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Inequalities of Hermite-Hadamard Type

S. S. Dragomir1,2

Abstract. Some inequalities of Hermite-Hadamard type for λ-convex func-
tions defined on convex subsets in real or complex linear spaces are given. Ap-
plications for norm inequalities are provided as well.
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1. Introduction

We recall here some concepts of convexity that are well known in the
literature.

Let I be an interval in R.

Definition 1.1 ([38]). We say that f : I → R is a Godunova-Levin
function or that f belongs to the class Q (I) if f is non-negative and for
all x, y ∈ I and t ∈ (0, 1) we have

f (tx+ (1− t) y) ≤ 1

t
f (x) +

1

1− t
f (y) . (1)
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Some further properties of this class of functions can be found in [28],
[29], [31], [44], [47] and [48]. Among others, it has been noted that non-
negative monotone and non-negative convex functions belong to this class
of functions.

The above concept can be extended for functions f : C ⊆ X → [0,∞)
where C is a convex subset of the real or complex linear space X and
inequality (1) is satisfied for any vectors x, y ∈ C and t ∈ (0, 1) . If
the function f : C ⊆ X → R is non-negative and convex, then is of
Godunova-Levin type.

Definition 1.2 ([31]). We say that a function f : I → R belongs to the
class P (I) if it is nonnegative and for all x, y ∈ I and t ∈ [0, 1] we have

f (tx+ (1− t) y) ≤ f (x) + f (y) . (2)

Obviously Q (I) contains P (I) and for applications it is important to
note that also P (I) contain all nonnegative monotone, convex and quasi
convex functions, i. e. nonnegative functions satisfying

f (tx+ (1− t) y) ≤ max {f (x) , f (y)} (3)

for all x, y ∈ I and t ∈ [0, 1] .
For some results on P -functions see [31] and [45] while for quasi convex

functions, the reader can consult [30].
If f : C ⊆ X → [0,∞), where C is a convex subset of the real or

complex linear space X, then we say that it is of P -type (or quasi-convex)
if the inequality (2) (or (3)) holds true for x, y ∈ C and t ∈ [0, 1] .

Definition 1.3 ([7]). Let s be a real number, s ∈ (0, 1]. A function f :
[0,∞) → [0,∞) is said to be s-convex (in the second sense) or Breckner
s-convex if

f (tx+ (1− t) y) ≤ tsf (x) + (1− t)s f (y)

for all x, y ∈ [0,∞) and t ∈ [0, 1] .

For some properties of this class of functions see [1], [2], [7], [8], [26],
[27], [39], [41] and [50].

The concept of Breckner s-convexity can be similarly extended for
functions defined on convex subsets of linear spaces.

It is well known that if (X, ‖·‖) is a normed linear space, then the
function f (x) = ‖x‖p , p ≥ 1 is convex on X.
Utilising the elementary inequality (a+ b)s ≤ as + bs that holds for

any a, b ≥ 0 and s ∈ (0, 1], we have for the function g (x) = ‖x‖s that
g (tx+ (1− t) y) = ‖tx+ (1− t) y‖s ≤ (t ‖x‖+ (1− t) ‖y‖)s

≤ (t ‖x‖)s + [(1− t) ‖y‖]s
= tsg (x) + (1− t)s g (y)
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for any x, y ∈ X and t ∈ [0, 1] , which shows that g is Breckner s-convex
on X.

In order to unify the above concepts for functions of real variable, S.
Varošanec introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in R, (0, 1) ⊆ J and functions h and
f are real non-negative functions defined in J and I, respectively.

Definition 1.4 ([53]). Let h : J → [0,∞) with h not identical to 0. We
say that f : I → [0,∞) is an h-convex function if for all x, y ∈ I we have

f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y) (4)

for all t ∈ (0, 1) .

For some results concerning this class of functions see [53], [6], [42],
[51], [49] and [52].

This concept can be extended for functions defined on convex subsets
of linear spaces in the same way as above by replacing the interval I with
the corresponding convex subset C of the linear space X.

We can introduce now another class of functions.

Definition 1.5. We say that the function f : C ⊆ X → [0,∞) is of
s-Godunova-Levin type, with s ∈ [0, 1] , if

f (tx+ (1− t) y) ≤ 1

ts
f (x) +

1

(1− t)s
f (y) , (5)

for all t ∈ (0, 1) and x, y ∈ C.

