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Nonlinear ordinary differential equations are notoriously difficult or impossible to solve
analytically. On the other hand, the solution to linear equations like those encountered
in the kinetic model of the GLUT transporter can be expressed in terms of simple func-
tions, and their behavior analyzed using standard results from linear algebra. In the
first two sections, we cover some basic ideas in linear algebra and a review of power
series. These are concepts that are needed in the sections that follow. In Section A.3
we summarize the main results for linear equations with two dependent variables. Al-
though one often encounters models like the GLUT transporter that involve more than
two variables, the basic ideas for two-variable ODEs carry over more or less unchanged
for larger sets of linear equations. Thus the intuition gained from understanding simple
two variable ODEs is enormously useful in understanding more complicated models.
To help to develop this intuition, we introduce the notion of the phase plane and use
phase plane analysis to help understand the solution of two-variable linear equations
in Section A.4. Another reason for focusing on linear equations is that the stability
of nonlinear ODEs can be understood by examining the behavior of small deviations
around steady or oscillatory states. In Section A.4.2 we show how the properties of
linearized equations can be used to understand stability of steady states for a system
of nonlinear equations such as a membrane with a gated ion channel.

Although we have tried to include a good brief synopsis of the most important tools
used in this book, more study on these topics may be necessary to fully appreciate some
of the more complex mathematical concepts. For more information on these topics,
please see the suggested readings listed at the end of this appendix.
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A.1 Matrix and Vector Manipulation

Matrices can be multiplied, added, multiplied by scalar numbers, and differentiated
according to the rules of linear algebra. Here we summarize these results for the 2 × 2
matrices and two-component column vectors . The matrix Â multiplying the vector x
acts as a linear operator that produces a new vector, z, according to the formula

z � Âx �
(

a11 a12

a21 a22

)(
x1

x2

)
�
(

a11x1 + a12x2

a21x1 + a22x2

)
. (A.1)

It can be verified using (A.1) that the identity matrix Î �
(

1 0

0 1

)
leaves vectors

unchanged, i.e., z � Îx � x. Matrices can be added together, as can vectors, using the
rules

Â + B̂ �
(

a11 + b11 a12 + b12

a21 + b21 a22 + b22

)
and x + y �

(
x1 + y1

x2 + y2

)
. (A.2)

To multiply either a matrix or a vector by a scalar c, each component is multiplied by
c, e.g.,

cÂ � c

(
a11 a12

a21 a22

)
�
(

ca11 ca12

ca21 ca22

)
. (A.3)

Differentiation of matrices and vectors is also carried out on each component
separately. Thus

dx/dt �
(

dx1/dt

dx2/dt

)
. (A.4)

The trace, determinant, and discriminant are important scalars that characterize
matrices and that appear in the solution to (A.15). We use the shorthand notation trÂ

for the trace of Â, detÂ for its determinant, and discÂ for the descriminant. In terms of
matrix elements they are defined as

trÂ � a11 + a22 (A.5)

detÂ � a11a22 − a21a12 (A.6)

discÂ � (trÂ)2 − 4detÂ (A.7)

For example, for the matrix

Â �
(

1 −1

3 6

)
, (A.8)

trÂ � 7, det Â � 9, and discÂ � 13.
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The inverse of a matrix is the generalization of division by a number. The inverse
of Â is written as Â−1 and is a matrix with the property that

ÂÂ−1 � Â−1Â � Î (A.9)

with Î the identity matrix. The inverse of a matrix is useful in solving linear algebraic
equations. For example, the solution of the linear equation

Âx � y (A.10)

is

x � Â−1y, (A.11)

which can be verified by multiplying both sides of (A.10) on the left by Â−1 and using
(A.9). For a 2 × 2 matrix it is easy to verify by carrying out the matrix multiplication in
(A.9) that if Â is not singular, i.e., as long as detÂ 
� 0, then

Â−1 � 1

detÂ

(
a22 −a12

−a21 a11

)
. (A.12)

A.2 A Brief Review of Power Series

One of the most useful tehniques in applied mathematics is the method of power series
expansion. The basic idea is that many functions can be expressed as a series in one or
more variables. For example, the familiar exponential function can be written as

et � 1 + t

1!
+ t2

2!
+ · · · + tn

n!
+ · · · ,

or more compactly as

et �
∞∑

n�0

tn

n!
,

where we define 0! � 1. The series converges for all t both real and complex. Given a
function f (t) and a point t � t0, suppose that all the derivatives of f at the point t0 are
defined. Then we can formally develop a power series approximation of the function f

around the point t0. The formal power series is

f (t) �
∞∑

n�0

f (n)(t0)
(t − t0)n

n!
. (A.13)

Here f (k)(t0) is the kth derivative of the function f evaluated at the point t0. That is, given
the derivatives of a function at a point, we can approximate the function over some
interval containing that point by using a series approximation. This series is called a
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Taylor series of f about the point t0. When the point t0 is 0 the series is often called a
Maclaurin series.

If all of the derivatives of the given function exist at the point t0, then the finite
approximation to the Taylor series,

SN(t) �
N∑

n�0

f (n)(t0)
(t − t0)n

n!
,

is also defined for all t, since it is just a finite sum of polynomials. We say that the series
converges for t in some interval I containing t0 if the limit of SN(t) exists as N → ∞
for all t in I. The interval I for which convergence is obtained is called the interval
of convergence for the series. For the exponential series given above, the interval of
convergence is the whole real line. Infinite series do not always converge on the whole
line. For example, the geometric series

S(t) � 1 + t + t2 + t3 + · · · + tn + · · ·
converges for |t| < 1. A useful test for the convergence of a series of the form

S �
∞∑

n�0

an

is the ratio test. Let Rn � |an+1/an|. If

lim
n→∞ Rn < 1,

then the series converges. Let us apply this to the exponential series above. Since an �
tn/n!, we have |an+1/an| � t/(n + 1), and the limit of this as n goes to infinity is zero for
any finite t, so that the series converges for all t.

Here are some examples. Let us find a series approximation for f (0) � sin(t) about
t � 0. Note that f (0) � 0, f ′(0) � 1, f ′′(0) � 0, f ′′′(0) � −1, and the higher derivatives
just cycle among these numbers. That is, derivatives of order 1, 5, 9, etc., are equal to
1, those of order 3, 7, 11, etc., are equal to −1, and all others are zero. Thus

sin(t) � t − t3

3!
+ t5

5!
+ · · · + (−1)m t2m+1

(2m + 1)!
+ · · · .

The ratio |am+1/am| � t2/(2m + 2)(2m + 3), which tends to 0 as m goes to infinity, so the
sine series converges for all t.

You can similarly verify that

cos(t) �
∞∑

m�0

(−1)m t2m

(2m)!
.

As a final example, consider the series for the square root function evaluated at t � 1.

We have the following first few derivatives:

f (1) � 1, f ′(1) � 1
2

, f ′′(1) � −1
2

1
2

, f ′′′(1) � −3
2

−1
2

1
2

.
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Thus the nth derivative (n > 1) is

cn � (−1)n+1 (2n − 3)(2n − 5) · · · 1
2n

.

Thus, √
(t) � 1 + 1

2
(t − 1) +

∞∑
n�2

(−1)n+1 cn(t − 1)n

n!
.

We can apply the ratio test to this, noting that |cn+1/cn| � n − 1
2 , so that

Rn � |t − 1|
(

n − 1
2

)
/(n + 1).

As n → ∞ this ratio goes to |t − 1|. The interval of convergence satisfies |t − 1| < 1, or
0 < t < 2.

A.3 Linear ODEs

The simplest time-dependent differential equations to solve are linear in the depen-
dent variables and of first order in the time. First order implies that only the first
time derivative appears on the left–hand side of the equations, and linear implies that
the right–hand side is a linear function of the dependent variables. The most general
equations of this type in n variables have the form

dx1/dt � a11x1 + a12x2 + · · · + a1nxn + y1,

dx2/dt � a21x1 + a22x2 + · · · + a2nxn + y2,

... (A.14)

dxn/dt � an1x1 + an2x2 + · · · + annxn + yn.

Here we consider only the case where the aij and yi are parameters that are independent
of time. For simplicity, we focus in this chapter on the special case of two variables,
which shares the main features of the more general case. Using the column vector and
matrix notation introduced in Section A.1, we can write these equations concisely as

dx/dt � Âx + y (A.15)

with

x �
(

x1

x2

)
, y �

(
y1

y2

)
, Â �

(
a11 a12

a21 a22

)
. (A.16)

Using the rules for differentiation of vectors, matrix multiplication, and vector addition
it is easy to verify that the vector equation (A.15), when written in terms of component
vectors, is the special case of (A.14) for two variables, i.e.,

dx1/dt � a11x1 + a12x2 + y1, (A.17)
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dx2/dt � a21x1 + a22x2 + y2. (A.18)

In this book we will be interested in equations for which there is a steady–state
solution, xss. In particular, we will be interested in what happens near these steady–state
solutions. This is a solution that is independent of time, so that setting the left–hand
side of (A.15) equal to zero and rearranging gives y � −Âxss. Using this expression we
can eliminate y from (A.15) by defining x′ � x − xss, to get

dx′/dt � Âx′. (A.19)

This has the same form as (A.15) with y � 0, but now this equation concerns deviations,
or perturbations, from the steady–state solution. In the next section we will show how
to solve equations of this type using simple algebra.

A.3.1 Solution of Systems of Linear ODEs

The simplest way to solve an equation like (A.15) is to use the component form of the
equation to obtain a new equation that is of second order in time. For simplicity we
focus on the special case that y � 0 and introduce the notation ẋ1 for the first time
derivative and ẍ1 for the second, so that

ẋ1 � a11x1 + a12x2, (A.20)

ẋ2 � a21x1 + a22x2. (A.21)

Thus differentiating both sides of (A.20) with respect to time gives

ẍ1 � a11ẋ1 + a12ẋ2

� a11ẋ1 + a12(a21x1 + a22x2)

� a11ẋ1 + a12a21x1 + a22(a12x2) (A.22)

� a11ẋ1 + a12a21x1 + a22(ẋ1 − a11x1)

� a11ẋ1 + a22ẋ1 − a11a22x1 + a12a21x1,

where in rewriting the right–hand side we have first used (A.21) to replace ẋ2 and
then used (A.20) to eliminate the term a12x2. Using the last equality in (A.22) and the
definitions of the trace and determinant of Â in Section A.1 gives a second–order
equation for x1:

ẍ1 −
(
trÂ
)

ẋ1 +
(
detÂ

)
x1 � 0. (A.23)

Using similar manipulations, an identical second order equation can be derived for x2:

ẍ2 −
(
trÂ
)

ẋ2 +
(
detÂ

)
x2 � 0. (A.24)

To solve (A.23), we try the exponential function x1(t) � c exp(λt) (c 
� 0).
Substituting this into the left–hand side of (A.23) gives

cλ2 exp(λt) − cλ exp(λt)trÂ + c exp(λt)detÂ. (A.25)
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Therefore, c exp(λt) is a solution to (A.23) if

λ2 − (trÂ)λ + detÂ � 0. (A.26)

This is called the characteristic equation of the matrix Â. It is a quadratic equation in λ

with the well-known solution

λ± �
trÂ ±

((
trÂ
)2

− 4detÂ

)1/2

2
. (A.27)

For example, if Â �
(

1 −1

3 6

)
, then trÂ � 7, det Â � 9, and λ± �

(
7 ± √

13
)

/2. As

long as λ+ 
� λ−, then the solution to the characteristic equation gives two independent
solutions to (A.23). In this case, because (A.23) is linear, it is easy to verify that the sum
of these two solutions, c+ exp(λ+t) + c− exp(λ−t), is also a solution.

The argument of the square root in (A.27) is the discriminant of the matrix Â defined
in Section A.1. As long as discÂ 
� 0, then it is clear from (A.27) that there are two
independent solutions for x1(t). Using the result in (A.23), it follows that the solution
for x2(t) also has the same form. We write this concisely as

xi(t) � bi1 exp(λ+t) + bi2 exp(λ−t) (A.28)

with i � 1, 2. The values of the constants b1i and b2i need to be chosen to satisfy the
initial conditions. This is easily worked out, for example, for x1. Recall that there are
two initial conditions, x1(0) and x2(0), since there are two equations. Using (A.20) and
(A.28) it follows that

x1(0) � b11 + b12, (A.29)

ẋ1(0) � a11x1(0) + a12x2(0) � b11λ+ + b12λ−. (A.30)

Since x1(0), x2(0), λ+, and λ− are known, (A.29) and the second equality in (A.30) provide
two independent equations for the two unknowns b11 and b12. Solving these using
elementary algebra gives

b11 � ẋ1(0) − λ−x1(0)
λ+ − λ−

, (A.31)

b12 � −ẋ1(0) + λ+x1(0)
λ+ − λ−

. (A.32)

Since λ+ 
� λ−, the denominators of these equations are different from zero.
The time dependence of x1(t) is strongly dependent on the nature of the charac-

teristic values. There are three possibilities that are determined by the sign of the
discriminant and the trace. If discÂ > 0, then according to (A.27) the two characteristic
values will be distinct real numbers, since for a matrix with real components, trÂ is a
real number. However, if discÂ < 0, then the roots will be conjugate complex numbers
(if trÂ 
� 0), and will in fact be pure imaginary numbers (if trÂ � 0).



A.3: Linear ODEs 385

When the characteristic values are complex, (A.28) can be expressed in terms
of sines, cosines, and exponentials. This follows from the representation of the
exponential of a complex number r + iω (with i � √−1) as

exp(r + iω) � exp(r) exp(iω) � exp(r) (cos(ω) + i sin(ω)) . (A.33)

If we express the characteristic values in this fashion as λ± � r ± iω, then it is not
difficult to show using (A.28)–(A.32) that

x1(t) � exp(rt)
(

x1(0) cos(ωt) − (ẋ1(0) − rx1(0))
ω

sin(ωt)
)

. (A.34)

Straightforward differentiation of this expression verifies that it satisfies the initial
conditions and that it is identical to the expression in (A.28).

The solution to (A.23) is slightly different when discÂ � 0. In this case, according
to (A.27) λ+ � λ−, and there is only a single characteristic value λ � trÂ/2. In this case,
in addition to c exp(λt) there is a second solution to (A.23), which is c′t exp(λt). This
can be verified using the facts that trÂ � 2λ and (since discÂ � (trÂ)2 − 4detÂ � 0) that
detÂ � λ2. Substituting these expressions for trÂ and detÂ into (A.23) gives

ẍ1 − 2λẋ1 + λ2x1 � 0. (A.35)

It is easy to show then by substitution that c′t exp(λt) solves (A.35). Thus when discÂ � 0,
the general solution to (A.23) is

x1(t) � b11 exp(λt) + b12t exp(λt). (A.36)

Using the initial conditions

x1(0) � b11, (A.37)

ẋ1(0) � a11x1(0) + a12x2(0) � λb11 + b12, (A.38)

it is easy to show that in this case

b11 � x1(0), (A.39)

b12 � a11 − a22

2
x1(0) + a12x2(0). (A.40)

Although matrices with a vanishing discriminant are not typical, it is easy to con-

struct specific examples, e.g., Â �
( −3 5

0 −3

)
. For this matrix trÂ � −6, detÂ � 9,

discÂ � 0, and λ � −3, and the solution for x1 is easily found from (A.36)–(A.40) to be

x1(t) � (x1(0) + 5tx2(0)) exp(−3t). (A.41)

A.3.2 Numerical Solutions of ODEs

Although we have characterized the solutions to (A.20)–(A.21) analytically, it is just as
easy to solve them numerically by creating a system of ODEs in a numerical solver.
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Consider the matrix Â �
(

1 −1

3 6

)
, with characteristic values λ± � (7 ± √

13)/2 �

5.31 and 1.70. Since these values are distinct, we know that the solution is a sum of
two exponentials with positive exponents. Thus as long as x1(0) 
� 0 and x2(0) 
� 0, the
magnitude of x1 and x2 will increase exponentially with time. This is shown in Figure
A.1A, where the solution generated using a numerical package is plotted. Notice that
x1 rapidly declines, whereas x2 increases even more rapidly. The difference is due to
the coefficients of the two exponentials, which can be calculated explicitly from the
formulae in (A.31) and (A.32).

