47
metric, 21
on a set, 20
product, 60
quotient, 65
relative, 49
subspace, 49
trivial, 21

tori, see torus
torsion element, 246
torsion-free, 246
torsion subgroup, 246
torus, 62
2-dimensional, 62
as a coset space of Rn, 81
as a quotient of the square, 66, 101
as a topological group, 78
coverings of, 314, 316
Euler characteristic of, 179
fundamental group of, 226, 265
homeomorphic to doughnut surface, 63, 101
homotopy classification of maps of, 231
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is connected, 90
is not simply connected, 198
n-holed, 166
n-dimensional, 62
presentation of, 168
triangulation of, 157
universal covering of, 298, 322

total ordering, 385
totally ordered set, 47, 385
transformation, elementary, 169
transitive G-set, 288
transitive action of a group, 79
transitive relation, 385
translation

in Rn, 28
left or right, in a group, 78

transpose of a linear map, 211
tree, 258, 273

is contractible, 258
maximal, 259
spanning, 259

triangle inequality, 125, 396
for the hyperbolic metric, 337

triangulable, 151
triangulation, 151

of 1-manifolds, 151
of 2-manifolds, 151
of 3-manifolds, 151
of Œ0;1/, 151, 154
of xBn, 150, 154
of R, 151, 154
of S1, 151, 154
of Sn�1, 151, 154
of a regular CW complex, 158
of higher-dimensional manifolds, 152
of the torus, 157

trivial edge path, 258
trivial group, 401
trivial topology, 21

basis for, 33
tube lemma, 95
turning the sphere inside out, 5
twisted edge pair, 175
Tychonoff’s theorem, 97

U-small chain, 360
uncountable set, 391
unfolding a polygonal presentation, 170
uniformly continuous, 215
union, 382

connectedness of, 88, 90
countable, 393
disjoint, 64–65, 385, 394
of an indexed family, 392

of closed subsets, 23, 397
of open subsets, 20, 397

unique lifting property, 220, 282
uniqueness

of covering spaces, 296
of free abelian groups, 249
of free groups, 240
of free products, 239
of quotient spaces, 72
of the abelianization, 275
of the product topology, 61
of the quotient topology, 71
of the subspace topology, 59

unit ball, 21
closed, 22, 43
is homeomorphic to Rn, 28
open, 21

unit circle, 22
unit disk, 22
unit interval, 21, 66
unit sphere, 22, 55
unitary group, 10

special, 10
unity, partition of, 114–115
universal coefficient theorem, 375
universal covering, 298

existence of, 298–301
of compact surfaces, 322
of projective space, 298
of the circle, 298
of the Klein bottle, 322
of the n-holed torus, 327
of the n-torus, 298
of the projective plane, 298, 322
of the torus, 298, 322

universal mapping properties, 213
upper bound, 386

least, 386
upper half-space, 42
Urysohn’s lemma, 112

value of a function, 386
variety, algebraic, 12
vector analysis, 8
vector field, 230, 368

index of, 231
on a sphere, 368
winding number of, 231

vector in Rn, 395
vector space, 395

category of, 210
vertex

initial, 167, 258
of a graph, 134, 257
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of a polygon, 162
of a presentation, 167
of a simplex, 148
of an abstract simplex, 153
terminal, 167, 258

vertex map, 152, 153
vertex scheme, 153
vertex set of an abstract complex, 153
vertices, see vertex
volume, 304
von Neumann–Bernays–Gödel set theory, 384

weak topology, 132
wedge sum, 67, 74, 215

fundamental group of, 255, 256
homology groups of, 379
of Hausdorff spaces, 68

well-ordered set, 122, 386
well-ordering theorem, 122, 393

winding number, 217, 224, 230
in the punctured plane, 226
of a vector field, 231

word, 166, 234
empty, 234
equivalence of, 235
product of, 234
reduced, 235

word problem, 243
world sheet, 17

Zermelo–Fraenkel set theory, 381
zero-dimensional Euclidean space, 38, 395
zero-dimensional homology, 346
zero-dimensional manifold, 39
zero set of a function, 116
ZFC set theory, 381
zigzag lemma, 356
Zorn’s lemma, 393
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