
A

RF, system and building block specifications

Performance of a front-end is determined by linearity, selectivity, noise and gain. Linear-
ity is characterized by the input second intercept point (IIP2), input third intercept point
(IIP3) and 1-dB compression point (A1dB). Noise performance of a front-end is described
by the noise figure (NF). IIP2, IIP3, A1dB and NF are called RF specifications. In the pro-
cess of front-end design, RF specifications are calculated based on system specifications.
The following system specifications are used in front-end design: sensitivity at a certain
bit error rate (BER), inter-modulation performance, interference performance, blocking
signals and maximum input signal level.

Considering the linearity of a front-end, the third order inter-modulation products are
of a particular interest. Figure A.1 shows a case when a weak wanted signal is accom-
panied by two strong interferers. The frequencies of the interferers ( f1 and f2) are very
close to the frequency of the wanted signal. Due to the third order inter-modulation dis-
tortion, two new components at the frequencies 2 f1 − f2 and 2 f2 − f1 are generated at
the output of a front-end. They are called third-order inter-modulation (IM3) products
. Since the frequencies f1 and f2 are very close to the frequency of the wanted signal,
there is possibility that one of the IM3 products falls in the band of the wanted signal.
As a consequence, the SNR will be degraded. The third-order inter-modulation distortion
is described by the IIP3 [1]. A typical IIP3 plot is presented in Fig. A.2. Assuming that
the amplitude of the wanted signal is denoted with A, then the amplitude of fundamen-
tal signal at the output increases in proportion to A while the amplitude of the third-order
inter-modulation products at the output is proportional to the A3 [1]. Therefore, there is an
intersection point of these two curves. The x-coordinate of that point is called input third
intercept point (IIP3). Specifications related to inter-modulation performance are used to
calculate the IIP3 of a front-end.
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Figure A.1 Degradation of a wanted signal by IM3 products
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Figure A.2 Input third intercept point (IIP3)

The second-order inter-modulation products can also influence reception quality.
Assuming that the frequencies f1 and f2 are very close to each other (see Fig. A.1), then
due to the second-order nonlinearity a low frequency components will appear at the fre-
quencies f1− f2 and f2− f1. Before conversion to the digital domain, a high frequency
wanted signal has to be down-converted to a low IF. There is possibility that the second-
order inter-modulation products fall in the band of the down-converted wanted signal. If
that happens the SNR will be deteriorated. The second-order inter-modulation distortion
is described by the input second intercept point (IIP2), which is defined in the same way
as IIP3.

Inter-modulation performance can be characterized by two-tone test. The levels of
both signals in the two-tone test are equal and denoted with Ps. The level of third-order
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inter-modulation components, which is referred to the front-end input, is denoted with
PIM3,in. The front-end IIP3 can be calculated if Ps and PIM3,in are known [1]:

IIP3 = Ps +
1
2
(Ps −PIM3,in) (A.1)

In the similar way IIP2 can be expressed as a function of Ps and the level of second-order
inter-modulation components referred to the front-end input (PIM2,in):

IIP2 = 2Ps−PIM2,in (A.2)

Due to the nonlinearity of a front-end transfer function, the front-end gain depends
on the level of an input signal. In the case of a small signal gain, harmonics are small
and they can be neglected. When an input signal increases, harmonics become stronger.
Due to their influence, the front-end gain starts to drop and at a certain level of an input
signal it becomes equal to zero. In order to characterize this effect, RF engineers use 1 dB
compression point (A1dB). This is the level of an input signal at which the front-end gain
drops for 1 dB compared to its small signal gain.

Specifications related to interference performance define levels of in-band interferers,
while blocking performance specify levels of out-of-band interfering signals. Front-ends
have to be designed in a way to handle these in-band and out-of-band interferers. Actu-
ally, specifications related to interference and blocking performance are used to determine
front-end selectivity.

NF is a quantity that describes the noise added by a front-end during the signal pro-
cessing. Hence, NF is defined as a ratio between SNR at the front-end input (SNRin) and
SNR at the front-end output (SNRout).

NF = 10log
(

SNRin

SNRout

)
(A.3)

The NF shows a degradation of SNRin due to the additional noise added by a front-end.
The linear denotation of NF is noise factor F .

F =
SNRin

SNRout
(A.4)

In general, front-end gain is defined as a ratio between signal levels at the front-end
output and front-end input. Depending which quantities are used to characterize the sig-
nals at the front-end input and output, various gain definitions can be obtained. Usually,
voltage and power gain are most often used in the front-end design.

Quality of received signals at the output of the demodulator is evaluated by means of
BER. The BER has to be equal or better than a maximal allowed BER (BERmax). BER
is a function of a signal-to-noise ratio (SNR) at the input of the demodulator. Typical
BER dependence on SNR is presented in Fig. A.3. So, for a required quality of reception
(BER ≤ BERmax), it is necessary to provide a SNR, which is equal or greater than the
SNR that corresponds to BERmax (SNRmin).
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Figure A.3 BER as a function of SNR

Sensitivity of a front-end represents a minimum signal level (Psens) that can be received
and demodulated with BERmax. This means that a front-end has to process a received sig-
nal in such way that at least SNRmin is provided at the input of the demodulator. Starting
from (A.3) and assuming power matching between the antenna and front-end, Psens can
be expressed as [1]

Psens = −174 dBm/Hz+ NF+ SNRmin + 10 logB (A.5)

Using front-end sensitivity from system specifications and if SNRmin, and bandwidth (B)
are known, then the required front-end NF can be determined.