We observe that for s = 0 we obtain the class of P -functions while for
s = 1 we obtain the class of Godunova-Levin. If we denote by Qs (C)
the class of s-Godunova-Levin functions defined on C, then we obviously
have

P (C) = Q0 (C) ⊆ Qs1 (C) ⊆ Qs2 (C) ⊆ Q1 (C) = Q (C)

for 0 ≤ s1 ≤ s2 ≤ 1.
For different inequalities related to these classes of functions, see [1]-[4],

[6], [9]-[37], [40]-[42] and [45]-[52].
A function h : J → R is said to be supermultiplicative if

h (ts) ≥ h (t)h (s) for any t, s ∈ J. (6)

If inequality (6) is reversed, then h is said to be submultiplicative. If the
equality holds in (6) then h is said to be a multiplicative function on J .

In [53] it has been noted that if h : [0,∞) → [0,∞) with h (t) =
(x+ c)p−1 , then for c = 0 the function h is multiplicative. If c ≥ 1, then
for p ∈ (0, 1) the function h is supermultiplicative and for p > 1 the
function is submultiplicative.
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We observe that, if h and g are nonnegative and supermultiplicative,
so is their product. In particular, if h is supermultiplicative then its
product with a power function �r (t) = tr is also supermultiplicative.

We can prove now the following generalization of the Hermite-Hadamard
inequality for h-convex functions defined on convex subsets of linear
spaces.

Theorem 1.1. Assume that the function f : C ⊆ X → [0,∞) is an
h-convex function with h ∈ L [0, 1] . Let y, x ∈ C with y 
= x and assume
that the mapping [0, 1] � t �→ f [(1− t) x+ ty] is Lebesgue integrable on
[0, 1] . Then

1

2h
(
1
2

)f (
x+ y

2

)
≤

∫ 1

0

f [(1− t) x+ ty] dt < [f (x) + f (y)]

∫ 1

0

h (t) dt.

(7)

Proof. By the h-convexity of f we have

f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y) (8)

for any t ∈ [0, 1] .
Integrating (8) on [0, 1] over t, we get∫ 1

0

f (tx+ (1− t) y) dt ≤ f (x)

∫ 1

0

h (t) dt+ f (y)

∫ 1

0

h (1− t) dt

and since
∫ 1

0
h (t) dt =

∫ 1

0
h (1− t) dt, we get the second part of (7).

From the h-convexity of f we have

f

(
z + w

2

)
≤ h

(
1

2

)
[f (z) + f (w)] (9)

for any z, w ∈ C.
If we take in (9) z = tx+ (1− t) y and w = (1− t) x+ ty, then we get

f

(
x+ y

2

)
≤ h

(
1

2

)
[f (tx+ (1− t) y) + f ((1− t) x+ ty)] (10)

for any t ∈ [0, 1] .
Integrating (10) on [0, 1] over t and taking into account that∫ 1

0

f (tx+ (1− t) y) dt =

∫ 1

0

f ((1− t) x+ ty) dt

we get the first inequality in (7). �

Remark 1.1. If f : I → [0,∞) is an h-convex function on an interval
I of real numbers with h ∈ L [0, 1] and f ∈ L [a, b] with a, b ∈ I, a < b,
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then from (7) we get the Hermite-Hadamard type inequality obtained by
Sarikaya et al. in [49]

1

2h
(
1
2

)f (
a+ b

2

)
≤

∫ b

a

f (u) du ≤ [f (a) + f (b)]

∫ 1

0

h (t) dt.

If we write (7) for h (t) = t, then we get the classical Hermite-Hadamard
inequality for convex functions.

If we write (7) for the case of P -type functions f : C → [0,∞), i.e.,
h (t) = 1, t ∈ [0, 1] , then we get the inequality

1

2
f

(
x+ y

2

)
≤

∫ 1

0

f [(1− t) x+ ty] dt ≤ f (x) + f (y) , (11)

that has been obtained for functions of a real variable in [31].
If f is Breckner s-convex on C, for s ∈ (0, 1) , then by taking h (t) = ts

in (7) we get

2s−1f

(
x+ y

2

)
≤

∫ 1

0

f [(1− t) x+ ty] dt ≤ f (x) + f (y)

s+ 1
, (12)

that was obtained for functions of a real variable in [26].
Since the function g (x) = ‖x‖s is Breckner s-convex on on the normed

linear space X, s ∈ (0, 1) , then for any x, y ∈ X we have

1

2
‖x+ y‖s ≤

∫ 1

0

‖(1− t) x+ ty‖s dt ≤ ‖x‖s + ‖x‖s
s+ 1

. (13)

If f : C → [0,∞) is of s-Godunova-Levin type, with s ∈ [0, 1), then

1

2s+1
f

(
x+ y

2

)
≤

∫ 1

0

f [(1− t) x+ ty] dt ≤ f (x) + f (y)

1− s
. (14)

We notice that for s = 1 the first inequality in (14) still holds, i.e.