Figure A.1B shows another solution for the matrix Â �
( −1 −1

5 1

)
for which

discÂ � −16 and therefore λ± � ±4i. Since the characteristic values are imaginary,
(A.34) shows that the solution is a sum of sines and cosines, as shown in the figure. The

matrix Â �
( −2 −1

4 1

)
, on the other hand, has complex solutions with a real part

equal to − 1
2 . Thus the solution for this matrix will be a sum of sines and cosines multi-

plied by exp(−t). Numerical solution of the equations leads to the damped oscillations
shown in Figure A.1C.

A.3.3 Eigenvalues and Eigenvectors

The characteristic values of Â are also the eigenvalues corresponding to the eigenvectors
of the matrix. An eigenvector eλ of Â has the property that

Âeλ � λeλ, (A.42)

where λ is a number called the eigenvalue. In other words, the matrix Â transforms an
eigenvector into a constant multiple of the eigenvector. This equation can be rewritten
in component form as

(a11 − λ)e1λ + a12e2λ � 0,

a21e1λ + (a22 − λ)e2λ � 0. (A.43)

The only way to have a nonzero solution to this equation for eλ is that the determinant
of the coefficients on the left-hand side of (A.43) vanishes, i.e.,

detÂ �
(

a11 − λ a12

a21 a22 − λ

)
� 0. (A.44)

Expanding the determinant, one obtains the characteristic equation (A.26), which
shows that the eigenvalues are the same as the characteristic values of the matrix.

The eigenvectors of a matrix are defined only up to a multiplicative constant, since
if eλ satisfies (A.42), then so does ceλ. As long as λ+ 
� λ−, then it is not difficult to verify
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Figure A.1 Solution of 2×2 linear equations using a numerical solver. Panels (A)–(C) give the
time course of the solutions for the three matrices described in the text.

that the eigenvectors are given by the simple formula

eλ �
(

1

(λ − a11)/a12

)
. (A.45)
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For example, for the matrix Â �
(

1 1

2 1

)
trÂ � 2, detÂ � −1, and λ± � 1 ± √

2.

Applying (A.45), the eigenvectors are

e+ �
(

1√
2

)
and e− �

(
1

−
√

2

)
. (A.46)

A useful property of eigenvectors of Â is that if eλ is the initial condition for (A.20)
and (A.21), then the solution is

x(t) � exp(λt)eλ. (A.47)

This result can be verified by differentiating the right–hand side of (A.47) to get ẋ(t) �
λ exp(λt)eλ and then noticing that (A.42) implies that

Âx(t) � Â exp(λt)eλ � exp(λt)Âeλ � λ exp(λt)eλ, (A.48)

which shows that x(t) solves the equations. We apply this result in the following
sections.

A.4 Phase Plane Analysis

Obtaining a “solution” to first–order ODEs means that you have expressed all of the
dependent variables as functions of time. In the case of the 2 × 2 linear equations in
Section A.3, this means that we have the time series for x1 and x2. A great deal can
be learned about these solutions by plotting the dependent variables as a function of
time as done in Figure A.1. However, there are other ways of plotting solutions that
give additional insight. For example, one can plot ẋ1 versus time, or some function of
x1 and x2 versus time. Perhaps the most useful plot is a phase plane plot, in which x2

is plotted versus x1 with time serving only as a parameter, as shown in Figure A.2 for
the numerical solutions shown in Figure A.1. This type of plot represents the trajectory
of the solution, just as the arc of a baseball thrown in the air is a trajectory in three
dimensional space.

Technically, the phase plane (or phase space for more than two variables) is a
Cartesian plane with coordinates (x1, x2). Since the initial condition for the ODEs is
arbitrary, any one of these points could be the initial point of a trajectory like those
in Figure A.2. Continuing the analogy of phase space trajectories to the trajectory of a
baseball, it makes sense to associate a velocity with the trajectory that goes through a
point in phase space. This can be done directly using the differential equations, since
the right–hand sides of the equations are explicit expressions for ẋ1 and ẋ2 as functions

of x1 and x2. Thus for the matrix Â �
( −2 −1

4 1

)
that gives rise to the trajectory

in Figure A.2C, the x1 component of the velocity at the point (x1, x2) is −2x1 − x2,
whereas the x2 component of the velocity is 4x1+x2. For the initial point (0.5, 0.5) of the
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Figure A.2 The three solutions in Figure A.1(A)–(C) represented here in phase plane plots in
corresponding (A)–(C). The arrow represents the direction of the initial point on the trajectory,
which is given by the full line. The dashed line is the x2 nullcline, the broken dashed line is
the x1 nullcline, and their intersection is the steady state, which is unstable in (A), marginally
stable in (B), and stable in (C).

trajectory in Figure A.2C the velocity vector at that point has components (−1.5, 2.5).
In the figure, the head of the arrow on the velocity vector indicates its direction, and
the length is proportional to its magnitude. Just as the velocity of a baseball is parallel
to its trajectory, so is the velocity vector in phase space parallel to its trajectory.

There are a number of important curves and points in the phase plane that are
defined by the differential equations. Isoclines are lines in the phase plane where the
time rate of change of a variable is constant. For example, for the matrix in the previous
paragraph, the isoclines for x1 are defined by c � −2x1 − x2, i.e., x2 � −2x1 + c, and
the isoclines for x1 are given by x2 � −4x1 + c, where c is a constant. A particularly
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useful isocline is the nullcline, for which the time rate of change is zero, i.e., c � 0. So
for this special case the nullclines are given by the straight lines through the origin,
x2 � −2x1 and x2 � −4x1, shown in Figure A.2C. It is straightforward to show that
the nullclines for the general 2 × 2 linear equations (A.17)–(A.18) are also straight
lines. Since ẋ1 � 0 on the x1 nullcline, x1 cannot decrease if the trajectory crosses
the nullcline from the right and cannot increase if the trajectory crosses it from the
left. This means, as can be verified by looking at Figure A.2, that the trajectory must
cross the x1 nullcline perpendicular to the x1 axis. Similary, the trajectory crosses the
x2 nullcline perpendicular to the x2 axis.

Steady states are defined as points in the phase space at which both ẋ1 � 0 and
ẋ2 � 0. These points, which are also known as singular points, equilibrium points,
or stationary points, have the property that neither variable changes as a function of
time. They are determined graphically by the intersection of the nullclines. However,
just because the variables do not change in time at a steady state does not mean that
trajectories starting from nearby points will end up at the steady state. Three different
situations are illustrated in Figure A.2. In panel A the steady state is at the origin, (0, 0).
However, the trajectory starting at (0.5, 0.5) grows without bound. In panels B and C the
steady states are also at the origin, but the trajectory in B circles the origin periodically,
whereas in C it spirals into the steady state.

A.4.1 Stability of Linear Steady States

As we saw in the preceding section, a steady state may or may not be an attractor for
nearby trajectories; i.e., just because an initial condition is close to the steady state, it
does not mean that after a time the trajectory will approach the steady state. However,
when this is the case, the steady state is said to be stable and attractive or asymptotically
stable. Three qualitatively different behaviors near steady state are illustrated by the
solutions of the linear ODEs in Figure A.2. The matrix for the ODEs in panel A has
positive eigenvalues, and the trajectory is repelled, not attracted, by the steady state.
So the steady state in panel A is asymptotically unstable. In panel B the trajectory
is circular and periodically returns to the initial condition (0.5, 0.5). In this case the
steady state is neither attractive nor repulsive and is said to be neutrally stable. Note
that if the steady state of a nonlinear problem is determined to be neutrally stable by
finding the eigenvalues of the linearized problem, we are not able to conclude anything
about the stability of the steady state. Neutral stability is a borderline case, and the
nonlinear parts of the equations can affect the stability in either direction. In these
cases, more analysis must be done to determine the stability. Finally, in panel C the
trajectory spirals into the steady state, which is stable and attractive.

The attentive reader may have noticed a correlation between the eigenvalues of the
three matrices represented in Figure A.2 and the stability of the steady states. Indeed,
unstable states of linear equations are characterized by at least one eigenvalue with a
positive real part. If, in addition, both eigenvalues are positive, as in Figure A.2A, then
the state is called an unstable node. An asymptotically stable state like that in Figure
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Figure A.3 Graphical representation of
the stability properties of 2 × 2 matri-
ces. The trace is plotted on the x -axis
and the determinant on the y -axis. The
eigenvalues in the cross–hatched region
are complex, and real elsewhere. These
two regions are separated by the parabola
detÂ � tr Â2/4 on which discÂ � 0.
Seven regions with various degrees of
stability are indicated by the sign of the
eigenvalues.

A.2C, on the other hand, has negative real parts for all of its eigenvalues. Marginal
(or neutral) stability occurs when the real part of a pair of eigenvalues vanishes, as
is the case in Figure A.2B. A two–variable linear equation has only two eigenvalues,
and a marginally stable steady state implies sinusoidal solutions. Another name for a
marginal state for a two–variable system is a center.

Because we have at our disposal the analytical form of the solutions for 2×2 linear
equations, it is possible to give a complete description of the stability of their steady
states. Figure A.3 gives a graphical representation of the stability behavior of a matrix
Â as a function of the trace (plotted on the x-axis) and the determinant (plotted on the
y-axis). The trÂ, detÂplane in Figure A.3 is divided into seven distinct regions separated
by the two axes and the parabola detÂ � trÂ2/4, which is the curve on which discÂ � 0.
According to the expression for the characteristic values in (A.27), λ+ � λ− on the
parabola, and in the quadrant with trÂ > 0 the eigenvalues are both positive, whereas
for trÂ < 0 both eigenvalues are negative. Marginal stability occurs when the real part
of both eigenvalues is zero, i.e., when trÂ � 0 and detÂ > 0, which occurs on the positive
y-axis. Using (A.27) it is easy to verify that complex eigenvalues occur only in the cross-
hatched region above the parabola (since discÂ < 0 there). In that region to the right
of the y-axis, trÂ > 0, the eigenvalues have positive real parts, and the steady states are
unstable spirals (region 5), whereas in region 7 the spirals are stable. When trÂ and detÂ

have values in regions 1 and 4, the steady state is a stable or unstable node, respectively.
Below the x-axis (where detÂ < 0) the steady states are unstable with the property that
they have two real eigenvalues, one positive and one negative. Unstable states like this
are called saddle points, because trajectories that start in the direction of the positive
eigenvector recede from the steady state exponentially. Trajectories along the direction
of the negative eigenvector move toward the steady state, also exponentially.
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Figure A.4 Schematic representation of phase space trajectories near the steady states in the
seven regions shown in Figure A.3. Unstable states have trajectories that diverge from the
steady state, whereas stable steady states have converging trajectories, and neutrally stable
states are surrounded by closed trajectories. The states shown in 2 and 3 are saddle points,
with both converging and diverging trajectories in the directions of the eigenvectors of the
matrix.

Using Figure A.3 we can classify the qualitative behavior of phase plane trajectories
for 2×2 linear ODEs based on the value of their trace and determinant. Representative
trajectories are illustrated in Figure A.4 for each of the seven regions in Figure A.3.
Region 1 is a stable node, and the two trajectories correspond to the directions of
the two stable eigenvectors, which have velocity vectors directed at the steady state.
Regions 2 and 3 are saddle points, with eigenvectors that move toward or away from
the steady state, whereas the unstable node in region 4 has both eigenvectors moving
away. Regions 5 and 7 have trajectories that spiral away from or toward the steady
state. In region 6 the trajectories are circles, corresponding to sinusoidal oscillations.

A.4.2 Stability of a Nonlinear Steady States

What we have learned about stability of steady states for linear systems can be trans-
ferred partially to nonlinear ODEs. To be specific, let us consider a biological membrane
with a gated ion channel. To do this we combine a model of ion gating with an expres-
sion that governs the membrane potential (see Chapter 1 and Chapter 2). For simplicity,
we will consider only one conductance. If n represents the gating variable and V the
voltage, then the two are coupled by the differential equations

CdV/dt � −gn(V − Vrev) + Iapp, (A.49)

dn/dt � −(n − n∞)/τ, (A.50)

where Vrev is the reversal potential. We assume that n∞ has the following voltage
dependence:

n∞ � 1
1 + exp(−(V + V0.5)/S)

(A.51)
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with V0.5 and S positive constants. Equations (A.49) and (A.50) are both nonlinear due
to the factor n(V − Vrev) in (A.49) and the voltage dependence of n∞ in (A.50).

To analyze the stability of the steady states of these equations we first must find the
steady states by setting the right–hand sides of the equations equal to zero. This gives

gnss(Vss − Vrev) � Iapp (A.52)

nss � n∞(Vss), (A.53)

which can be written as a single nonlinear equation to solve for Vss:

Iapp

g
� Vss − Vrev

1 + exp(−(Vss + V0.5)/S)
. (A.54)

This equation cannot be solved in closed form, and a much simpler way to locate the
steady state is graphically in the (V, n) phase plane using the nullclines. Setting the left–
hand sides of (A.49) and (A.50) separately equal to zero and solving for n as a function
of V gives

n � Iapp

g(V − Vrev)
(V-nullcline), (A.55)

n � n∞ � 1
1 + exp(−(V + V0.5)/S)

(n-nullcline). (A.56)

The V- and n-nullclines are plotted in Figure A.5A, along with representative tra-
jectories. Due to the nonlinearities in (A.49) and (A.50) the nullclines are curved rather
than straight lines. This curvature influences the shape of the trajectories, which must
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Figure A.5 Phase plane plots for (A.49)-(A.51) showing typical trajectories (full lines), the V -
nullcline (dashed line), and the n-nullcline (broken dashed line). (B) is zoomed-in around the
steady state, illustrating that the nullclines are approximately straight lines near the steady
state.
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cross the nullcline perpendicular to the axis of the variable. Close to the steady state,
however, both nullclines become approximately straight lines, as is seen in Figure A.5B,
which is the same phase plane as in Figure A.5A, but zoomed in around the steady state.

If we restrict the initial conditions for trajectories to be close to the steady state,
then the nonlinear equations are well approximated by a 2×2 linear system. This can be
seen in detail if we define as new variables x1 � V −Vss and x2 � n−nss, the deviations
of the voltage and gating variable from their steady–state values. Since the steady–state
values are constants, it follows that dx1/dt � dV/dt and dx2/dt � dn/dt, so that we can
use (A.49) and (A.50) to obtain differential equations for x1 and x2. In particular, if the
initial conditions are close to the steady state, then we can substitute V � Vss + x1 and
n � nss + x2 into the right–hand sides of (A.49) and (A.50) and then use a Taylor series
expansion in the small deviations x1 and x2. Explicitly:

dx1/dt � (g(nss + x2)(Vss + x1 − Vrev) + Iapp
)
/C

� [gnss(Vss − Vrev) + Iapp]/C + (gnssx1 + g(Vss − Vrev)x2)/C

+ gx1x2/C, (A.57)

dx2/dt � − (nss + x2 − n∞(Vss + x1)) /τ

� −[nss − n∞(Vss)]/τ + (dn∞/dV)ssx1/τ − x2/τ

+ higher–order terms in x1. (A.58)

In the second equality in both (A.57) and (A.58) the terms in square brackets vanish
because of the steady–state conditions in (A.52) and (A.52); the second terms are linear
in x1 and x2; and the third terms are quadratic or of higher order in x1 and x2. Thus
keeping the lowest–order terms gives the linear equations

dx1/dt � (gnss/C)x1 + (g(Vss − Vrev)/C)x2, (A.59)

dx2/dt � (dn∞/dV)ssx1/τ − x2/τ. (A.60)

Once the elements of the matrix of this 2 × 2 linear equation have been evaluated,
the behavior of the solution in a neighborhood of the steady state can be evaluated.
This type of linear analysis, which gives information only about trajectories nearby the
steady state, is called linear stability analysis.