The distance between a receiver and a base station varies. Psens defines a maximal
distance on which communication between a receiver and the corresponding base station
can be established. When a receiver is very close to the corresponding base station, the
received wanted signal is strong. Pmax specifies a maximal level of the wanted signal at the
front-end input, which a front-end has to handle. In principle, the strength of a received
wanted signal is in the range from Psens up to Pmax.

Front-ends are subdivided into different building blocks (see Fig. 1.6). Building blocks
in a front-end are characterized with its own NF, IIP3 and power or voltage gain. These
quantities are called building block specifications. On top of that, each building block
has a power budget and chip area target. According to the multi-standard front-end design
flow (see Fig. 1.7), calculation of building block specifications is the last step in the system
level design. When building block specifications are calculated, two important formulas
are used. Noise factor of a front-end that consists of m cascaded stages can be expressed
as [1]

F = F1 +
F2 −1

Ap1
+ · · ·+ Fm −1

Ap1 · · ·Ap(m−1)
(A.6)
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Fi and Api are the noise factor and available power gain of stage i. The equation (A.6)
is also known as Friis formula [1]. The most important implication from Friis formula
is that a noise contribution from each stage is reduced by the gain of a preceding stage.
Therefore, if each stage in a front-end has a gain greater than unity, then the first few
stages contribute the most to the overall noise factor of a front-end. Similarly the IIP3 of
a front-end that consist of m cascaded stages can be approximated as [1]

1
IIP32 ≈ 1

IIP32
1

+
i=m

∑
i=2

∏n=i−1
n=1 A2

n

IIP32
i

(A.7)

An and IIP3i are the voltage gain and input third intercept point of stage i. IIP3i is
expressed in V instead of dBm. Compared to Friis formula, (A.7) has an opposite im-
plication. If each stage in a front-end has a gain greater than unity, then the linearity of
last few stages in a front-end determines the overall front-end linearity.



B

Noise factor of a two-port network

A two-port network is presented in Fig. B.1. It is driven by a voltage source Vin with
resistance Rs. The total noise from a two-port network is transfered to the input. It is rep-
resented by an equivalent voltage noise source V 2

in and an equivalent current noise source
I2
in [46]. The noise factor of a two-port network, with respect to the source resistance Rs,

can be expressed as [1]

F = 1 +
(Vin + IinRs)2

4kTRs
(B.1)

k is the Boltzmann constant (k = 1.38×10−23 J/K) and T is the absolute temperature in
kelvins.

The noise factor of a two-port network can be also expressed in an alternative way.
The total noise voltage per unit bandwidth at the output of a two-port network is equal to

V 2
out = (4kT Rs +(Vin + IinRs)2) |G|2 (B.2)

G is the voltage gain, which is defined as

G =
Vout

Vin
(B.3)

Multiplying both, numerator and denumerator of (B.1) with |G|2 and taking into account
(B.2), the noise factor of a two port network can be expressed as

F =
V 2

out

|G|2 4kT Rs
(B.4)
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Vout 
Noiseless 

circuit

V
2
in

I
2
in

Vin

Rs

Figure B.1 Two-port network

If the output referred noise voltage from the two port network is denoted with V 2
tp,out

(V 2
tp,out = (Vin + IinRs)2) |G|2) then the noise factor of a two port network can be written in

an another way:

F = 1 +
V 2

tp,out

|G|2 4kTRs
(B.5)
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Noise factor of a passive RF block

A passive RF block (PRFB), which is driven by the voltage source Vin with resistance
Rs, can be represented by the Thevenin equivalent circuit (see Fig C.1). Rt is equal to the
output resistance of the PRFB:

Rt = RPRFB,out (C.1)

Vt is the voltage at the ouput of the PRFB (at reference point B) when it is unloaded:

Vt =
RPRFB,in

Rs + RPRFB,in
GPRFBVin (C.2)

RPRFB,in is the input impedance and GPRFF is the voltage gain of the PRFB.
Insertion loss (L) of the PRFB is defined as the ratio between the available source

power and the available power at the output of the PRFB [1]. Based on this definition L
can be expressed as

L =
V 2

in

V 2
t

RPRFB,out

Rs
(C.3)

Taking into account (C.2), L can be written as

L =
1(

RPRFB,in
Rs+RPRFB,in

GPRFB

)2
RPRFB,out

Rs
(C.4)

In appendix B (see (B.4)) it has been shown that the noise factor of a PRFB can be
calculated as

FPRFB =
V 2

PRFB,out

|G|24kT Rs
(C.5)
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Figure C.1 A passive RF block (a) Thevenin equivalent circuit for a passive RF
block (b)

V 2
PRFB,out is the noise voltage at the output of the PRFB. It can be expressed as

V 2
PRFB,out = 4kTRPRFB,out

(
Rd

Rd + RPRFB,out

)2

(C.6)

G is the voltage gain (G = Vout
Vin

), which can be expressd as

G =
RPRFB,in

Rs + RPRFB,in
GPRFB

Rd

Rd + RPRFB,out
(C.7)

Combining (C.2), (C.6), (C.7) and (C.5), the final expression for FPRFB is obtained:

FPRFB =
1(

RPRFB,in
Rs+RPRFB,in

GPRFB

)2
RPRFB,out

Rs
(C.8)

Comparing (C.8) with (C.4) it can be seen that

FPRFB = L (C.9)

Equation (C.9) shows that the noise factor of a passive RF block is equal to its insertion
loss.
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