1

4
f

(
x+ y

2

)
≤

∫ 1

0

f [(1− t) x+ ty] dt. (15)

The case for functions of real variables was obtained for the first time in
[31].

2. λ-Convex Functions

We start with the following definition:

Definition 2.1. Let λ : [0,∞) → [0,∞) be a function with the property
that λ (t) > 0 for all t > 0. A mapping f : C → R defined on convex
subset C of a linear space X is called λ-convex on C if

f

(
αx+ βy

α + β

)
≤ λ (α) f (x) + λ (β) f (y)

λ (α + β)
(16)
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for all α, β ≥ 0 with α + β > 0 and x, y ∈ C.

We observe that if f : C → R is λ-convex on C, then f is h-convex on

C with h (t) = λ(t)
λ(1)

, t ∈ [0, 1] .

If f : C → [0,∞) is h-convex function with h supermultiplicative on
[0,∞) , then f is λ-convex with λ = h.

Indeed, if α, β ≥ 0 with α + β > 0 and x, y ∈ C then

f

(
αx+ βy

α + β

)
≤ h

(
α

α + β

)
f (x) + h

(
β

α + β

)
f (y)

≤ h (α) f (x) + h (β) f (y)

h (α + β)
.

The following proposition contain some properties of λ-convex func-
tions.

Proposition 2.1. Let f : C → R be a λ-convex function on C.
(i) If λ (0) > 0, then we have f (x) ≥ 0 for all x ∈ C;
(ii) If there exists x0 ∈ C so that f (x0) > 0, then

λ (α + β) ≤ λ (α) + λ (β)

for all α, β > 0, i.e. the mapping λ is subadditive on (0,∞) .
(iii) If there exists x0, y0 ∈ C with f (x0) > 0 and f (y0) < 0, then

λ (α + β) = λ (α) + λ (β)

for all α, β > 0, i.e. the mapping λ is additive on (0,∞) .

Proof. (i) For every β > 0 and x, y ∈ C we can state

f

(
0x+ βy

0 + β

)
≤ λ (0) f (x) + λ (β) f (y)

λ (β)

from where we get

f (y) ≤ λ (0)

λ (β)
f (x) + f (y)

and since λ (0) > 0 we get that f (x) ≥ 0 for all x ∈ C.
(ii) For all α, β > 0 we have

f

(
αx0 + βx0

α + β

)
≤ λ (α) f (x0) + λ (β) f (x0)

λ (α + β)

from where we get

f (x0) ≤ λ (α) + λ (β)

λ (α + β)
f (x0)

and since f (x0) > 0, then we get that λ (α + β) ≤ λ (α) + λ (β) for all
α, β > 0.
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(iii) If we write the inequality for y0 we also have

f (y0) ≤ λ (α) + λ (β)

λ (α + β)
f (y0)

and since f (y0) < 0 we get that

λ (α + β) ≥ λ (α) + λ (β)

for all α, β > 0. �
We have the following result providing many examples of subadditive

functions λ : [0,∞) → [0,∞) .

Theorem 2.1. Let h (z) =
∑∞

n=0 anz
n a power series with nonnegative

coefficients an ≥ 0 for all n ∈ N and convergent on the open disk D (0, R)
with R > 0 or R = ∞. If r ∈ (0, R) then the function λr : [0,∞) → [0,∞)
given by

λr (t) := ln

[
h (r)

h (r exp (−t))

]
(17)

is nonnegative, increasing and subadditive on [0,∞) .

Proof. We use the Čebyšev inequality for synchronous (the same mono-
tonicity) sequences (ci)i∈N , (bi)i∈N and nonnegative weights (pi)i∈N , namely

n∑
i=0

pi

n∑
i=0

picibi ≥
n∑

i=0

pici

n∑
i=0

pibi, (18)

for any n ∈ N.
Let t, s ∈ (0, 1) and define the sequences ci := ti, bi := si. These

sequences are decreasing and if we apply Čebyšev’s inequality for these
sequences and the weights pi := air

i ≥ 0 we get
n∑

i=0

air
i

n∑
i=0

ai (rts)
i ≥

n∑
i=0

ai (rt)
i

n∑
i=0

ai (rs)
i (19)

for any n ∈ N.
Since the series

∞∑
i=0

air
i,

∞∑
i=0

ai (rts)
i ,

∞∑
i=0

ai (rt)
i and

∞∑
i=0

ai (rs)
i

are convergent, then by letting n → ∞ in (19) we get

h (r)h (rts) ≥ h (rt)h (rs)

which can be written as

h (r)

h (rts)
≤ h (r)

h (rt)
· h (r)

h (rs)

for any t, s ∈ (0, 1) .
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Let α, β ≥ 0 with α + β > 0. Then