The trajectories in Figure A.5B make it clear that the steady state is asymptotically
stable, and according to the catalogue of possibilities in Figure A.4, the steady state is
a stable spiral. It is also possible to find the steady states numerically and, in addition,
determine the stability of the steady state by numerical evaluation of the eigenvalues.
Combining the analytical tools developed in this chapter with the numerical tools avail-
able in various software packages, we are ready to explore the dynamics of a variety of
cellular and neural dynamical systems in the remaining chapters.
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Figure A.6 Bifurcations of new fixed points: (A) saddle–node bifurcation, (B) transcritcial bifur-
cation, (C) supercritical pitchfork bifurcation, (D) subcritical pitchfork bifurcation. Stable fixed
points are solid, and unstable are dashed.

A.5 Bifurcation Theory

In many systems of differential equations there are parameters that we would like to
vary. As these parameters vary, we want to know whether the solutions to the equa-
tions remain similar in nature. For example, as current is injected into a cell, we want
to know if the cell will remain at rest or whether some other phenomena that are
qualitatively different will take place. The changes in the qualitative nature of solu-
tions to differential equations as a parameter varies is called bifurcation theory. In this
section we will review simple bifurcations from equilibrium of ordinary differential
equations. Bifurcation from equilibrium solutions is intimately related to the stability
of equilibria, a subject described earlier in this chapter. Suppose that we have found
an equilibrium solution to a system of differential equations and study its stability as
some relevant parameter varies. The stability is determined from the eigenvalues of the
linearized system. There are two simple ways that stability can change as a parameter
varies: (i) A real negative eigenvalue can cross through zero and become positive; (ii)
a pair of complex conjugate eigenvalues with negative real parts crosses through the
imaginary axis and becomes a pair of complex eigenvalues with positive real parts. In
a fully nonlinear system these changes in stability will often lead to the appearance of
new solutions to the differential equations. Because these are new branches of solu-
tions that were not there previously, the system has undergone a qualitative change in
behavior.
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Figure A.7 Numerically computed bifurcation
diagram for the autocatalytic chemical model.
Stable fixed points are solid, and unstable are
dashed.

A.5.1 Bifurcation at a Zero Eigenvalue

Consider the differential equation

dx

dt
� λ − x2, (A.61)

where λ is a parameter. For λ < 0 there are no real equilibria. However, if λ > 0,
then there are two equililibrium solutions, x � ±√

λ. Consider the case λ > 0. The
linearization about the positive fixed point is −2

√
λ. Thus, it is a stable fixed point.

Note that as λ tends to zero the eigenvalue of this 1×1 matrix goes to zero. Any time an
eigenvalue of the linearization around an equilibrium point crosses zero, we can expect
to see more than one fixed point in the neighborhood of the parameter. The graph of
the equilibrium solution against the parameter along with the stability information
is called a bifurcation diagram. Figure A.6A shows the bifurcation diagram for (A.61).
This type of bifurcation is called a saddle node. The autocatalytic chemical model

dx

dt
� λ − 6x + 10x2

1 + x2

has two saddle-node bifurcations as the input λ increases from 0. For 0 < λ < 0.9
there is a single equilibrium point. At λ ≈ 0.9 a new pair of equilibria appear at x ≈
0.8. As λ continues to increase these new equilibria drift apart, and at λ ≈ 1.02 the
leftmost equilibrium merges with the middle one and disappears at x ≈ 0.4. We can
use a numerical package to draw a complete bifurcation diagram of this. Figure A.7
illustrates the complete bifurcation diagram. Note the two saddle-node bifurcations;
for λ between these two values there are three equilibria (two stable and one unstable),
while for λ outside the two values there is a unique stable equilibrium point. Techniques
from nonlinear analysis can be used to show that every saddle-node bifurcation (no
matter what the dimension of the system) is equivalent and can be transformed into
(A.61).
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Figure A.8 Numerically computed bifurcation
diagram for the example transcritical bifurcation.
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dashed.

Consider next the differential equation

dx

dt
� λx − x2. (A.62)

In some model systems there is always a “trivial” equilibrium point, no matter what
the parameter is. (In this case, 0 is always a solution.) For λ < 0, x � 0 is a stable
equilibrium, and for λ > 0 it is unstable. The equilbrium point x � λ is unstable (stable)
for λ < 0 (λ > 0). Thus as λ crosses zero the two fixed points “exchange stability.” This
is called a transcritical or exchange of stability bifurcation. Figure A.6B illustrates this
bifurcation. For example, consider the system

dx

dt
� x(1 − λy),

dy

dt
� e−x − y.

Clearly, one fixed point is (0, 1), and the Jacobian matrix for the linearization about
this point is

J �
(

1 − λ 0

−1 −1

)
.

The eigenvalues are −1 and −1 + λ. Thus at λ � 1 we expect that there could be a
bifurcation. It is not a saddle node since there always exists the trivial equilibrium
(0, 1). Since there are no additional symmetries in the problem (see below), it is likely
a transcritical bifurcation. The diagram is shown in Figure A.8. As with the saddle-
node bifurcation, all transcritical bifurcations can be transformed into (A.62) near the
bifurcation.

Many biological and chemical systems are characterized by symmetries. In this
case, the behavior as parameters vary is analogous to

dx

dt
� x(λ ± x2). (A.63)



398 A: Qualitative Analysis of Differential Equations

-2.0

-1.0

0.0

1.0

2.0

x

0.0 0.4 0.8 1.2 1.6 2.0

λ

Figure A.9 Numerically computed bifurcation
diagram for the coupled system showing a pitch-
fork bifurcation. Stable fixed points are solid, and
unstable are dashed.

As with the transcritical bifurcation, x � 0 is always a solution to this problem. For
λ < 0, the fixed point 0 is stable, and for λ > 0 this trivial fixed point loses stability. At
λ � 0 the linearized system has a zero eigenvalue. There can be two additional solutions
depending on λ. Unlike the two bifurcations we previously described, the sign of the
nonlinearity is important in this one. If we take the negative sign in (A.63), then the
diagram in Figure A.6C is obtained. The new solutions are x � ±√

λ; they are both
stable, and they occur for λ > 0. The branches open in the same direction as the trivial
fixed point loses stability. This bifurcation is called a supercritical pitchfork bifurcation.
If we take instead the positive sign for the nonlinearity in (A.63), then there are two
solutions x � ±√−λ, and they occur for λ < 0. As can easily be shown, they are both
unstable. This is called a subcritical pitchfork bifurcation, since the branches open in
the direction opposite from the change of stability of the trivial equilibrium point.

For example, consider the simple coupled system

dx

dt
� −x + λ

y

1 + y2
,

dy

dt
� −y + λ

x

1 + x2
.

It is easy to see that x � y � 0 is always a fixed point and that it is stable as long as λ < 1.

At λ � 1 the Jacobian matrix has a zero eigenvalue, so we expect a bifurcation to occur.
Figure A.9 shows that it is a supercritical pitchfork bifurcation. Every system that has a
pitchfork bifurcation can be transformed into (A.63) near the bifurcation point. Unlike
the saddle-node and the transcritical bifurcations, the details of the nonlinearity are
crucial for determing the stability of the new branches of solutions.

A.5.2 Bifurcation at a Pair of Imaginary Eigenvalues

Limit cycles and periodic solutions are extremely important in physiology. Thus, one is
often interested in whether or not they occur in a given system. Unlike fixed points that
can be found exactly or graphically, it is much more difficult to determine whether or
not there are limit cycles in a system. There is one method that is arguably the best and
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perhaps only systematic method of finding parameters where there may be periodic
solutions in any system of differential equations. The existence of periodic solutiuons
emanating from a fixed point is established from the Hopf bifurcation theorem, which
we now state.

Hopf bifurcation theorem. Suppose that X ′ � F(X, λ) has an isolated fixed point X0(λ).
Let A(λ) be the linearized matrix about this fixed point. Suppose that the matrix A has
a pair of complex conjugate eigenvalues α(λ) ± iω(λ). Suppose the following conditions
hold for some λ0:

1. α(λ0) � 0;
2. ω(λ0) � ω0 > 0;
3. ν ≡ dα(λ)/dλ|λ�λ0 
� 0;
4. A(λ0) has no other eigenvalues with zero real part.

Then, the system contains an isolated limit cycle for |λ − λ0| small for either λ > λ0 or for
λ < λ0. The magnitude of the limit cycle is proportional to

√|λ − λ0|, and the frequency is
close to ω0. If ν > 0 and the limit cycle exists for λ > λ0 or if ν < 0 and the limit cycle exists
for λ < λ0, then it is stable. Otherwise, it is unstable.

Thus, the best way to try to find periodic solutions in a system of differential
equations is to look for parameter values where the stability of an equilibrium is lost
as a complex conjugate pair of eigenvalues crosses the imaginary axis. For a two-

x

x

λ

λ

A

B

Figure A.10 Illustration of the Hopf bifurcation of limit cycles. As the parameter changes,
a branch of periodic solutions emerges from the fixed point. (A) Supercritical emergence of
stable limit cycles. (B) Subcritical emergence of unstable periodic orbits.
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dimensional system, this situation occurs when the determinant of A is positive and
the trace of A changes from negative to positive. The following system illustrates the
theorem:

dx

dt
� λx − y ± x

(
x2 + y2) , (A.64)

dy

dt
� λy + x ± y

(
x2 + y2) .

Clearly, (0, 0) is always a fixed point. The eigenvalues of the linearization are λ ± i, so
that as λ goes from negative to positive, there is a pair of eigenvalues with imaginary
real part at λ � 0. If we convert (A.65) to polar coordinates, x � r cos θ, y � r sin θ then
we obtain

dr

dt
� r

(
λ ± r2) , dθ

dt
� 1.

The equation for r is just like (A.63), and thus the direction of bifurcation depends on
the sign of the nonlinearity. We see that r � √∓λ. Clearly, the solution to the θ equation
is θ � t + C, where C is an arbitrary constant. We conclude that if the nonlinearity
has a positive sign, then there is an unstable periodic solution for λ < 0 given by
(x(t), y(t)) � √−λ(cos(t + C), sin(t + C)). If the nonlinearity has a negative sign, then
the limit cycle exists for λ > 0, and it is stable. Figure A.10 illustrates the behavior for
both cases. We remark that every system that undergoes a Hopf bifurcation can be
transformed to (A.65).

As an example, we consider the Brusselator, a classic model for chemical
oscillations:

dx

dt
� a − (b + 1)x + x2y,

dy

dt
� bx − x2y.
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b

Figure A.11 Numerically computed bifurcation di-
agram for the Brusselator as the parameter b varies.
Stable fixed points are solid, and unstable are
dashed. Stable periodic orbits are filled circles.
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The fixed points for this system are (x, y) � (a, b/a), and the linearization about the fixed
point is

A �
(

b − 1 a2

−b −a2

)
.

The determinant of A is a2 > 0. The trace is b − 1 − a2. Thus, if b is the parameter, then
as b increases past 1+a2 there will be a Hopf bifurcation. The full bifurcation diagram
is shown in Figure A.11.

A.6 Perturbation Theory

As we have noted, nonlinear differential equations are not readily solved. In fact, even
linear equations cannot always be solved in closed form if the coefficients are noncon-
stant in time. For this reason, one of the most powerful tools in applied mathematics
is perturbation theory. In perturbation theory we look for very good approximate solu-
tions. If some parameter in the equation is small, then a good initial approximation is
to set it to zero. This can result in a simpler system of equations, which may be able to
be solved. The idea is to assume that when the parameter is not zero, then we can use
the simple case as a starting solution and expand the full solution in a power series in
the small parameter. Typically, we need to expand the series to only one or two terms
to see the dominant characteristics of the solution.

A.6.1 Regular Perturbation

Let us first consider the general solution and then work some examples. Consider

dx

dt
� f (x, ε), (A.65)

where ε is a small parameter. Suppose that we can solve the equation with ε � 0; that
is, we can find a solution x0(t) to

dx

dt
� f (x, 0).

Formally, let us look for a solution of the form

x(t, ε) � x0(t) + εx1(t) + ε2x2(t) + · · · (A.66)

and substitute this into (A.65). This leads to a sequence of equations,

dx0

dt
� f (x0, 0),

dx1

dt
� Dxf (x0, 0)x1 + Dεf (x0, 0),
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Figure A.12 The true solution (solid lines) and the
first two terms in the perturbation series for the
linear time-dependent logistic equation.

dx2

dt
� Dxf (x0, 0)x2 + Dxεf (x0, 0)x1 + 1

2
(Dxxf (x0, 0)x2

1 + Dεεf (x0, 0),

where Da is the derivative of f with respect to a evaluated at x � x0, ε � 0. Note that all
but the first equation are linear. If the linear equation

dx

dt
− Dxf (x0, 0)x � g

is invertible, then we can continue this series method forever. As we will see later, when
the equation is not invertible, then we run into problems, and other techniques are re-
quired. Another situation that can arise is that in which the small parameter multiplies
dxk/dt for one of the variables xk. We will also consider this type of perturbation below.

Let us look at a simple example. Consider the differential equation for population
growth subject to periodic forcing:

dx

dt
� x(1 + ε sin(ωt) − x).

We are interested in the steady–state behavior; thus we want to find solutions that are
periodic or constant. Obviously, x � 0 is a solution for any ε, but this solution is of no
interest, since it is unstable. When ε � 0, another solution is x � 1. We will perturb
from this solution:

x(t, ε) � 1 + εx1 + ε2x2 + · · · .

Substituting this into the equation, we get

dx1

dt
� −x1 + sin(ωt),

dx2

dt
� −x2 + −x2

1 + x1 sin(ωt),
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and so on. The x1 equation has a periodic solution:

x1(t) � sin(ωt) − ω cos(ωt)
1 + ω2

.

Thus, to order ε,

x(t) � 1 + ε
sin(ωt) − ω cos(ωt)

1 + ω2
.

To do even better, we can go to the next order. A simple bit of calculus shows that

x2(t) � 2ω4 cos(2ωt) − 5ω3 sin(2ωt) − 4ω2 cos(2ωt) + ω sin(2ωt)
2 + 12ω2 + 18ω4 + 8ω6

.

Figure A.12 shows the numerical solution to the sample problem as well as the approx-
imations y1(t) � 1 + εx1(t) and y2(t) � y1(t) + ε2x2(t) for ε � 1 and ω � 0.5. (For smaller
values of ε and larger values of ω the approximation is much better.)

A.6.2 Resonances

In many applied problems the general perturbation scheme described above breaks
down. Typically, this arises when there is a family of solutions to the lowest–order
perturbation and the linear equations that arise from higher–order perturbations are
not invertible.

A typical example of this would be perturbation of eigenvalues of a matrix. For
example, suppose that the matrix A0 is simple and we can find the eigenvalues easily.
We now ask what the eigenvalues of the matrix B � A0 + εA1 are. Suppose that λ0 is an
eigenvalue and v0 is the corresponding eigenvector. That is,

A0v0 � λ0v0.

To find the eigenvalue of B near λ0 we suppose that both the eigenvalue and the
eigenvector depend on ε:

v(ε) � v0 + εv1 + · · · ,
λ(ε) � λ0 + ελ1 + · · · .

Making the substitutions, we get

(A0 − λ0I)v1 � λ1v0 − A1v0 ≡ w. (A.67)

There are two unknowns, v1 and λ1. However, the matrix C � A0 −λ0I is not invertible,
so we cannot expect to solve this unless λ1 is chosen so that w is in the range of the
matrix C. This condition uniquely determines the parameter λ1. Then we can solve for
v1.

How do we know when a vector w is in the range of a matrix M? The following
theorem tells us precisely the conditions:
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Fredholm Alternative Theorem. The matrix equation

My � w

has a solution y if and only if w · q � 0 for every solution q to the equation M∗q � 0. The
matrix M∗ is the transpose complex conjugate of the matrix M.

An analogous theorem holds for many other linear operators. Returning to (A.67),
let q0 be the solution to

CTq0 � 0, q0 · v0 � 1.

Then the Fredholm alternative theorem implies that we must have

q0 · (λ1v0 − A1v0) � 0,

or

λ1 � q0 · A1v0.

Another classic example is to find a periodic solution to a weakly nonlinear
differential equation. The van der Pol oscillator is the standard example:

ẍ + x � εẋ(1 − x2). (A.68)

We seek periodic solutions to this problem. Expanding x(t) in ε,

x(t) � x0(t) + εx1(t) + · · · ,
and substituting into (A.68) we get

ẍ0 + x0 � 0,

ẍ1 + x1 � ẋ0(1 − x2
0).