λr (α + β) = ln

[
h (r)

h (r exp (−α− β))

]
= ln

[
h (r)

h (r exp (−α) exp (−β))

]
(20)

= ln

[
h (r)

h (r exp (−α))
· h (r)

h (r exp (−β))

]

= ln

[
h (r)

h (r exp (−α))

]
+ ln

[
h (r)

h (r exp (−β))

]
= λr (α) + λr (β) .

Since h (r) ≥ h (r exp (−t)) for any t ∈ [0,∞) we deduce that λr is
nonnegative and subadditive on [0,∞) .

Now, observe that λr is differentiable on (0,∞) and

λ′
r (t) : = − (ln [h (r exp (−t))])′ (21)

= −h′ (r exp (−t)) (r exp (−t))′

h (r exp (−t))

=
r exp (−t)h′ (r exp (−t))

h (r exp (−t))
≥ 0

for t ∈ (0,∞) , where

h′ (z) =
∞∑
n=1

nanz
n−1.

This proves the monotonicity of λr. �

We have the following fundamental examples of power series with pos-
itive coefficients

h (z) =
∞∑
n=0

zn =
1

1− z
, z ∈ D (0, 1) (22)

h (z) =
∞∑
n=0

1

n!
zn = exp (z) z ∈ C,

h (z) =
∞∑
n=0

1

(2n)!
z2n = cosh z, z ∈ C;

h (z) =
∞∑
n=0

1

(2n+ 1)!
z2n+1 = sinh z, z ∈ C;

h (z) =
∞∑
n=1

1

n
zn = ln

1

1− z
, z ∈ D (0, 1) .
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Other important examples of functions as power series representations
with positive coefficients are:

h (z) =
∞∑
n=1

1

2n− 1
z2n−1 =

1

2
ln

(
1 + z

1− z

)
, z ∈ D (0, 1) ; (23)

h (z) =
∞∑
n=0

Γ
(
n+ 1

2

)
√
π (2n+ 1)n!

z2n+1 = sin−1 (z) , z ∈ D (0, 1) ;

h (z) =
∞∑
n=1

1

2n− 1
z2n−1 = tanh−1 (z) , z ∈ D (0, 1) ;

h (z) =2 F1 (α, β, γ, z) =
∞∑
n=0

Γ (n+ α) Γ (n+ β) Γ (γ)

n!Γ (α) Γ (β) Γ (n+ γ)
zn, α, β, γ > 0,

z ∈ D (0, 1) ;

where Γ is Gamma function.

Remark 2.1. Now, if we take h (z) = 1
1−z

, z ∈ D (0, 1) , then

λr (t) = ln

[
1− r exp (−t)

1− r

]
(24)

is nonnegative, increasing and subadditive on [0,∞) for any r ∈ (0, 1) .
If we take h (z) = exp (z) , z ∈ C, then

λr (t) = r [1− exp (−t)] (25)

is nonnegative, increasing and subadditive on [0,∞) for any r > 0.

Corollary 2.1. Let h (z) =
∑∞

n=0 anz
n a power series with nonnegative

coefficients an ≥ 0 for all n ∈ N and convergent on the open disk D (0, R)
with R > 0 or R = ∞ and r ∈ (0, R) . For a mapping f : C → R defined
on convex subset C of a linear space X, the following statements are
equivalent:

(i) The function f is λr-convex with λr : [0,∞) → [0,∞) ,

λr (t) := ln

[
h (r)

h (r exp (−t))

]
;

(ii) We have the inequality[
h (r)

h (r exp (−α− β))

]f(αx+βy
α+β )

(26)

≤
[

h (r)

h (r exp (−α))

]f(x) [
h (r)

h (r exp (−β))

]f(y)
for any α, β ≥ 0 with α + β > 0 and x, y ∈ C.
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(iii) We have the inequality

[h (r exp (−α))]f(x) [h (r exp (−β))]f(y)

[h (r exp (−α− β))]f(
αx+βy
α+β )

(27)

≤ [h (r)]f(x)+f(y)−f(αx+βy
α+β )

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C.

Proof. We have

f

(
αx+ βy

α + β

)
λr (α + β) ≤ λr (α) f (x) + λr (β) f (y)

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C, is equivalent to

ln

[
h (r)

h (r exp (−α− β))

]f(αx+βy
α+β )

(28)

≤ ln

[
h (r)

h (r exp (−α))

]f(x)
+ ln

[
h (r)

h (r exp (−β))

]f(y)

= ln

{[
h (r)

h (r exp (−α))

]f(x) [
h (r)

h (r exp (−β))

]f(y)}

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C.
The inequality (28) is equivalent to (26) and the proof of the equiva-

lence ” (i) ⇔ (ii)” is concluded. The last part is obvious. �

Remark 2.2. We observe that, in the case when

λr (t) = r [1− exp (−t)] , t ≥ 0,

then the function f is λr-convex on convex subset C of a linear space X
iff

f

(
αx+ βy

α + β

)
≤ [1− exp (−α)] f (x) + [1− exp (−β)] f (y)

1− exp (−α− β)
(29)

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C.
We observe that this definition is independent of r > 0.
The inequality (29) is equivalent to

f

(
αx+ βy

α + β

)
≤ exp (β) [exp (α)− 1] f (x) + exp (α) [exp (β)− 1] f (y)

exp (α + β)− 1
(30)

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C.
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3. Hermite-Hadamard Type Inequalities

For an arbitrary mapping f : C ⊂ X → R where C is a convex subset
of the linear space X, we can define the mapping

gx,y : [0, 1] → R, gx,y (t) := f (tx+ (1− t) y) ,

where x, y are two distinct fixed elements in C.

Proposition 3.1. With the above assumptions, the following statements
are equivalent:

(i) f is λ-convex on C;
(ii) For every x, y ∈ C, the mapping gx,y is λ-convex on [0, 1] .

Proof. ”(i) ⇒ (ii)”. Let t1, t2 ∈ [0, 1] and α, β ≥ 0 with α+ β > 0. Then
we have

gx,y

(
αt1 + βt2
α + β

)
(31)

= f

[(
αt1 + βt2
α + β

)
x+

(
1− αt1 + βt2

α + β

)
y

]

= f

[
α (t1x+ (1− t1) y) + β (t2x+ (1− t2) y)

α + β

]

≤ λ (α) f (t1x+ (1− t1) y) + λ (β) f (t2x+ (1− t2) y)

λ (α + β)

=
λ (α) gx,y (t1) + λ (β) gx,y (t2)

λ (α + β)

and the implication is proved.
”(ii) ⇒ (i)”. Let x, y ∈ C and α, β ≥ 0 with α+ β > 0. Then we have

f

(
αx+ βy

α + β

)
= gx,y

(
α

α + β

)
= gx,y

(
α · 1 + β · 0

α + β

)

≤ λ (α) gx,y (1) + λ (β) gx,y (0)

λ (α + β)

=
λ (α) f (x) + λ (β) f (y)

λ (α + β)

and the implication is thus proved. �

We can introduce the following mapping kx,y : [0, 1] → R

kx,y (t) :=
1

2
[f (tx+ (1− t) y) + f ((1− t) x+ ty)]

for x, y ∈ C, x 
= y.
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Theorem 3.1. Let f : C → [0,∞) be a λ-convex function on C. Assume
that x, y ∈ C with x 
= y.

(i) We have the equality

kx,y (1− t) = kx,y (t) for all t ∈ [0, 1] ;

(ii) The mapping kx,y is λ-convex on [0, 1] ;
(iii) One has the inequalities

kx,y (t) ≤ λ (t) + λ (1− t)

λ (1)
· f (x) + f (y)

2
(32)

and
λ (2α)

2λ (α)
f

(
x+ y

2

)
≤ kx,y (t) (33)

for all t ∈ [0, 1] and α > 0.
(iv) Let y, x ∈ C with y 
= x and assume that the mappings [0, 1] � t �→

f [(1− t) x+ ty] and λ are Lebesgue integrable on [0, 1] , then we have the
Hermite-Hadamard type inequalities

λ (2α)

2λ (α)
f

(
x+ y

2

)
≤

∫ 1

0

f ((1− t) x+ ty) dt <
f (x) + f (y)

λ (1)

∫ 1

0

λ (t) dt

(34)
for any α > 0.