The solution to the first equation is

x0(t) � A cos t + B sin t.

Note that we can rewrite this as x0(t) � C cos(t + φ), where φ is a phase shift. Since the
equation is autonomous, there is always an arbitrary phase shift, so we can set this to
zero. In other words, we can assume x0(t) � A cos t, where A is an arbitrary amplitude
as yet unknown. The second equation is

ẍ1 + x1 � −A sin t(1 − A2 cos t).

This does not generally have a periodic solution. In fact, it is easy to solve explicitly
(using a symbolic algebra program, like Maple). The key point is that the solution will
be of the form

x1(t) � P(t) + tQ(t),
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where P(t), Q(t) are periodic. Unless Q(t) � 0, the perturbed solutions x1(t) will not be
periodic, so we must make Q(t) � 0. A simple calculation reveals that

Q(t) � A
4 − A2

8
cos t.

Thus, we choose A � 2, and to lowest order

x(t) � 2 cos t.

A.6.3 Singular Perturbation Theory

In many physiological systems there are vast differences in the time scales involved in
the phenomena. For example, in a bursting neuron there is the period between bursts
compared with the interspike interval of the action potential within a burst. Some
variables may act much more slowly than other variables, while others act much more
rapidly. Consider, for example, the simple linear differential equation

ε
dx

dt
� y − x,

dy

dt
� −x,

along with initial conditions y � 1, x � 0. We can easily solve this exactly using the
methods of the previous section for any value of ε. However, typically, in a real problem,
the solutions are not so readily obtained. Let us suppose that we can set ε � 0. Then
we must have 0 � y − x, or x � y. Thus our problem is now

dy

dt
� −y, y(0) � 1,

which has a solution y(t) � exp(−t). Furthermore, since x � y, we also have x(t) �
exp(−t). Unfortunately, our “solution” does not satisfy the initial conditions x(0) � 0.

Because we have reduced the order of the differential equation from 2 to 1, we cannot
generally expect to find a solution for all initial conditions. This is why the problem is
said to be singular.

(0,-1)

(0,1)

(2,-1)

(-2,1)

x = -y+1
y(t) = -1+ty(t) = 1-t

x = -y -1

Figure A.13 x -nullclines for the relax-
ation oscillator example.
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The way that we can fix this is to use a technique called matching. A complete
description of matching goes well beyond this book, so we will just sketch this and
another example. There are more examples throughout the text. The idea is to rescale
time. Since the problems we are having occur at t � t0 � 0, we introduce a new variable
τ � (t − t0)/ε. Under this change of variables our equation is

dX

dτ
� Y − X,

dY

dτ
� −εX.

(I have used capital letters to distinguish these solutions from the t-dependent solu-
tions.) Now, we see that Y is “slow” in the new time scale. Set ε � 0. This means that
dY/dτ � 0, so that Y is constant. The obvious constant to use is the initial value of Y ,
so we substitute Y � 1 into the X equation:

dX

dτ
� 1 − X, X(0) � 0.

The solution to this is X(τ) � 1−exp(−τ). Thus we have two sets of solutions, (x(t), y(t))
and (X(τ), Y (τ)). The (X, Y ) solutions are valid for times near zero, and the (x, y) are
valid for larger times. Thus, to obtain the full solution, we add these two together and
subtract the “common” part. To see what the common part is, we replace τ by t/ε in
the (X, Y ) system and t by ετ in the (x, y) system. We take the limit as ε → 0 and obtain
(1, 1) for both sets of limits. This is the common part. Thus, our approximate solution
is (X(τ) + x(t) − 1, Y (τ) + y(t) − 1). Putting everything in terms of the original time, t,
we obtain

xc(t) � e−t − e−t/ε, yc(t) � e−t.

I close this section with another example that produces a singular nonlinear
oscillator. The equations are

ε
dx

dt
� −x + sgn(x) − y,

dy

dt
� y + x,

where sgn(x) is the signum function; it is +1 for x > 0 and −1 for x < 0. The nullclines are
depicted in Figure A.13. For ε small, we expect that the solution will hug the x-nullcline,
since we must have −x + sgn(x) − y nearly zero. Setting ε � 0 we must solve

−x + sgn(x) − y

for x in terms of y. Unfortunately, for y between −1 and 1 there are two roots x � −y±1.

For the moment, let us pick x � −y + 1. We must have −y + 1 > 0, since our choice of
+1 for sgn(x) assumes that x > 0. Substituting this into the y equation yields

dy

dt
� 1,

so that y(t) � y(0) + t. Notice that as long as y(t) < 1, this is a valid solution, since x > 0.

However, eventually y(t) will exceed 1, and our root x � −y + 1 is no longer valid. So,
what happens? Let t0 be the time at which y(t) � 1. To see what happens, we must once
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again introduce a scaled time τ � (t − t0)/ε. Then our equations are

dX

dτ
� −X + sgn(X) − Y,

dY

dτ
� ε(Y + X).

Setting ε � 0, this means that Y must be constant. Since y(t0) � 1, we will take Y � 1
as the constant. We must solve

dX

dτ
� −X + sgn(X) − Y, X(0) � 0.

Note that for any τ > 0, X(τ) is negative, so that sgn(X) � −1 and

X(τ) � −2(1 − exp(−τ)).

This says that in the expanded time scale, X(τ) will drop from 0 down to −2. All the
while, Y is essentially constant at 1. Once X has made the jump from 0 to −2, we can
set y � 1, x � −2 and solve the y(t) equation again. In this case, x + y � −1, since
sgn(x) � −1, and we must solve

dy

dt
� −1, y(0) � 1.

The solution to this is y(t) � 1−t. As above, this is valid only as long as x � −y+sgn(x) �
−y − 1 is negative, that is, as long as y(t) > −1. Once y(t) crosses −1, then x will be
positive, and we will have to jump back across to x � +2 keeping y � −1 constant
again using the rescaled time. In retrospect, we see now that in the calculation on the
right–hand branch (when x > 0) the correct initial condition for y is y(0) � −1.

This completes the calculation of the singular trajectory. Figure A.13 illustrates
this. We have the following:

y(t) � −1 + t, x(t) � 2 − t for 0 < t < 2,

y(t) � 1 − (t − 2), x(t) � −2 + (t − 2) for 2 < t < 4,

in the normal time coordinates. In the scaled time coordinates, x(t) jumps from 0 to
−2 while y � 1, satisfying

x(t) � −2(1 − exp((t − 2)/ε)),

and from 0 to 2 while y � −1, satisfying

x(t) � 2(1 − exp(−(t − 4)/ε)).

The period of the oscillation is 4 to lowest order. The function y(t) is continuous along
the trajectory. The complete solution for x(t) over one period is

x(t) � 2 − t − 2 exp(−t/ε) for 0 ≤ t < 2,

x(t) � t − 4 + 2 exp[(2 − t))/ε)] for 2 ≤ t < 4.
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Suggested Readings

• Mathematical Models in Biology, Leah Edelstein-Keshet. This book details most
of the mathematical techniques presented in this chapter, and contains a particu-
larly good discussion of phase plane analysis, including linearization, stability, and
qualitative analysis of systems of differential equations (Edelstein-Keshet 1988).

• Applied Mathematics, J. David Logan. This book covers a range of more advanced
topics, in particular, perturbation and bifurcation theory (Logan 1997).

A.7 Exercises
1. Using manipulations comparable to those used to obtain (A.23) show that x2 in (A.18) also

satisfies the second order equation (A.23).

2. Show by substitution that if x′ and x are two different solutions to (A.19), then c′x′ + cx is
also a solution.

3. Show by substition into (A.35) that c′t exp(λt) is a second solution to (A.23) when discÂ � 0.
[Hint: Recall that ˙(t exp(λt)) � (1 + λt) exp(λt); use this to show that ¨(t exp(λt)) � λ(2 +
t) exp(λt).]

4. Show that any 2 × 2 matrix of the form Â �
(

a b

0 a

)
with a and b arbitrary real numbers

has discÂ � 0 and λ � a.

5. Use the solution (A.27) to the characteristic equation for Â, to show that trÂ � λ+ + λ− and
detÂ � λ+λ−.

6. Verify that the expression for the eigenvector of Â given in (A.45) is correct by multiplying
that expression by Â. Hint: You will need to use the fact that detÂ � λ2 − (a11 + a22)λ, which
follows from (A.27).

7. Solve the general two-variable linear equations (A.17)–(A.18) numerically: Find x1(t) and

x2(t) for the matrices Â �
(

0 −1

1 0

)
, Â �

(
1 −1

1 1

)
, and Â �

( −2 1

−3 1

)
and y1 � y2 �

0. Determine the characteristic values of all three matrices and compare your numerical
solutions to the solutions that you would expect based on the characteristic values. Explore
how the solutions change when you change the values of y1 and y2.

8. Solve (A.17)–(A.18) numerically for the matrix Â �
(

1 −1

3 6

)
and y1 � 1 and y2 � 2.

Constrast your result with that in (A.41).

9. Make a phase plane plot of the solutions to the linear ODEs plotted as time series in Figure
A.1A–C.

10. Show that the velocity vector for a point in phase space is parallel to the trajectory at the
point. Hint: Calculate the slope of the trajectory dx2/dx1 using the ODEs.

11. Show that the nullclines for the general 2 × 2 linear equations (A.17) and (A.18) are linear.
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12. Using the result in (A.47) verify the statement in Section A.4.1 that saddle point trajecto-
ries that start in the direction of the positive eigenvector grow away from the steady state
exponentially, while those in the direction of the negative eigenvector approach the steady
state exponentially.

13. Construct the solution to the following initial value problem, which arises in enzyme
kinetics:

x′ � 1 − xy, εy′ � −xy + 1 − y,

with the initial conditions x(0) � 0, y(0) � 0.

14. Find the periodic solution to

εx′ � f (x) − y y′ � x,

where

f (x) �

⎧⎪⎨
⎪⎩

−x − 2 for x < −1,

x for −1 ≤ x ≤ 1,

−x + 2 for x > 1.

15. Develop Taylor series for the following functions:

• cos(t) around t � 0

• ln(t) around t � 1.

• exp(t2) around t � 0. Hint: Use the exponential series we have already determined.



A P P E N D I X B

Solving and Analyzing Dynamical
Systems Using XPPAUT

G. Bard Ermentrout

Most of the examples and exercises in the book have been designed to be solvable with
the ordinary differential equations solution and analysis package XPPAUT. One reason
that we emphasize the use of XPPAUT rather than one of the other available packages
is that XPPAUT is distributed at no cost and runs under both Unix and Windows
environments. XPPAUT will also run under the new Macintosh operating system OSX
with the appropriate Xwindows server. The second reason is that XPPAUT incorporates
the bifurcation package AUTO, which is not included in other packages. The Windows
version of XPPAUT, Winpp, uses a different bifurcation package, as explained below.

XPPAUT can be obtained from the web site of Bard Ermentrout, the developer.
The site contains instructions for the installation of XPPAUT on various platforms, as
well as a very useful tutorial. The web site is:

http://www.math.pitt.edu/∼bard/xpp/xpp.html.
In addition, there is a full–length book describing the details of XPPAUT available

(Ermentrout 2002). The tutorial in this appendix will introduce the reader to the main
tools available in XPPAUT that are necessary to solve most of the exercises in this
book.
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B.1 Basics of Solving Ordinary Differential Equations

B.1.1 Creating the ODE File

Consider the simple linear differential equation system

dx

dt
� ax + by,

dy

dt
� cx + dy, (B.1)

where a, b, c, d are parameters. We will explore the behavior of this two-dimensional
system using XPPAUT (even though it is easy to obtain a closed–form solution). To
analyze a differential equation using XPPAUT, you must create an input file that tells
the program the names of the variables and parameters, and defines the equations. By
convention, these files have the file extension ode, and we will call them ODE files. Here
is an ODE file for system (B.1):

# linear2d.ode

#

# right hand sides

dx/dt=a*x+b*y

dy/dt=c*x+d*y

#

# parameters

par a=0,b=1,c=-1,d=0

#

# some initial conditions

init x=1,y=0

#

# we are done

done

We have included some comments indicated by lines starting with #; these are not
necessary but can make the file easier to understand. The rest of the file is fairly straight-
forward. The values given to the parameters are optional; by default they are set to zero.
The init statement is also optional. The minimal file for this system is

dx/dt=a*x+b*y

dy/dt=c*x+d*y

par a,b,c,d

done

In contrast to the more elaborate file, with the minimal file all parameters and intital
conditions are set to zero. Use a text editor to type in the first file exactly as it is shown.
Name the file linear2d.ode and save it. Note also that XPPAUT accepts other notation
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for equations, and you should not be surprised to see the more compact version used in
Appendix C or in ODE files you might find on the XPPAUT web site or in the XPPAUT
user’s manual. For example, the minimal file could be written

x’=a*x+b*y

y’=c*x+d*y

par a,b,c,d

done

That’s it! You have written an ODE file. The minimal steps are as follows:

• Use an editor to open a text file.
• Write the differential equations in the file; one per line.
• Use the par statement to declare all the parameters in your system. Optionally

define initial conditions with the init statement.
• End the file with the statement done.
• Save and close the file.

ODE FILE NOTES: The equation reader is case-insensitive, so that AbC and abC are
treated as identical. In statements declaring initial conditions and parameters, do not
put spaces between the variable and the “=” sign and the number. XPPAUT uses spaces
as a delimiter. Always write a=2.5 and never write a = 2.5.

B.1.2 Running the Program

Run XPPAUT by typing

xpp linear2d.ode

The name of the exacutable, here xpp, might be different for your system. Use the
name of your executable, along with all of the desired command line options (see on-
line help for details). (If you are using Winpp, click on the Winpp icon; then choose the
file from the file selection dialog box.)

Six windows will appear on the screen, or they may be iconified (depending on the
command line options). If any of the windows appear “dead” or blank, iconify them
manually and then uniconify them. Next time run XPPAUT without the -iconify

command line option.
Menu commands will appear like this, Command , and single–letter keyboard short-

cuts will appear like this: A . Do not use the CapsLock key; all shortcuts are lowercase.
Every command can be accessed by a series of keystrokes. To make sure key clicks
are interpreted correctly, click on the title bar of the window for which the shortcut is
intended.
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Figure B.1 The main XPPAUT window

B.1.3 The Main Window

The Main Window contains a large region for graphics, menus, and various other
regions and buttons. It is illustrated in Figure B.1. Commands are given either by
clicking on the menu items in the left column with the mouse or tapping keyboard
shortcuts. After a while, as you become more used to XPPAUT, you will use the keyboard
shortcuts more and more. Both the full commands and the keyboard shortcuts are
included here. In general, the keyboard shortcut is the first letter of the command
unless there is ambiguity (such as Nullcline and nUmerics ), and then, it is just the

capitalized letter ( N and U , respectively). Unlike Windows keyboard shortcuts, the
letter key alone is sufficient, and it is not necessary to press the Alt key at the same
time. The top region of the Main Window is for typed input such as parameter values.
The bottom of the Main Window displays information about various things as well as
a short description of the highlighted menu item. The three little boxes with the words
parameter are sliders to let you change parameters and initial data.

In addition to the Main Window, there are several other windows that appear. The
Equation Window, shown in Figure B.2, allows you to see the differential equations
that you are solving. We will describe the other windows as the tutorial progresses.

Quitting the Program
To exit XPPAUT, click File Quit Yes ( F Q Y ).
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Figure B.2 The Equation Window.

B.1.4 Solving the Equations, Graphing, and Plotting.

Here, we will solve the ODEs, use the mouse to select different initial conditions, save
plots of various types, and create files for printing.

Computing the Solution
In the Main Window you should see a box with axis numbers. The title in the window
should say X vs T, which tells you that the variable X is along the vertical axis and T

along the horizontal. The plotting range is from 0 to 20 along the horizontal and −1 to
1 along the vertical axis. When a solution is computed, this view will be shown. Click
on Init Conds Go ( I G ) in the Main Window. A solution will be drawn followed
by a beep. As one would expect given the differential equations, the solution looks like
a few cycles of a cosine wave.

Changing the View
To plot Y versus T instead of X, just click on the command Xi vs t X and choose Y

by backspacing over X, typing in Y, and typing Enter .
Many times you may want to plot a phase plane instead, that is, X vs. Y. To do this,

click on Viewaxes 2D ( V 2 ), and a dialog box will appear. Fill it in as follows:

X-axis: X Xmax: 1
Y-axis: Y Ymax: 1
Xmin: -1 Xlabel:

Ymin: -1 Ylabel:

Click on OK when you are done. (Note that you could have filled in the labels if you had
wanted, but for now, there is no reason to.) You should see a nice elliptical orbit in the
window. This is the solution in the phase plane (cf. Figure B.3).

Phase Plane Shortcuts
There is a very simple way to view the phase plane or view variables versus time. Look at
the Initial Data Window (Figure B.4). You will see that there are little boxes next to the
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Figure B.3 Phase plane (X vs Y) for the linear 2D problem (B.1).

variable names. Check the two boxes next to X and Y. Then at the bottom of the Initial
Data Window, click the XvsY button. This will plot a phase plane and automatically fit
the window to contain the entire trajectory. This is a shortcut and does not give you the
control that the menu command does. (For example, the window is always fit to the
trajectory, and no labels are added or changed. Nor can you plot auxiliary quantities
with this shortcut.) To view one or more variables against time, just check the variables
you want to plot (up to 10) and click on the XvsT button in the Initial Data Window.

You should have a phase plane picture in the window. (If not, get one by following
the above instructions or using the shortcut.) Click on Init Conds Mouse ( I M .)
Use the mouse to click somewhere in the window. You should see a new trajectory
drawn. This, too, is an ellipse. Repeat this again to draw another trajectory. If you get
tired of repeating this, try Init Conds mIce ( I I ), which, being “mice,” is many
mouses. Keep clicking in the window. When you are bored with this, click either outside
the window or tap the escape key, Esc .

Click on Erase and then Restore ( E R ). Note that all the trajectories are gone
except the latest one. XPPAUT stores only the latest one. There is a way to store many
of them, but we will not explore that for now.
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Figure B.4 The initial conditions
window.

B.1.5 Saving and Printing Plots

XPPAUT does not directly send a picture to your printer. Rather, it creates a PostScript
file that you can send to your printer. If you do not have PostScript capabilities, then
you probably will have to use the alternative method of getting hard copy outlined
below. (Note that Microsoft Word supports the import of PostScript and Encapsulated
PostScript, but can only print such pictures to a PostScript printer. You can download
a rather large program for Windows called GhostView which enables you to view and
print PostScript on nonPostScript printers. Linux and other UNIX distributions usually
have a PostScript viewer included.)

Here is how to make a PostScript file. Click on Graphics Postscript ( G P ),
and you will be asked for three things: (i) Black and White or Color (ii) Landscape
or Portrait; (iii) and the Fontsize for the axes. Accept all the defaults for now by just
clicking Enter . Finally, you will be asked for a file name. The File Selector box is
shown in Figure B.5. You can move up or down directory trees by clicking on the <>;
choose files by clicking on them; scroll up or down by clicking on the up/down arrows
on the left or using the arrow keys and the PageUp/PageDown keys on the keyboard;
change the wild card; or type in a file name. For now, you can just click on Ok and
a PostScript plot will be created and saved. The file will be called linear2d.ode.ps by
default, but you can call it anything you want.

Once you have the PostScript file, you can type

lpr filename

on UNIX. In Windows, if your computer is hooked up to a PostScript printer, then you
can print from a viewing application or type

copy filename lpt1

from the command line (if available).
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Figure B.5 File selector.

Other Ways to get Hard Copy
Another way to get hard copy that you can import into documents is to grab the image
from the screen. In Windows, click on Alt+PrtSc after making the desired window
active. Paste this into the MSPaint accessory and then use the tools in Paint to cut
out what you want. Pasting into Microsoft Word is useful for generating reports with
added text. Alternatively, you can download a number of programs that let you capture
areas of the screen. In the UNIX environment, you can capture a window using xv,
an excellent utility that is free and available for most UNIX versions. All of the screen
shots in this tutorial were captured with xv. Finally, you can capture the screen (or a
series of screen images) with the Kinescope Capture command and then write these

to disk with the Kinescope Save command. This produces a series of GIF files that
are usable by many software packages.
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Figure B.6 The parameter win-
dow.

Getting a Good Window
If you have computed a solution and do not have a clue about the bounds of the graph,
let XPPAUT do all the work. Click on Window/zoom (F)it , and the window will be

resized to a perfect fit. The shortcut is W F and you will likely use it a lot!

B.1.6 Changing Parameters and Initial Data

There are many ways to vary the parameters and initial conditions in XPPAUT. We have
already seen how to change the initial data using the mouse. This method works for
any n-dimensional system as long as the current view is a phase plane of two variables.
Here are two other ways to change the initial data:

• From the main menu click on Init Conds New and manually input the data at
the prompts. You will be prompted for each variable in order. (For systems with
hundreds of variables, this is not a very good way to change the data!)

• In the Initial Data Window you can edit the particular variable you want to change.
Just click in the window next to the variable and edit the value. Then click on the
Go button in the Initial Data Window. If there are many variables, you can use

the little scroll buttons on the right to go up and down a line or page at a time. If you
click the mouse in the text entry region for a variable, you can use the PageUp ,

etc., keys to move around. Clicking Enter rolls around in the displayed list of
initial conditions. The Default button returns the initial data to those with which
the program started. If you do not want to run the simulation, but have set the
initial data, you must click on the Ok button in the Initial Data Window for the
new initial data to be recognized.

There are many ways to change parameters as well. Here are three of them:
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• From the Main Window, click on Parameters . In the command line of the Main
Window, you will be prompted for a parameter name. Type in the name of a pa-
rameter that you want to change. Click on Enter to change the value and Enter

again to change another parameter. Click on Enter a few times to get rid of the
prompt.

• In the Parameter Window (shown in Figure B.6) type in values next to the param-
eter you want to change. Use the scroll buttons or the keyboard to scroll around.
As in the Initial Data Window, there are four buttons across the top. Click on Go

to keep the values and run the simulation; click on Ok to keep the parameters
without running the simulation. Click on Cancel to return to the values since you
last pressed Go or Ok . The Default button returns the parameters to the values
when you started the program.

• Use the little sliders (Figure B.7). We will attach the parameter d to one of the
sliders. Click on one of the unused parameter sliders. Fill in the dialog box as
follows:

Parameter: d
Value: 0
Low: -1
High: 1

and click Ok . You have assigned the parameter d to one of the sliders and allowed
it to range between −1 and 1. Grab the little slider with the mouse and move it
around. Watch how d changes. Now click on the tiny go button in the slider. The
equations will be integrated. Move the slider some more and click on the go button
to get another solution.

B.1.7 Looking at the Numbers: The Data Viewer

In addition to the graphs that XPPAUT produces, it also gives you access to the actual
numerical values from the simulation. The Data Viewer shown in Figure B.8 has many
buttons, some of which we will use later in the book. The main use of this is to look at
the actual numbers from a simulation. The independent variable occupies the leftmost
column, and the dependent variables fill in the remaining windows. Click on the top
of the Data Viewer to make it the active window. The arrow keys and the PageUp ,

Figure B.7 Left: Unused parameter slider. Right: parameter slider used for d.
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Figure B.8 The Data Viewer.

PageDown , Home , and End keys (as well as their corresponding buttons) do all
the obvious things. Left and right keys scroll horizontally, a useful feature if you have
many variables. Here we mention three buttons of use:

Find brings up a dialog box prompting you for the name of a column and a value. If
you click on Ok , XPPAUT will find the entry that is closest and bring that row to
the top. You can find the maximum and minimum, for example, of a variable.

Get loads the top line of the Data Viewer as initial data.
Write writes the entire contents of the browser to a text file that you specify.

B.1.8 Saving and Restoring the State of Simulations

Often you will have a view, a set of parameters, and initial data that you want to keep.
You can save the current state of XPPAUT by clicking on File Write set ( F W )
in the Main Window. This brings up a file selection box. Type in a file name; the
default extension is .set. The resulting file is an ASCII file that is human and computer
readable. The first and last few lines look like this:

## Set file for linear2d.ode on Fri Aug 4 13:53:31 2000

2 Number of equations and auxiliaries

4 Number of parameters
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# Numerical stuff

1 nout

40 nullcline mesh

.......

RHS etc ...

dX/dT=A*X+B*Y

dY/dT=C*X+D*Y

Once you quit XPPAUT, you can start it up again and then use the File Read set

to load up the parameters, etc., that you saved.
Now you should quit the program. We will look at a nonlinear equation next, find

fixed points, and draw some nullclines and direction fields. To quit, click on File

Quit Yes ( F Q Y ).

B.1.9 Important Numerical Parameters

XPPAUT has many numerical routines built into it, and thus there are many numerical
parameters that you can set. These will be dealt with in subsequent sections of the book
where necessary. However, the most common things you will want to change are the
total amount of time to integrate and the step size for integration. You may also want to
change the method of integration from the default fixed–step Runge–Kutta algorithm.
To alter the numerical parameters, click on nUmerics ( U ), which produces a new
menu. This is a top–level menu, so you can change many things before going back to
the main menu. To go back to the main menu, just click on the [Esc]-exit or tap

Esc . There are many entries in the numerics menu. The following four are the most
commonly used:

Total sets the total amount of time to integrate the equations. (Shortcut: T .)
Dt sets the size of the time step for the fixed step size integration methods and sets

the output times for the adaptive integrators. (Shortcut: D .)
Nout sets the number of steps to take before plotting an output point. Thus, to plot

every fourth point, change Nout to 4. For the variable step size integrators, this
should be set to 1.

Method sets the integration method. There are currently 13 available. (Shortcut: M .)
They are described in the user manual.

When you are done setting the numerical parameters, just click on Esc-exit or tap
the Esc key.
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B.1.10 Command Summary: The Basics

Initialconds Go computes a trajectory with the initial conditions specified in the

Initial Data Window ( I G ).
Initialconds Mouse computes a trajectory with the initial conditions specified by

the mouse. Initialconds m(I)ce lets you specify many initial conditions ( I M

or I I ).

Erase erases the screen ( E ).

Restore redraws the screen ( R ).

Viewaxes 2D lets you define a new 2D view ( V 2 ).
Graphic stuff Postscript allows you to create a PostScript file of the current

graphics ( G P ).
Kinescope Capture allows you to capture the current view into memory, and

Kinescope Save writes this to disk.

Window/zoom (F)it fits the window to include the entire solution ( W F ).

File Quit exits the program ( F Q ).

File Write set saves the state of XPPAUT( F R ).

File Read set restores the state of XPPAUT from a saved .set file ( F R ).

B.2 Phase Planes and Nonlinear Equations

Here we want to solve a nonlinear equation. We will choose a planar system, since there
are many nice tools available for analyzing two-dimensional systems. A classic model
is the FitzHugh–Nagumo equations, which are used as a model for nerve conduction.
The equations are

dv

dt
� Bv(v − β)(δ − v) − Cw + Iapp, (B.2)

dw

dt
� ε(v − γw),

with parameters Iapp, B, C, β, δ, ε, γ. Here we will use Iapp � 0, B � 1, C � 1, β � .1, δ �
1, γ � 0.25, and ε � .1. Let us write an ODE file for this:

# Fitzhugh-Nagumo equations

dv/dt=B*v*(v-beta)*(delta-v)-Cw+Iapp

dw/dt=epsilon*(v-gamma*w)

par Iapp=0,B=1,C=1,beta=.1,delta=1,gamma=.25,epsilon=.1

@ xp=V,yp=w,xlo=-.25,xhi=1.25,ylo=-.5,yhi=1,total=100

@ maxstor=10000

done
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We have already seen the first four lines: (i) lines beginning with a # are comments, (ii)
the next two lines define the differential equations, and (iii) the line beginning with par

defines the parameters and their default values. The penultimate line beginning with
the @ sign is a directive to set some of the options in XPPAUT. These could all be done
within the program, but this way everything is all set up for you. Details of these options
are found in the user manual. For the curious, these options set the x-axis (xp) to be the
v variable, the y-axis (yp) to be the w variable, the plot range to be [−.15, 1.25]× [−.5, 1],
and the total amount of integration time to be 100. The last option, @ maxstor=10000,
is a very useful one. XPPAUT allocates enough storage to keep 4000 time points. You
can make it allocate as much as you want with this option. Here we have told XPPAUT
to allocate storage for 10000 points. Type this in and save it as fhn.ode.

B.2.1 Direction Fields

Run the file by typing xpp fhn.ode. The usual windows will pop up. One of the standard
ways to analyze differential equations in the plane is to sketch the direction fields.
Suppose that the differential equation is

dx

dt
� f (x, y),

dy

dt
� g(x, y).

The phase plane is divided into a grid, and at each point (x, y) in the grid a vector is
drawn with (x, y) as the base and (x+ sf (x, y), y+ sg(x, y)) as the terminal point, where s

is a scaling factor. This so-called direction field gives you a hint about how trajectories
move around in the plane. XPPAUT lets you quickly draw the direction field of a system.
Click on Dir.field/flow (D)irect Field ( D D ) and then accept the default of 10

for the grid size by clicking Enter . A bunch of vectors will be drawn on the screen,
mainly horizontal. They are horizontal because ε is small so that there is little change
in the w variable. The length of the vectors is proportional to the magnitude of the
flow at each point. At the head of each vector is a little bead. If you want to have pure
direction fields that do not take into account the magnitude of the vector field, just click
on Dir.field (S)caled Dir. Fld ( D S ) and use the default grid size. (We prefer
pure direction fields, but this is a matter of taste.)

Click on Initialconds m(I)ce to experiment with a bunch of different trajecto-
ries. Note how the vectors from the direction field are tangent to the trajectories. See
Figure B.9.

B.2.2 Nullclines and Fixed Points

As discussed in earlier chapters, a powerful technique for the analysis of planar differ-
ential equations and related to the direction fields is the use of nullclines. Nullclines are
curves in the plane along which the rate of change of one or the other variable is zero.
The x-nullcline is the curve where dx/dt � 0, that is, f (x, y) � 0. Similarly, the y-nullcline
is the curve where g(x, y) � 0. The usefulness of these curves is that they break the plane
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Figure B.9 Direction fields and some trajectories for the FitzHugh–Nagumo equations.

up into regions along which the derivatives of each variable have a constant sign. Thus,
the general direction of the flow is easy to determine. Furthermore, any point where
they intersect represents a fixed point of the differential equation.

XPPAUT can compute the nullclines for planar systems. To do this, just click on
Nullcline New ( N N ). You should see two curves appear: a red one representing

the V-nullcline and a green one representing the W-nullcline. The green one is a straight
line, and the red is a cubic. They intersect just once: There is a single fixed point. Move
the mouse into the phase plane area and hold it down as you move it. At the bottom of
the Main Window you will see the x and y coordinates of the mouse. The intersection
of the nullclines appears to be at (0, 0).

The stability of fixed points is determined by linearizing the system of equations
about them and then finding the eigenvalues of the resulting linear matrix. XPPAUT
will do this for you quite easily. XPPAUT uses Newton’s method to find the fixed
points and then numerically linearizes the system about them to determine stability.
To use Newton’s method, a decent guess needs to be provided. For planar systems
this is easy to do; it is just the intersection of the nullclines. In XPPAUT fixed points
and their stability are found using the Sing pts command, since “singular points”

is a term sometimes used for fixed points or equilibrium points. Click on Sing pts

Mouse ( S M ) and move the mouse to near the intersction of the nullclines. Click
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the button, and a message box will appear on the screen. Click on No, since we do not
need the eigenvalues. A new window will appear that contains information about the
fixed points. The stability is shown at the top of the window.

The nature of the eigenvalues follows: c+ denotes the number of complex eigenval-
ues with positive real part; c- is the number of complex eigenvalues with negative real
part; im is the number of purely imaginary eigenvalues; r+ is the number of positive
real eigenvalues; and r- is the number of negative real eigenvalues. Recall that a fixed
point is linearly stable if all of the eigenvalues have negative real parts. Finally, the
value of the fixed points is shown under the line. As can be seen from this example,
there are two complex eigenvalues with negative real parts: the fixed point is (0, 0). (
XPPAUT reports a very small nonzero fixed point due to numerical error.) Integrate
the system using the mouse, starting with initial conditions near the fixed point. (In
the Main Window, tap I I .) Note how solutions spiral into the origin, as is expected
when there are complex eigenvalues with negative real parts.