Proof. The statements (i) and (ii) are obvious.
(iii). By the λ-convexity of f we have:

f (tx+ (1− t) y) ≤ λ (t) f (x) + λ (1− t) f (y)

λ (1)

and

f ((1− t) x+ ty) ≤ λ (1− t) f (x) + λ (t) f (y)

λ (1)
,

which gives by addition inequality (32).
We also have

λ (α) f (z) + λ (α) f (u)

λ (2α)
≥ f

(
αz + αu

α + α

)
= f

(
z + u

2

)
i.e.,

λ (α)

λ (2α)
[f (z) + f (u)] ≥ f

(
z + u

2

)
for all z, u ∈ C.

If we write this inequality for z = tx+ (1− t) y and u = (1− t) x+ ty
we get

λ (α)

λ (2α)
[f (tx+ (1− t) y) + f ((1− t) x+ ty)] ≥ f

(
x+ y

2

)
,
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which is equivalent to (33).
Integrating (33) and (34) over t on [0, 1] we get

2λ (α)

λ (2α)
· f

(
x+ y

2

)
≤ 1

2

∫ 1

0

[f (tx+ (1− t) y) + f ((1− t) x+ ty)] dt

(35)

≤ f (x) + f (y)

2

∫ 1

0

λ (t) + λ (1− t)

λ (1)
dt.

Since ∫ 1

0

f (tx+ (1− t) y) dt =

∫ 1

0

f ((1− t) x+ ty) dt

and ∫ 1

0

λ (t) dt =

∫ 1

0

λ (1− t) dt

then by (35) we get the desired result (34). �
Remark 3.1. Since λ is subadditive, then

λ (2α)

2λ (α)
≤ 1 for any α > 0.

From (34) we have the best inequality

sup
α>0

{
λ (2α)

2λ (α)

}
f

(
x+ y

2

)
≤

∫ 1

0

f ((1− t) x+ ty) dt (36)

≤ f (x) + f (y)

λ (1)

∫ 1

0

λ (t) dt.

If the right limit

k = lim
s→0+

λ (s)

s
exists and is finite with k > 0, then

lim
α→0+

λ (2α)

2λ (α)
= lim

α→0+

(
λ(2α)
2α

)
(

λ(α)
α

) =
limα→0+

(
λ(2α)
2α

)
limα→0+

(
λ(α)
α

) =
k

k
= 1

and by (34) we get

f

(
x+ y

2

)
≤

∫ 1

0

f ((1− t) x+ ty) dt ≤ f (x) + f (y)

λ (1)

∫ 1

0

λ (t) dt. (37)

Corollary 3.1. Assume that the function f : C → [0,∞) is λr-convex
with λr : [0,∞) → [0,∞) ,

λr (t) := ln

[
h (r)

h (r exp (−t))

]
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and h is as in Corollary 2.1.
If y, x ∈ C with y 
= x and the mapping [0, 1] � t �→ f [(1− t) x+ ty]

is Lebesgue integrable on [0, 1] , then we have the Hermite-Hadamard type
inequalities

f

(
x+ y

2

)
≤

∫ 1

0

f ((1− t) x+ ty) dt (38)

≤ f (x) + f (y)

ln
[

h(r)
h(re−1)

] ∫ 1

0

ln

[
h (r)

h (r exp (−t))

]
dt.

Proof. We know that λr is differentiable on (0,∞) and

λ′
r (t) :=

r exp (−t)h′ (r exp (−t))

h (r exp (−t))

for t ∈ (0,∞) , where

h′ (z) =
∞∑
n=1

nanz
n−1.

Since λr (0) = 0, then

k = lim
s→0+

λ (s)

s
= λ′

+ (0) =
rh′ (r)
h (r)

> 0 for r ∈ (0, R)

and by (37) we get (38). �

Furthermore, we observe that the following elementary inequality holds:

(α + β)p ≥ (≤)αp + βp (39)

for any α, β ≥ 0 and p ≥ 1 (0 < p < 1) .
Indeed, if we consider the function fp : [0,∞) → R, fp (t) = (t+ 1)p−tp

we have f ′
p (t) = p

[
(t+ 1)p−1 − tp−1

]
. Observe that for p > 1 and t > 0

we have that f ′
p (t) > 0 showing that fp is strictly increasing on the

interval [0,∞). Now for t = α
β
(β > 0, α ≥ 0) we have fp (t) > fp (0)

giving that
(

α
β
+ 1

)p

−
(

α
β

)p

> 1, i.e., the desired inequality (39).

For p ∈ (0, 1) we have fp strictly decreasing on [0,∞) which proves the
second case in (39).

If we consider the power function λ̂q (t) = tq with q ∈ (0, 1) , then λ̂q

is subadditive and by (34) we have

1

21−q
f

(
x+ y

2

)
≤

∫ 1

0

f ((1− t) x+ ty) dt ≤ f (x) + f (y)

q + 1
, (40)

therefore we recapture the inequality (12) that was obtained from (7).
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For q ≥ 1 and if we consider the function λ̌q (t) = 1
tq
, then for any

t, s > 0 we have

λ̌q (t+ s) =
1

(t+ s)q
≤ 1

ts + sq
≤ 1

ts
+

1

sq
= λ̌q (t) + λ̌q (s)

which shows that λ̌q is subadditive.

If f : C → [0,∞) is a λ̌q-convex function on C, i.e.

f

(
αx+ βy

α + β

)
≤ α−qf (x) + β−qf (y)

(α + β)−q (41)

for all α, β ≥ 0 with α + β > 0 and x, y ∈ C, where q ≥ 1, then we
observe that the inequality (41) is equivalent to

f

(
αx+ βy

α + β

)
≤

(
α + β

αβ

)q

[βqf (x) + αqf (y)] (42)

for all α, β ≥ 0 with α + β > 0 and x, y ∈ C, where q ≥ 1.
Since λ̌q is not integrable on [0, 1] we cannot apply the second inequal-

ity from (34). However, from the first inequality we get

1

2q+1
f

(
x+ y

2

)
≤

∫ 1

0

f ((1− t) x+ ty) dt (43)

provided that f is λ̌q-convex and the integral
∫ 1

0
f ((1− t) x+ ty) dt exists

for some x, y ∈ C.
Moreover, if we assume that f : C → [0,∞) is a λ-convex function on

C with λ (t) = 1− exp (−t) , t ≥ 0, i.e.

f

(
αx+ βy

α + β

)
≤ exp (β) [exp (α)− 1] f (x) + exp (α) [exp (β)− 1] f (y)

exp (α + β)− 1
(44)

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C, then by (37) we have

f

(
x+ y

2

)
≤

∫ 1

0

f ((1− t) x+ ty) dt ≤ f (x) + f (y)

1− e−1

∫ 1

0

[1− exp (−t)] dt,

that is equivalent to

f

(
x+ y

2

)
≤

∫ 1

0

f ((1− t) x+ ty) dt ≤ f (x) + f (y)

e− 1
, (45)

provided the integral
∫ 1

0
f ((1− t) x+ ty) dt exists for some x, y ∈ C.

4. Inequalities for Double Integrals

We have the following result:
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Theorem 4.1. Let f : C → [0,∞) be a λ-convex function on C. Let
y, x ∈ C with y 
= x and assume that the mappings [0, 1] � t �→ f [(1− t) x+ ty]
and λ are Lebesgue integrable on [0, 1] , then for 0 ≤ a < b we have the
Hermite-Hadamard type inequalities

λ (2η)

2λ (η)
f

(
x+ y

2

)
(b− a)2 (46)

≤ 1

2

∫ b

a

∫ b

a

[
f

(
αx+ βy

α + β

)
dαdβ + f

(
βx+ αy

α + β

)]
dαdβ

≤ [f (x) + f (y)]

∫ b

a

∫ b

a

λ (α)

λ (α + β)
dαdβ

for any η > 0.

Proof. By the λ-convexity of f we have

f

(
αx+ βy

α + β

)
≤ λ (α) f (x) + λ (β) f (y)

λ (α + β)

and

f

(
βx+ αy

α + β

)
≤ λ (β) f (x) + λ (α) f (y)

λ (α + β)

for all α, β ≥ 0 with α + β > 0.
By adding these inequalities we obtain

f

(
αx+ βy

α + β

)
+ f

(
βx+ αy

α + β

)
≤ λ (α) + λ (β)

λ (α + β)
[f (x) + f (y)] (47)

for all α, β ≥ 0 with α + β > 0.
Since the mappings [0, 1] � t �→ f [(1− t) x+ ty] and λ are Lebesgue

integrable on [0, 1] , then the integrals∫ b

a

∫ b

a

f

(
αx+ βy

α + β

)
dαdβ and

∫ b

a

∫ b

a

f

(
βx+ αy

α + β

)
dαdβ

exist and by integrating the inequality (47) on the square [a, b]2 we get∫ b

a

∫ b

a

f

(
αx+ βy

α + β

)
dαdβ +

∫ b

a

∫ b

a

f

(
βx+ αy

α + β

)
dαdβ

≤ [f (x) + f (y)]

∫ b

a

∫ b

a

λ (α) + λ (β)

λ (α + β)
dαdβ

= 2 [f (x) + f (y)]

∫ b

a

∫ b

a

λ (α)

λ (α + β)
dαdβ

and the second inequality in (46) is proved.
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We know from the proof of Theorem 3.1 that

λ (η)

λ (2η)
[f (z) + f (u)] ≥ f

(
z + u

2

)
for all z, u ∈ C and η > 0.