For nonplanar systems of differential equations you must provide a direct guess.
Type your guess into the Initial Data Window and click on Ok in the Initial Data

Window. Then from the Main Window, click on Sing Pts Go ( S , G ).
Change the parameter I from 0 to 0.4 in the Parameter Window and click on

Ok in the Parameter Window. In the Main Window erase the screen and redraw the

nullclines: Erase Nullclines New ( E N N ). The fixed point has moved up. Check
its stability using the mouse ( Sing pts Mouse ). The fixed point should be (0.1, 0.4).
Use the mouse to choose a bunch of initial conditions in the plane. All solutions go to
a nice limit cycle. That is, they converge to a closed curve in the plane representing a
stable periodic solution.

We can make a nice picture that has the nullclines, the direction fields, and a few
representative trajectories. Since XPPAUT keeps only the last trajectory computed, we
will “freeze” the solutions we compute. We can freeze trajectories automatically or one
at a time, and we will do the former. Click on Graphic stuff (F)reeze (O)n freeze

( G F O ) to permanently save computed curves. Up to 26 can be saved in any window.
Frist we use the mouse to compute a bunch of trajectories. Draw the direction fields
by clicking Dir.field/flow (D)irect Field ( D D ).

We can label the axes as follows: Click on Viewaxes 2D ( V 2 ), and the 2D view
dialog will come up. Change nothing but the labels (the last two entries), and put V as
the Xlabel and w as the Ylabel. Click on Ok to close the dialog. Finally, since the axes

are confusing in the already busy picture, click on Graphic stuff aXes opts ( G

X ) and in the dialog box change the 1’s in the entries X-org(1=on) and Y-org(1=on)
to 0’s to turn off the plotting of the X and Y axes. Click Ok when you are done.

To create a PostScript file, follow Graphic stuff (P)ostscript ( G P ) and ac-

cept all the defaults. Name the file whatever you want and click on Ok in the file
selection box. Figure B.10 shows the version that we made. Yours will be slightly dif-
ferent. If you want to play around some more, turn off the automatic freeze option,



426 B: Solving and Analyzing Dynamical Systems Using XPPAUT

-0.4

-0.2

0

0.2

0.4

0.6

0.8

w

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
v

Figure B.10 Nullclines, direction fields, trajectories for Iapp=0.4 in the Fitzhugh-Nagumo
equations.

Graphic stuff Freeze Off freeze ( G F O ), and delete all the frozen curves,

Graphic stuff Freeze Remove all ( G F R ).

B.2.3 Command Summary: Phase Planes and Fixed Points

Nullcline New draws nullclines for a planar system ( N N ).

Dir.field/flow (D)irect Field draws direction fields for a planar system ( D

D ).
Sing pts Mouse computes fixed points for a system with initial guess specified by

the mouse ( S M ).
Sing pts Go computes fixed points for a system with initial guess specified by the

current initial conditions ( S G ).
Graphic stuff Freeze On Freeze will permanently keep computed trajectories in

the current window ( G F O ).

Graphic stuff Freeze Off Freeze will toggle off the above option ( G F O ).
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Graphic stuff Freeze Remove all deletes all the permanently stored curves

( G F R ).

Graphic stuff aXes opts lets you change the axes ( G X ).

Viewaxes 2D allows you to change the 2D view of the current graphics window and

to label the axes ( V 2D ).

B.3 Bifurcation and Continuation

Once we have found the critical points of a system of interest, we can then embark on
a continuation and bifurcation analysis of the solutions, as we mentioned in Appendix
A. Continuation analysis describes how solutions to differential equations evolve over
parameters, while bifurcation analysis refers, in particular, to how solutions appear
and disappear as parameters are varied. One of the main strengths of XPPAUT is
that it provides a convenient interface to many of the features found in the AUTO
package for continuation/bifurcation analysis. AUTO remains one of the best such
packages. However, the stand-alone versions of AUTO require coding compilation of
the equations with the FORTRAN computer language. Note that AUTO currently only
is available for the Unix version of XPPAUT. The Windows version uses a continuation
package called LOCBIF, and slight differences from the procedures outlined below
are explained in the user’s manual on the web site. While AUTO is powerful even as
implemented in XPPAUT, it is not foolproof. The results you obtain should be viewed
with a critical eye. Bifurcation analysis is discussed in more depth in an excellent book
by Kuznetsov (Kuznetsov 1998). It is useful to understand that the AUTO features
available in XPPAUT are independent of the other tools, but that parameters and
fixed points are exchanged back and forth. Bifurcation diagrams can be imported into
XPPAUT for plotting.

B.3.1 General Steps for Bifurcation Analysis

• AUTO bifurcation analysis must start from a fixed (or singular) point or from a
periodic orbit. Get rid of transients and find a stable fixed point by by integrating
several times: Click Initialconds Go and then click Initialconds Last several
times. For limit cycles, get a good estimate of the period and integrate one full
period only.

• Bring up the AUTO window by selecting File Auto ( F A ).
• Use the Parameter function to choose the parameters that will be varied.
• Use the Axes Hilo function to select the parameters to be plotted and the range

over which they will be varied. A one–parameter bifurcation diagram must be
completed before a second parameter can be varied.

• Use the Numerics function to define direction, step size, etc.
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Figure B.11 FH-N system with Iapp=0.

• Run the analysis for Steady state or Periodic .

It is more difficult for AUTO to start from a periodic solution, and so some further
assistance is required. First, a good approximation of the period must be determined
from the data browser (use Find in conjunction with a large number to determine
the maximum) or by measuring the peak-to-peak period with the mouse. Integrate
over just that period by adjusting nUmerics Total to the period length. After starting
AUTO and selecting parameters and bounds, choose Run Periodic . AUTO may still
fail, and further adjustments to numerical parameters or a better approximation of the
period may be necessary.

B.3.2 Hopf Bifurcation in the FitzHugh–Nagumo Equations

We will continue with the FitzHugh-Nagumo example and explore the bifurcation
structure of this system. Using the FH-N equations from earlier, add the lines

v(0)=1,

w(0)=1,

to the ODE file to set initial conditions. Now we are ready to begin the analysis:

1. Start up XPPAUT with Iapp=0. Next, run the ODE file, ploting x vs t as discussed
above. You should see v oscillate a bit and go to zero, as seen in Figure B.11. Now
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Figure B.12 FH-N system with Iapp=1.5.

run the simulation with Iapp=1.5. You should see the periodic solution shown in
Figure B.12. We want to understand how this change ocurrs as the parameter Iapp
is changed.

2. To set up the bifurcation analysis run the simulation again with Iapp=0: Click
Initialconds Go and then click Initialconds Last several times. This will

run the simulation until it is really at the steady state.
3. The next step is to bring up the AUTO window by selecting File Auto ( F A ).

Once the AUTO window is present, make sure that Iapp is listed as Par1 under
Parameter . It should already be there if you typed the file in as written. If not,

select Iapp.
4. Set up the graphics axes with Axes Hilo . Fill in the dialog box as follows:

Y-axis: V
Main Parm: Iapp
Xmin: -0.5
Ymin: -3
Xmax: 0.5
Ymax: 0.5

5. Set up the Numerics , and change only Par Min=0 and Par Max=3.5.
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6. To begin, click Run Steady state . The beginning of the diagram should appear
with four points labeled as in Figure B.13. The bold line represents a stable steady
state, and the faint line represtents an unstable steady state.

7. Now choose Grab . This will allow you to see what the four marked points in the
diagram represent. A cross appears on the plot at marker 1, and below the plot,
a description will be present. Lab is the label for the point (1), Ty is the type of
point. EP stands for End point, where we started computing. Iapp is the value of
the parameter for that location of the graph.

8. Move the cursor over the (2). Under Ty should be the label HP, for Hopf bifurcation.
Point (3) should also be a Hopf bifurcation, and (4) will be the other end point.

9. With the cross back on (2), press Enter . This “grabs” that point as the beginning of
a new calculation. Click Run again. This time, the pop-up screen is labeled as Hopf
Pt, and we will choose Periodic to follow the periodic orbits as Iapp changes. You
should get something like Figure B.14. The darkened circles show that the periodic
orbits are stable. Open circles represent an unstable periodic solution. Note that
there are upper and lower points in the plot for the periodic solution, showing the
maximum and minimum values (of v) that the solution attains.

10. By using grab again, we can go to the periodic orbits, and their period will be
shown below the plot.

11. We can save the plot using the File menu as discussed above.

B.3.3 Hints for Computing Complete Bifurcation Diagrams

• Be sure to start at a fixed point or clearly defined limit cycle. As discussed above,
get rid of transients and find a stable fixed point by integrating several times: Click

Figure B.13 Initial bifurcation diagram and AUTO window for the FH-N system.
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Initialconds Go and then Initialconds Last several times. For limit cycles,
get a good estimate of the period and integrate one full period only.

• Learn to navigate the diagram efficiently. Tab jumps to special points, Axes Fit

reDraw will fit the entire diagram to the page, and Axes Zoom magnifies a given
area.

• AUTO will try to follow all branches of fixed points. However, AUTO may need
some assistance. Grab special points and Run in different directions by changing
the sign of Ds in the numerics dialog box.

• Try to find the periodic solution from all Hopf points.
• Be sure also to change Ds for two parameter bifurcations.
• An initial MX label indicates that auto has failed and you may not have provided

a good fixed point or periodic orbit.
• To erase the diagram and start again with different parameters, Grab the initial

starting point and destroy the diagram with File Reset diagram .
• If AUTO fails to continue, try making dsmin smaller; for periodic orbits and

boudary value problems make ntst larger.
• If AUTO clearly misses a bifurcation point, make dsmin smaller and recompute.
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Figure B.14 Final bifurcation diagram the FH-N system.
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B.4 Partial Differential Equations: The Method of Lines

XPPAUT doesn’t have any way to solve PDEs other than by discretizing space and
producing a series of ODEs using the method of lines. However, one does not have to
write all the differential equations down, one at a time. There are ODE file shortcuts
that make this easy to do. There is also a nice way of plotting the space–time behavior
of a one-dimensional PDE. We will go through one quick example here. Consider the
PDE

∂v

∂t
� f (v, w) + D

∂2v

∂x2
,

∂w

∂t
� g(v, w),

where f, g are the kinetics for the FitzHugh–Nagumo model or some other model. For
simplicity, we assume Neumann boundary conditions (see Chapter 7). This system can
be discretized with the method of lines, yielding the following system of ODEs:

dv0

dt
� f (v0, w0) + D(v1 − v0),

dvj

dt
� f (vj, wj) + D(vj+1 − 2vj + vj − 1), j � 1, . . . , N − 1,

dvN

dt
� f (vN, wN) + D(vN−1 − vN),

dwj

dt
� g(vj, wj), j � 0, . . . , N.

We will use the FitzHugh–Nagumo kinetics and make an ODE file of the discretized
system. Note that we have changed the parameter B=4, so that the system is more
excitable (see Chapter 7):

# fitzhugh-nagumo action potential

f(v,w)=B*v*(v-beta)*(delta-v)-Cw+Iapp

g(v,w)=epsilon*(v-gamma*w)

par Iapp=0,B=1,C=1,beta=.1,delta=1,gamma=.25,epsilon=.1

par D=.5

dv0/dt=f(v0,w0)+D*(v1-v0)

dv[1..49]/dt=f(v[j],w[j])+D*(v[j+1]-2*v[j]+v[j-1])

dv50/dt=f(v50,w50)+D*(v49-v50)

dw[0..50]/dt=g(v[j],w[j])

@ total=200,dt=.25,meth=qualrk,tol=1e-6

@ xhi=200,yp=v20

done

XPPAUT actually expands this to 100 differential equations, and the variables are
named v0,w0,v1,w1 and so on up to v50,w50. You must always use the letter “j” for
the index. We have told XPPAUT to use a quality step size (adaptive) Runge–Kutta
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Figure B.15 XPPAUT output of the spatial FitzHugh–Nagumo simulation.

routine with an output step size of 0.25. We integrate the equations for 200 time units.
We plot v20 so that the appearance of an action potential will be clear.

Run XPPAUT with this file. Now we will give some initial conditions. Rather than
type them in one by one, we will define Vj(0) by a formula. Click on Initial conds

formUla . When prompted for the variable type in v[0..50] and type in heav(5-[j])

for the formula. Then tap the Enter key a few times. Note that the index is referred
to as [j] in the formula rather than just j. You should see an action potential appear
on the screen. Click on Graphic stuff Add curve and choose V40 for the y-axis and
color 7 (green) for the color. The potentials of the 20th and 40th points will appear. In
the Initial Data Window, click on the box next to V0. Scroll down and click on the box
next to V50. Now click on the button labeled arry . A new window will appear with the
space–time plot of the potential that should look something like Figure B.15. You can
fool around with the parameters for this plot by clicking on the edit box in the window.

As a last bit of analysis, we can look at the spatial profile at a fixed point in time. To
do this, we will transpose all the space–time data so that the 51 columns of the potential
at a particular point in time become 51 rows in the second column; the first column will
hold the indices. Click on File Transpose. Edit the dialog box so that NCols=51 (the
number of columns); Row 1=300 (the output time step is 0.25, so row 300 represents
t � 75). Click OK to complete the transpose. (You can undo this by clicking on File

Transpose and then clicking Cancel in the dialog box.) Once you have transposed
the data, just plot V0 versus time. This is the spatial profile at t � 75.
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B.5 Stochastic Equations

B.5.1 A Simple Brownian Ratchet

XPPAUT has many features useful for stochastic modeling. In particular, it can simu-
late Brownian motion and continuous Markov processes. Before turning to a sodium
channel simulation, we first create an XPPAUT file for a ratchet that moves between
−1 and 1 and is not allowed to exit the boundaries. It is easiest to treat this in discrete
time. The function normal(0,1) produces a normally distributed random number with
mean 0 and standard deviation 1. Thus, the exercise can be written as the following
simple ODE file:

par f1=-5,f2=5,h=.1,q=2

@ total=1000,meth=discrete

init x=-1

xp=x+h*.5*(f1*(sign(-x)+sign(x+1))+f2*(sign(x)+sign(1-x)))

+sqrt(q*h)*normal(0,1)

dx/dt=max(min(xp,1),-1)

done

The statement meth=discrete tells XPPAUT to treat this as a map rather than a con-
tinuous differential equation. In this mode, xp is the new value of x under the random
dynamics. However we do not want x to escape the boundaries of ±1, so when we
update the new value of x it is constrained by the function max(min(xp,1),-1).

B.5.2 A Sodium Channel Model

In the next example we simulate a sodium channel model due to Joe Patlak. The func-
tions αm, βm, αh are the usual voltage dependendent functions for the Hodgkin–Huxley
equations. XPPAUT can simulate a multi–state Markov process by defining a “Markov”
variable (which has N states, 0, 1, . . . , N −1) and the transition matrix. Each row of the
transition matrix is given on a single line following the declaration of the Markov vari-
able. Each entry is contained within the curly braces, { and }. For example, suppose
that you had a two state process with transition rates a from 0 to 1 and b from 1 to 0.
Then you would write

markov z 2

{0} {a}

{b} {0}

Note that you can put anything you want in the diagonals, since they are ignored. Here
is a complete ODE file for the above process:

# two state markov model

par a=.2,b=.3
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markov z 2

{0} {a}

{b} {0}

@ total=50,xhi=50,xp=z,yp=z,yhi=1.5,ylo=-.5

# ddummy/dt=0

done

The last line should be uncommented if your version of XPPAUT does not accept this
file. Older versions require at least one differential equation. Run this and integrate the
equations. See z flip up and down.

Now with this trivial example in mind, we turn to the sodium channel model. Here
is the XPPAUT file:

# model for the hh Na channel

# due to patlack

#

par vhold=-100,vnew=10

par ton=1,toff=16,ena=50

par k1=.24,k2=.4,k3=1.5

v=vhold+heav(t-ton)*heav(toff-t)*(vnew-vhold)

am=.1*(v+40)/(1-exp(-(v+40)/10))

bm=4*exp(-(v+65)/18)

ah=.07*exp(-(v+65)/20)

markov z 5

{0} {3*am} {0} {0} {0}

{bm} {0} {2*am} {0} {k1}

{0} {2*bm} {0} {am} {k2}

{0} {0} {3*bm} {0} {k3}

{0} {0} {0} {0} {ah}

aux cond=(z==3)

aux ina=(z==3)*(v-ena)/40

aux pot=v

@ meth=euler,dt=.01,total=16

@ yp=ina,ylo=-1.5,xlo=0,xhi=15,bound=100

done

The voltage is stepped from a value vhold to vnew. The Markov process has five states.
Only state 3 is conducting. Thus, the auxiliary variable cond=(z==3) is zero if the chan-
nel is not conducting and 1 if it is. The current passed is given by the variable ina.
Euler’s method is used for this calculation, since that is usually the best method to
use for any stochastic model. Integrate this a few times to see the channel open tran-
siently. This is a transient channel, so even at high potentials it stays on only briefly.
The Hodgkin–Huxley equations arise by assuming that there are many independent
channels. Since they are assumed to be independent, we can simulate the effect of m
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Figure B.16 XPPAUT results for the sodium channel simulation.

channels by just integrating the equations m times and averaging the output. XPPAUT
does this for you. Click on nUmerics Stochastics Compute to tell XPPAUT how
many trials. Choose z as the variable to range over, 200 steps with Start=0 and End=0.
Then click Ok . The equations will be integrated 200 times; this is equivalent to having
200 independent channels. Once XPPAUT has done this (you can keep track by looking
at the bottom), then click on stocHastics Mean to load the data browser with the
mean values of all its rows over the 200 trials. Click on Escape to get back to the main

menu and then click on Restore to see the mean value shown in Figure B.16. This
looks very similar to the deterministic solution. Try simulating fewer channels (e.g.,
10) and more channels, (e.g., 1000). Why do we have to take such small steps?

B.5.3 A Flashing Ratchet

As a final example of a stochastic equation, we simulate the “flashing ratchet” model:
an asymmetric ratchet that flashes on and off at a particular rate according to a Markov
process and subject to simple delta-correlated noise. Here is the model:

dx � −zf (x)dt + σdξ,
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Figure B.17 Stochastic simulation of a simple Brownian ratchet.

where z is a two–state Markov process either off (0) or on (1) and f is just the derivative
of an asymmetric potential. The potential should be made periodic. Here is the XPPAUT
file:

# ratchet

# -1 for 0<x<1

# 1/a for 1<x<1+a

ff(x)=if(x<1)then(-1)else(1/a)

f(x)=ff(mod(x,1+a))

par a=.25

par alpha=.2,beta=.2

par sig=.5

wiener xi

dx/dt=f(x)*z+sig*xi

markov z 2

{0} {alpha}

{beta} {0}

@ total=200,bound=200,meth=euler

done
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We first define the potential on the interval [0, 1+a) and then extend it to the whole line
modulo 1+a. We define a two-state markov process that flips randomly between 0 and
1. The wiener w declaration tells XPPAUT that this is a normally distributed number
scaled by the internal time step dt. Thus, if you change dt, the standard deviation is
scaled accordingly by

√
dt. Integrate the equations a few times. Next, do 50 simulations

and look at the mean trajectory. (Use nUmerics stocHastic Compute as was done
in the channel model.) You will see in Figure B.17 that there is persistent downward
drift. This is what is predicted by theory.



A P P E N D I X C

Numerical Algorithms

This appendix contains samples of the different kinds of numerical constructs used to
produce the figures in this book. Each of the files produces a figure in the book and is
labeled accordingly. In general, each of the files contains a new construct not previously
used. However, several are included for easy comparison to one that is very similar. We
provide a one-line description of the intent of the code. It will be useful to look back at
the figures these files produce as well.

The files presented here are working XPPAUT code. XPPAUT uses concise straight-
forward code, making it easy to translate to other languages and packages. The code
as written can be saved as an .ode file and run using XPPAUT or Winpp. The code is
commented heavily at the beginning and less so at the end, where the reader will be
able to pick up on the more obvious features.

This appendix provides a good overview, and it provides those with programming
experience a template for writing their own code. Furthermore, XPPAUT code for
every computational figure in the book is available for download on the web site for
the book, including the corresponding set files. As readers solve examples and exercises
using other packages such as Berkeley Madonna, MATLAB, and Mathematica. These
files will be included on the web site if they are submitted to us.
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Figure 1.10. This is the first basic code to run. Once you have a simple XPPAUT model
running, it is straightforward to modify it to increase its complexity.

#solves single channel model

#this is basically the same equation with the steady

#state level changed to ninf rather than zero

#the initial condition on the open fraction

fo(0)=1

#parameters

#finf is the steady state value

#tau is the the time scale

param finf=0.5,tau=3

#differential equation

dfo/dt=-(fo-finf)/tau

#auxiliary function

#rate is the instantaneous rate of change

aux rate=-(fo-finf)/tau

done

Figure 2.6. This program provides a template for plotting functions with XPPAUT
using the aux functionality.

#.ode file for plotting functions

#x is the dummy variable for plotting the auxiliary functions

#initial value of x

x(0)=-80

#differential equation

#the solution to this equation is x=t+x(0)

#it lets us plot functions f(x)

dx/dt=1

#equilibrium activation and inactivation

#auxillary functions to plot

aux finfact=1/(exp(-(x+25)/5)+1)

aux finfinact=1/(exp((x+50)/2)+1)

#the characteristic times to plot

aux tauact=5/cosh((x+25)/2*5)

aux tauinact=5/cosh(-(x+50)/2*2)

done

Figures 2.9, 2.10, 2.11, 2.12. This is a simple two-variable model (the Morris–Lecar
model) that includes function definitions outside of the differential equations.

#simulation of the Morris-Lecar equations

dv/dt = (-gca*minf*(V-Vca)-gk*w*(V-VK)-gl*(V-Vl)+Iapp)/C

dw/dt = phi*(winf-w)/tauw
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#initial conditions

v(0)=-60.855

w(0)=0.014915

#functional forms for the equations

#keep the functions separate from the differential equations makes

#the differential equations less complicated to sort through,

#but is not necessary.

minf=0.5*(1+tanh((v-v1)/v2))

winf=0.5*(1+tanh((v-v3)/v4))

tauw=1/cosh((v-v3)/(2*v4))

#parameters

param Iapp=0,vk=-84,vl=-60,vca=120

param gk=8,gl=2,C=20

param v1=-1.2,v2=18

param v3=2,v4=30,phi=.04,gca=4.4

#numerical parameters:

#these are sometimes included to avoid needing to

#set them when the program is run

#total is the total time the simulation will run

#dt is the time step

#the rest of these parameters define the view in the graph

@ total=150,dt=0.25,ylo=-75,yhi=45,xlo=0,xhi=150,xp=t,yp=va=4.4

done

Figures 5.8, 5.10. This file shows that the ordering of the program elements in XPPAUT
is not crucial.

#Keizer/Levine: reduced open-cell model

#Parameter values slightly modified from original paper.

#Two figs generated:

#(1) oscillating time series: jin=1.5 for 60<t<400 and jin=0.3 otherwise

#(2) bifurcation plot: jin=0.1 to jin=4.5

#numerical parameters

@ meth=cvode, dtmax=1, dt=0.05, total=400, maxstor=1000000

@ bounds=100000000, xp=w, yp=w, toler=1.0e-6, atoler=1.0e-6

@ xlo=0, xhi=400, ylo=0, yhi=2.5

#initial conditions

CAI(0)=0.2, CATOT(0)=1.

#parameters

params fi=0.01,Kserca=0.2

params Ka=0.4,Kb=0.6,Kc=0.1,kcm=0.1

params vpmca=5, Kpmca=0.6, jin=1.5

params vserca=100,vryr=5,vleak=0.2,sigma=0.02
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#function definitions

winf=(1+(Ka/CAI)^4+(CAI/Kb)^3)/(1+(1/Kc)+(Ka/CAI)^4+(CAI/Kb)^3)

CAER=(CATOT-CAI)/sigma

tau=winf/kcm

Pryr=winf*(1+(CAI/Kb)^3)/(1+(Ka/CAI)^4 + (CAI/Kb)^3)

#differential equations

dCAI/dt=fi*((vryr*Pryr+vleak)*(CAER-CAI)-vserca*(CAI^2/(CAI^2+Kserca^2))\

-vpmca*CAI^2/(CAI^2+Kpmca^2)+jin)

dCATOT/dt=fi*(jin-vpmca*CAI^2/(CAI^2+Kpmca^2))

aux Pryr=winf*(1+(CAI/Kb)^3)/(1+(Ka/CAI)^4 + (CAI/Kb)^3)

done

Figures 5.14, 5.15. Note here that the keyword for parameters is flexible.

# Li-Rinzel open-cell model .ode file.

# Dimensional version

# The equations

dCAI/dt=fi/Vi*((L+Pip3*((IP3*CAI*h)/((IP3+Ki)*(CAI+Ka)))^3)*(CAER-CAI)\

-Vserca*CAI^2/(Kserca^2+CAI^2)+epsilon*(Jin-Vpmca*CAI^2/(Kpmca*Kpmca+CAI^2)))

dh/dt=A*(Kd-(CAI+Kd)*h)

dCATOT/dt=fi/Vi*epsilon*(Jin-Vpmca*CAI^2/(Kpmca^2+CAI^2))

CAER=(CATOT-CAI)/sigma

# The parameters

# Jin=aMol/s

par Jin=1200,fi=0.01

# Vi=pL

par Vi=4

# L,Pip3=pL/s

par L=0.37,Pip3=26640

# IP3,CAI,CAER,CATOT,Ki,Ka,Kserca,Kd,Kpmca=uM

par IP3=0.9,Ki=1.0,Ka=0.4

# Vserca, Vp=aMol/s [sic]

par Vserca=400,Kserca=0.2,A=0.5,Kd=0.4

# sigma,epsilon,fi=unitless

par sigma=0.185,epsilon=0.01,Vpmca=2000,Kpmca=0.3

# The initial conditions

CAI(0)=0.2

h(0)=0.8

CATOT(0)=4.0

aux CAER=CAER

#parameters for graphing

@ TOTAL=300,DT=0.02,xlo=0,xhi=2,ylo=0,yhi=1.5,MAXSTOR=20000

@ xplot=t,yplot=CAI

#parameters for AUTO bifurcation analysis
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@ dsmin=1e-5,dsmax=.1,parmin=-.5,parmax=.5,autoxmin=-.5,autoxmax=.5

@ autoymax=.4,autoymin=-.5

set vvst {xplot=c,yplot=h,xlo=0,xhi=1.5,ylo=0,yhi=1.5,total=100,\

dt=0.01,meth=qualrk}

done

Figures 5.19, 5.20. This simulation exhibits bursting behavior in the right parameter
range. Note here an alternative method for declaring initial conditions.

#Morris-Lecar-like beta-cell

init V=-65.0, n=0.00016, CAI=0.2

# equations

dV/dt=(gL*(Vl-V)+gK*n*(Vk-V)-Ica-Ikca+Iapp)/Cm

dn/dt=(ninf-n)/tau

dCAI/dt=f*(-alpha*Ica - vlpm*CAI)

# where

minf=0.5*(1+tanh((v-v1)/v2))

ninf=0.5*(1+tanh((v-v3)/v4))

tau=1/(phi*cosh((v-v3)/(2*v4)))

# For bifurcation diagram, set auto=1 and use gkcastar

# as the bifurcation parameter:

param gkcastar=100.0, auto=0

param Vk=-75, Vl=-75, Vca=25

param Iapp=0, gK=2700, gL=150, gCa=1000, Cm=5300

param v1=-20.0, v2=24, v3=-16, v4=11.2, phi=0.035

param gkca=2000.0, Kkca=5.0

# Ikca

Ikca = auto*gkcastar*(V-Vk)+((1-auto)*gkca*CAI/(Kkca+CAI))*(V-Vk)

# Calcium Handling

par alpha=4.50e-6, vlpm=0.15, f=0.001

# Ikatp

par gkatp=0.0

Ica = gca*minf*(V-Vca)

@ meth=cvode, atol=1.0e-6, tol=1.0e-6, dt=10.0

@ total=40000, maxstor=10000

@ xp=t, yp=v, bound=100000000

@ xlo=0, xhi=40000, ylo=-70, yhi=-10

done

Figures 6.2, 6.3. This file provides a template for simple coupled dynamics. Note that
by specifying the argument explicitly, functions (such as minf(v) here) need not be
duplicated. Rather, one passes the appropriate variable as in the differential equation
for V1.

#mlgap.ode



444 C: Numerical Algorithms

#gap-junction coupled cells.

#Morris-Lecar dynamics with modified parameters.

#Notably: vc=-5, vd=10, phi=0.5 (originally: 2, 30, 0.04, respectively)

#Use weak gc (=1) for antiphase and strong gc (=2) for inphase.

#differential equations

dV1/dt=(I-gca*minf(V1)*(V1-Vca)-gk*w1*(V1-VK)-gl*(V1-Vl)+\

gc*heav(t-ton)*(V2-V1))/c

dw1/dt = phi*(winf(V1)-w1)/tauw(V1)

dV2/dt = (I-gca*minf(V2)*(V2-Vca)-gk*w2*(V2-VK)-gl*(V2-Vl)+\

gc*heav(t-ton)*(V1-V2))/c

dw2/dt = phi*(winf(V2)-w2)/tauw(V2)

init V1=-20,w1=.2

init V2=-30,w2=0

minf(v)=0.5*(1+tanh((v-va)/vb))

winf(v)=0.5*(1+tanh((v-vc)/vd))

tauw(v)=1/cosh((v-vc)/(2*vd))

#parameters

param vk=-84,vl=-60,vca=120

param i=-10,gk=8,gl=1,c=20

param va=-1.2,vb=18,gc=2,ton=100

param vc=-5,vd=10,phi=0.5,gca=8

#numerical parameters

@ total=400,dt=.25,xhi=400,ylo=-40,yhi=30

done

Figure 6.9. This file includes a delay using a Heaviside function. This file also demon-
strates alternative notation for the equations. In particular, note that the dv/dt notation
may be substituted for v’.

# simple model for coincidence detection.

# ML cell receives two just-subthreshold inputs that are identical and

# excitatory - tdel represents timing difference between them.

# this ML model uses the standard ML (Type II) params from Chapt 2 of this

# book (same as Rinzel/Ermentrout in Koch and Segev’s book.

# Note: treat tdel as a variable (with ode: tdel’=0) so can do Poincare

# map for response tuning curve

isyn2=gsyne*s2*(Vsyne-v1)

isyn1=gsyne*s1*(Vsyne-v1)

#differential equations

v1’ = (I-gca*minf(v1)*(v1-vca)-gk*w1*(v1-vk)-gl*(v1-vl)\

+isyn2+isyn1)/c

w1’ = phi*(winf(v1)-w1)/tauw(v1)

s2’ = alphae*sinf(vr2(t))*(1-s2)-betae*s2

s1’ = alphae*sinf(vr1(t))*(1-s1)-betae*s1
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tdel’= 0

init v1=-60.9,w1=.0149,s2=0.,s1=0.,tdel=0

minf(v)=.5*(1+tanh((v-va)/vb))

winf(v)=.5*(1+tanh((v-vc)/vd))

tauw(v)=1/cosh((v-vc)/(2*vd))

sinf(v)=1/(1+exp(-(v-thetasyn)/ksyn))

# fix the start time of excitation from R2 and delay the

# start of excitation from R1 by tdel (if tdel<0, R1 input precedes

# R2 input)

vr2(t)=100*heav(t-t0)*heav(teon+t0-t)+vrest

vr1(t)=100*heav(t-t0-tdel)*heav(teon+t0+tdel-t)+vrest

param t0=100,teon=5,vrest=-60

param gsyne=1.5,vsyne=100

param vk=-84,vl=-60,vca=120

param i=0,gk=8,gl=2,c=20

param va=-1.2,vb=18,vc=2,vd=30,phi=.04,gca=4.

param thetasyn=20,ksyn=2,alphae=1,betae=0.3

# aux quantities

aux isyn2x=isyn2

aux isyn1x=isyn1

@ total=400,bound=100000,nout=2,dt=.25,xhi=400,ylo=-100,yhi=100

done

Figure 7.6. This is the basic diffusion equation. It demonstrates the two–dimensional
graphing capabilities of XPPAUT.

param D=1

param dx=1

c0’=D*(c1-c0)/(dx*dx)

c[1..39]’=D*(c[j+1]-2*c[j]+c[j-1])/(dx*dx)

c40’=D*(c39-c40)/(dx*dx)

init c[0..19]=0

init c20=0.5

init c[21..29]=1

init c30=0.5

init c[31..40]=0

Figure 7.8 This file provides a template for one-dimensional reaction–diffusion
equations.

param dx=1

f(x)=x*(1-x)*(x-0.1)

V0’=(V1-V0)/(dx*dx)+f(V0)

V[1..39]’=(V[j+1]-2*V[j]+V[j-1])/(dx*dx)+f(V[j])

V40’=(V39-V40)/(dx*dx)+f(V40)
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init V[0..30]=0

init V31=0.1

init V[32..40]=0.2

Figure 8.7. This file incorporates recovery, giving a traveling pulse with wave front and
back.