Taking

z =
αx+ βy

α + β
and u =

βx+ αy

α + β

we get

λ (η)

λ (2η)

[
f

(
αx+ βy

α + β

)
+ f

(
βx+ αy

α + β

)]
≥ f

(
x+ y

2

)
(48)

for all α, β ≥ 0 with α + β > 0 and η > 0.
Integrating inequality (48) on the square [a, b]2 we get the first part of

(46). �

Remark 4.1. If we write inequality (46) for f : C → [0,∞) a λ̌q-convex
function on C, then we get the inequality

1

2q+1
f

(
x+ y

2

)
(b− a)2 (49)

≤ 1

2

∫ b

a

∫ b

a

[
f

(
αx+ βy

α + β

)
dαdβ + f

(
βx+ αy

α + β

)]
dαdβ

≤ [f (x) + f (y)]

∫ b

a

∫ b

a

(
α + β

α

)q

dαdβ,

provided that the mapping [0, 1] � t �→ f [(1− t) x+ ty] is Lebesgue inte-
grable on [0, 1] .

For q = 1 we have∫ b

a

∫ b

a

α + β

α
dβdα =

∫ b

a

∫ b

a

(
1 +

β

α

)
dβdα

= (b− a)2 + (ln b− ln a)
b2 − a2

2

= (b− a)2
(
1 +

ln b− ln a

b− a
· a+ b

2

)

= (b− a)2
[
1 +

A (a, b)

L (a, b)

]
where

L (a, b) :=
b− a

ln b− ln a

is the logarithmic mean.
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Then from (49) we get

1

4
f

(
x+ y

2

)
(50)

≤ 1

2 (b− a)2

∫ b

a

∫ b

a

[
f

(
αx+ βy

α + β

)
dαdβ + f

(
βx+ αy

α + β

)]
dαdβ

≤ [f (x) + f (y)]

[
1 +

A (a, b)

L (a, b)

]
,

provided that f : C → [0,∞) is a λ̌1-convex function on C and the
mapping [0, 1] � t �→ f [(1− t) x+ ty] is Lebesgue integrable on [0, 1] .

For q = 2 we have∫ b

a

∫ b

a

(
α + β

α

)2

dβdα =

∫ b

a

∫ b

a

(
1 +

β

α

)2

dβdα

=

∫ b

a

∫ b

a

(
1 +

2β

α
+

β2

α2

)
dβdα

= (b− a)2
(
1 + 2

ln b− ln a

b− a
· a+ b

2
+

a2 + ab+ b2

3ab

)

=

(
2
ln b− ln a

b− a
· a+ b

2
+

a2 + 4ab+ b2

3ab

)

= 2 (b− a)2
[
1

3
+

2

3
· A (a, b)

G (a, b)
+

A (a, b)

L (a, b)

]
,

where G (a, b) :=
√
ab is the geometric mean.

Then from (49) we get

1

8
f

(
x+ y

2

)
(51)

≤ 1

2 (b− a)2

∫ b

a

∫ b

a

[
f

(
αx+ βy

α + β

)
dαdβ + f

(
βx+ αy

α + β

)]
dαdβ

≤ 2 [f (x) + f (y)]

[
1

3
+

2

3
· A (a, b)

G (a, b)
+

A (a, b)

L (a, b)

]
,

provided that f : C → [0,∞) is a λ̌2-convex function on C and the
mapping [0, 1] � t �→ f [(1− t) x+ ty] is Lebesgue integrable on [0, 1] .

Open Access: This article is distributed under the terms of the Cre-
ative Commons Attribution License (CC-BY 4.0) which permits any use,
distribution, and reproduction in any medium, provided the original au-
thor(s) and the source are credited.
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[52] M. Tunç, Ostrowski-type inequalities via h-convex functions with applications to
special means. J. Inequal. Appl. 2013, 2013:326.
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