# Calcium wave simulation

#parameters

param ip3=.7, a2=.2, Caer=1

param d1=0.1, d2=1, d3=0.2, d5=0.2

param v1=20, v2=0.004, v3=1.2, k3=0.15, tau=2

param deff=16,dx=10

# dx in units of um

# deff in units of um^2/sec

#the initial condition, equation and a function

Ca[0..4](0)=.1

Ca[5..100](0)=.01

w[0..100](0)=.8652

dCa0/dt=f(Ca0,w0)+deff*(Ca1-Ca0)/dx^2

dCa[1..99]/dt=f(Ca[j],w[j])+deff*(Ca[j-1]-2*Ca[j]+Ca[j+1])/dx^2

dCa100/dt = f(Ca100,w100)+deff*(Ca99-Ca100)/dx^2

dw[0..100]/dt=(winf(Ca[j])-w[j])/tau

f(Ca,w)=(v2+v1*(w*Ca/(Ca+d5))^3)*(Caer-Ca)-v3*Ca^2/(k3^2+Ca^2)

winf(Ca)=(d2*ip3/(ip3+d3))/(Ca+(d2*(ip3+d1)/(ip3+d3)))

#program end

@ total=200,trans=0,DT=.1,xlo=0,xhi=200,ylo=0,yhi=1

@ maxstore=1000000,bounds=10000

@ xplot=x,yplot=Ca0

done

# A forcing term can be added if you want

# capp = i1*(heav(mod(t,period))*heav(duty*period-mod(t,period)))

Figure 8.12A,B. The following file is interesting because although there are discrete
release sites, one parameter set essentially results in continuous Ca2+ wave propagation
seen in Figure 8.12A while another results in discrete release and saltatory propagation
as seen in Figure 8.12B. To replicate the discrete release and saltatory propagation seen
in Figure 8.12B, set taur=0.01 and total=0.5. To replicate the continous wave of Figure
8.12A set taur=1 and total=2.0. Use the 2DArray option in XPPAUT to view the results.

# Fire-diffuse-fire model simulation

# time in s

# space in um

# d in um^2/s

# parameters (here for continuous wave)
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param d=30,dx=0.2,sigma=5,taur=1,taud=10000000,cth=0.1

#the initial condition, equation and a function

c[0..100](0)=0

s[0..20](0)=1.0

s[21..100](0)=0

#global 1 c0-cth {s0=1}

global 1 c10-cth {s10=1}

global 1 c20-cth {s20=1}

global 1 c30-cth {s30=1}

global 1 c40-cth {s40=1}

global 1 c50-cth {s50=1}

global 1 c60-cth {s60=1}

global 1 c70-cth {s70=1}

global 1 c80-cth {s80=1}

global 1 c90-cth {s90=1}

global 1 c100-cth {s100=1}

dc0/dt = sigma*heav(s0)/2/taur-c0/taud+d*(c1-c0)/dx^2

dc[1..99]/dt = sigma*heav(s[j])/taur-c[j]/taud+d*(c[j-1]-2*c[j]+c[j+1])/dx^2

dc100/dt = sigma*heav(s100)/2/taur-c100/taud+d*(c99-c100)/dx^2

ds[0..100]/dt = -heav(s[j])/taur

aux logc[0..100] = c[j]

#numerical parameters (total for continuous wave)

@ total=2,trans=0,dt=0.0001,xlo=0,xhi=2000,ylo=0,yhi=1

@ maxstore=1000000,bounds=10000

@ xplot=x,yplot=Ca10

done

Figure 9.10. This file incorporates an active delay into the equation.

# Discrete time lag oscillator

p p=4, b=.5, tau=2.5

dx/dt = 1/(1+delay(x,tau)^p) - b*x

x(0)=1.1

@ delay=10

done

Figure 11.3. This file shows the basic two-state stochastic model.

# Example two state channel simulation

# parameters

params kp=1.5, km=0.5, tau=1000

#initial condition

po(0)=0.5

#stochastic variable

markov n 2
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{0}{kp}

{km}{0}

#differential equation

po’=-(po-n)/tau

aux n=n

#numerical parameters

@ total=100,trans=0,DT=.001,xlo=0,xhi=100,ylo=-0.1,yhi=1.1

@ maxstore=1000000,bounds=10000

@ xplot=t,yplot=n

#@ njmp=100

done

Figure 11.9. This files introduces Wiener variables.

#weiner variables

wiener w[0..99]

#differential equations

x[0..99]’=w[j]

mean = sum(0,99)of(shift(x0,i’))/100

aux mean = mean

aux var = sum(0,99)of((shift(x0,i’)-mean)^2)/100

aux w0 = w0

#numerical parameters

@ total=1000,trans=0,DT=0.1,xlo=0,xhi=1000,ylo=-100,yhi=100

@ maxstore=1000000,bounds=10000

@ xplot=t,yplot=x

@ njmp=1

done

Figure 11.11A. The next two files are used to explore the differences between twenty
states and two states in a Markov process. Notice that the rows and columns of the tran-
sition probability matrix follow the XPPAUT convention and are transposed relative
to (11.5). Diagonal entries are not used by XPPAUT.

#parameters

params kp=0.5, km=0.5

params c=2, gl=0.5, gch=1.0, vl=-70, vch=20

#initial condition

v(0)=0

#stochastic variable

markov n 2

{0}{kp}

{km}{0}

#differential equation

v’=(-gl*(v-vl)-gch*n*(v-vch))/c
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aux n=n

#numerical parameters

@ total=100,trans=0 ,DT=.001,xlo=0,xhi=100,ylo=-80,yhi=0

@ maxstore=1000000,bounds=10000

done

Figure 11.11C. This is the twenty–state Markov process. Again, the transition
probability matrix follows the XPPAUT convention and is transposed relative to
(11.13).

#parameters

params kp=0.5, km=0.5

params c=2, gl=0.5, gch=1.0, vl=-70, vch=20

#initial condition

v(0)=0

#stochastic variable

markov n 21

{0}{20*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{km}{0}{19*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{2*km}{0}{18*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{3*km}{0}{17*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{4*km}{0}{16*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{5*km}{0}{15*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{6*km}{0}{14*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{7*km}{0}{13*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{8*km}{0}{12*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{9*km}{0}{11*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{10*km}{0}{10*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{11*km}{0}{9*kp}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{12*km}{0}{8*kp}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{13*km}{0}{7*kp}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{14*km}{0}{6*kp}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{15*km}{0}{5*kp}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{16*km}{0}{4*kp}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{17*km}{0}{3*kp}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{18*km}{0}{2*kp}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{19*km}{0}{kp}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{20*km}{0}

#differential equation

v’=(-gl*(v-vl)-gch*n/20*(v-vch))/c

aux n=n

#numerical parameters

@ total=100,trans=0 ,DT=.001,xlo=0,xhi=100,ylo=-80,yhi=0

@ maxstore=1000000,bounds=10000



450 C: Numerical Algorithms

done

Figure 11.14. This file incorporates stochastic dynamics into the differential equations
for the Morris–Lecar model.

# Deterministic Morris-Lecar model follows Rinzel and Ermentrout’s

# chapter in Koch & Segev. Stochastic ion channel dynamics added

# using Langevin formulation.

# For stochastic excitability, oscillations, and bistability use

# iapp = 10, 12, 10 and v3 = 10, 10, 15

#initial conditions

v(0)=-40

w(0)=1

#weiner variable

wiener b

#parameters

params n=100

params v1=-1,v2=15,v3=10,v4=14.5,gca=1.33,phi=.333

params vk=-70,vl=-50,iapp=10,gk=2.0,gl=.5,om=1

minf(v)=.5*(1+tanh((v-v1)/v2))

# The 0.05 is a modification needed to lift w nullcline

# so that stochastic excitability can be realized

ninf(v)=.5*(1+tanh((v-v3)/v4))+0.05

lamn(v)= phi*cosh((v-v3)/(2*v4))

ica=gca*minf(v)*(v-100)

#differential equations

v’= (iapp+gl*(vl-v)+gk*w*(vk-v)-ica)*om

w’= (lamn(v)*(ninf(v)-w))*om+sqrt(lamn(v)*((1-2*ninf(v))*w+ninf(v))/n)*b

aux I_ca=ica

#numerical parameters

@ total=500,trans=0,DT=.01,xlo=0,xhi=500,ylo=-60,yhi=50

@ maxstore=1000000,bounds=10000

@ xplot=t,yplot=v

done
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mechanochemical model, 338–339
polymerization ratchet, 321, 362–364
power stroke, 362, 369, 374
Smoluchowski model, 333–334
stall force, 368

molecular switch, 11–18
closed state, 11
open state, 11

Monte Carlo method, 290–291, 302
Morris–Lecar model, 22, 34–44, 124–135,

163
excitability, 43
network, 143, 151, 155
phase plane analysis, 36–38
stability analysis, 38–42
stochastic, 311–316

ensemble density formulation, 313–314
Langevin formulation, 314–316

Nernst
-Planck equation, 177
equation, 25, 26, 28, 33
potential, 24–26, 180

neural
coincidence detector, 155, 156
computation, 153–159
integrate-and-fire model, 160–161

network, 161
mutual

excitation, 151
inhibition, 153

network
large–scale, 159–164
mean–field, 159–165
simple, 150–159

spiking
type I, 44–45
type II, 44–45, 155

synchrony, 142–144, 150–153
tuning curve, 157

neuromuscular junction, 90
neurotransmitter, 90, 140, 147
numerical

analysis, 10
integration, 15–18, 385–387
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Crank–Nicolson method, 344
Euler’s method, 342–344
forward Euler method, 15–17

stability, 17–18, 342–345

Ohm’s law, 27, 28
oscillator

activator–inhibitor, 242–243, 255
Bendixon’s negative criterion, 239
biochemical, 232–254
brusselator, 400
Goodwin, 233, 244–246, 258
negative–feedback, 244, 251, 277
neural, 143
neural network, 165
plasma membrane, 124–128
relaxation, 42, 404, 405
substrate–depletion, 240–241, 255
substrate–inhibition, 255
van der Pol, 404

Pancreatic beta cell, 5, 6, 54, 83–88, 101,
128–135

bursting, 130, 131, 134
patch clamp, 285–287
perturbation

analysis, 401–407
regular, 401–403
resonances, 403–405
singular, 405–407

phase
diagram, 18
plane, 22, 211, 278, 378

analysis, 36–38, 122, 388–390
isocline, 389
nullcline, 36–44, 112–115, 120–122, 132,

133, 163, 241–243, 389, 390, 393, 405,
406

trajectory, 389, 392
traveling wave, 191, 193
vector field, 36, 37

portrait, 17, 18, 36, 37, 41, 163, 164, 205,
266, 278, 393

space, 36
trajectory, 36, 37

pituitary gonadotroph, 101, 115–128
bursting, 126–128

point model, 21, 142
power series, 380–382, 394

Random walk, 302, 303
reaction

–advection–diffusion
equation, 177

–diffusion
equation, 176, 181, 184, 189–194
fertilization Ca2+ wave model, 207

–diffusion equation, 201, 202, 204, 206,
220

receptor
acetylcholine, 90, 91
AMPA, 148
GABA, 149
glutamate, 148
inositol trisphosphate (IP3), 91–94, 102,

116–128, 200–202, 209, 211
NMDA, 148
ryanodine, 102, 107–114, 214

reversal potential, 25, 26, 28, 148, 180
Reynolds number, 345
Routh-Hurwitz theorem, 244

Sarcoplasmic reticulum, 102
Smoluchowski equation, 334, 348, 361
squid giant axon, 4, 21, 22, 35
stability, 39, 40, 391

analysis, 38–42, 394
exchange of, 397
linear steady state, 390–392
nonlinear steady state, 392–394
saddle point, 192, 392

steady state, 16, 26, 39, 112, 132, 239, 266,
268, 383, 390, 394

stochastic
bistability, 313, 314, 357
excitability, 313, 314
ion channel, 285–316

noise, 298
simulating multiple, 291–298

mean first passage time, 334–335, 358, 362
membrane

current fluctuations, 298–307
voltage fluctuations, 307–311

ODEs, 302–307
oscillations, 313
probability distribution function, 306–307
process

boundary condition, 341–342, 370–371
conservation of probability, 288
dwell time, 289–290
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stochastic (continued)
exponential random variable, 292–293
master equation, 294
numerical method, 339–345, 371, 373
probability distribution function, 293
transition probability matrix, 288–290

synapse
excitatory, 148–150
fast, 148–150
inhibitory, 148–150, 152
slow, 148–150

synaptic
conductance, 158

excitatory, 155, 156
inhibitory, 153, 155

current
postsynaptic, 141

depression, 150
summation

sublinear, 150, 157
transmission, 140, 146–159

Taylor series, 39
thermodynamics, 347–350

enthalpy, 348
entropy, 347, 349–350

hydration, 337–338
free energy, 66, 73, 320, 322, 336, 347, 348,

350, 354–356, 362, 363
barrier, 350
diagram, 320

time scale, 41
analysis, 77–97
asymptotic analysis, 77, 82–83
fast and slow variables, 77–97, 114, 131
nondimensionalization, 82–88, 94–97,

118–128
quasi–steady–state approximation, 83, 97,

111
rapid equilibrium approximation, 77–82,

89, 91
rapid equilibrium assumption, 69, 236

transport
passive, 54–65

transporter
adenine nucleotide, 73, 74
bacteriorhodopsin, 73, 75
cycles, 73–75
electrogenic, 68
GLUT (glucose), 53–66, 73, 74, 83–88, 290

P-type ATPase, 73, 74
sodium/glucose cotransporter, 65–70, 73
sodium/potassium ATPase, 67
stoichiometry, 67, 68, 71
symmetric, 64

traveling wave, 189–194
solution, 190–192
traveling front, 204–208
traveling pulse, 208–209

Tyson et al. model, 253, 254

Variable substitution, 15
vector

manipulation, 379–380
voltage clamp, 22, 31–34, 181, 298, 299, 301

holding potential, 33

Wiener process, 302–304
Wilson–Cowan model, 161

Xenopus laevis
egg, 200–202

division, 276–278
oocyte, 6, 7, 208–209

XPPAUT, 18, 410
basic commands, 422
bifurcation, 427–431
brownian ratchet, 434
continuation, 427–431
direction fields, 423
fixed point, 423–426
fixed points command summary, 426–427
flashing ratchet, 436–438
initial conditions, setting, 418
integrating, 414
main window, 413
method of lines, 432–433
nullcline, 423–426
ODE file, 411, 412
parameters, setting, 418–419
phase plane, 414
phase plane command summary, 426–427
phase plane shortcuts, 414–415
plotting, 414
printing, 416–417
saving and restoring, 420–421
sodium channel, 434–436
stochastic equations, 434–438
viewing data, 419–420
windows, 412


