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Abstract- One of the main obstacles to success of chemotherapy 

agents is the development of cancer resistance. Cancer multi-

drug resistance (MDR) is thought to arise from over-expression 

of efflux transporters on cancer cells’ plasma membranes. 

Recently, microparticles (MP) were found to play a major role 

in mediating the resistance to antineoplastic agents. 

Microparticles can confer MDR phenotype to cancer cells 

though 3 complimentary pathways: 1) Intercellular transfer of 

P-gp and MRP1; 2) Intercellular transfer of regulatory nucleic 

acids that ensure acquisition of MDR phenotype; and  3) 

Internal sequestration of anticancer drugs to reduce the 

amount of free active drug. Compounds that inhibit MP 

formation that are currently under investigation include 

calpain inhibitors, RhoA inhibitors, ROCK inhibitors, calcium 

channel blockers, pantethine, glutaminase inhibitors, some 

anti-platelet drugs and some lipid-lowering agents. This area of 

research requires further development to select, improve and 

test those compounds that show the most promise in providing 

safe and effective treatment against MDR. 
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I. INTRODUCTION 

Cancer kills millions of people worldwide every year. 
According to World Health Organization, cancer was a cause 
of death for 8.2 million people in 2012. Annual cancer rates 
are rising every year – from 14 million in 2012 to an 
estimated 22 million in 2030 [1]. 

One of the main obstacles to success of chemotherapy 
agents is the development of cancer resistance [2]. There are 
many mechanisms that contribute to cancer resistance, 
including mutated expression of drug targets [3], alterations 
in apoptosis and repair mechanisms [4], reduced drug 
uptake, increased drug efflux and enzymatic inactivation of 
drugs [5]. Furthermore, many cancer cells display resistance 
not only to a single chemotherapeutic agent, but also to a 
range of structurally unrelated compounds [6]. The 
phenomenon of resistance to several classes of unrelated 
agents is termed Multi-Drug Resistance (MDR). MDR is 
believed to be a contributing factor in 90% of treatment 
failures in patients with metastatic cancer [7]. 

Cancer multi-drug resistance is thought to arise from 
over-expression of efflux transporters on cancer cells’ 

plasma membranes [8]. When a cancer cell has a large 
number of efflux transporters on its surface, 
chemotherapeutic agents get pumped out of the cell before 
they can harm the cell [9]. Thus, the malignant cells are 
rendered resistant to chemotherapeutic agents. Most studied 
efflux transporters essential in the resistance mechanism are 
those of ABC protein super family: P- glycoprotein (P-gp) 
and the Multidrug Resistance- Associated Protein 1 (MRP-1) 
[10]. 

P-gp is a 170-kDa phosphoglycoprotein which derives 
energy from hydrolysis of an ATP molecule in order to efflux 
chemical compounds from the inside of a cell [11].  Its 
physiological function is to protect both individual cells and 
the organism as a whole from toxic elements [12, 13]. P-gp 
substrates are usually hydrophobic organic compounds of 
large molecular weight (>400g/mol) that carry a positive 
charge at regular human blood pH [14]. Typical anticancer 
drugs that are P-gp substrates are anthracyclines, vinca 
alkaloids and taxanes [15]. 

MRP1 is a 190 kDa transporter protein that is very 
similar to P-gp in its function. Even though there is a 
significant overlap in MRP1 and P-gp substrates, MRP1 is 
also able to efflux many other kinds of substrates including 
hydrophilic compounds, glutathione, glucuronide conjugates 
organic anions and heavy metals [16]. Therefore, MRP1 
confers resistance to a broad range of other antineoplastic 
agents such as methotrexate, etoposide, irinotecan, 
mitoxantron, antiandrogens and even tyrosine kinase 
inhibitors [17, 18]. 

There are two types of tumor resistance: intrinsic and 
acquired. Intrinsic resistance is usually seen in tumors rising 
from organs that naturally have numerous efflux pumps such 
as the intestines, kidneys, adrenal glands, liver, pancreas, 
brain and lungs [19, 20]. These types of cancers are usually 
resistant even to the first round of chemotherapy [21]. 
However, other cancers were shown to be able to acquire the 
resistant phenotype after exposure to a single 
chemotherapeutic agent [22]. Statistically, more than 50% of 
cancer patients end up with the acquired MDR cancers and 
experience cancer relapse [23]. Five year survival for 
patients with ovarian cancer is about 30% despite surgical 
interventions and potent chemotherapy because of the high 
incidence of acquired MDR [24]. 
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Since the discovery of the strong link between MDR and 
efflux transporters, the main strategy in circumventing MDR 
was the development of efflux pump inhibitors. However, 
this method has not yet proven viable in a clinical setting 
because of dose- limiting toxicities and failure to 
demonstrate survival advantage. Inhibition of efflux 
transporters led to greater blood brain barrier permeability 
and caused severe neurologic side effects [25]. Furthermore, 
past research involved only either P-gp inhibitors or MRP1 
inhibitors. Given the substrate redundancy of P-gp and 
MRP1 transporters, if one is inhibited, the other one may still 
confer resistance to cancer cells. Therefore, current drug 
discovery focuses on identifying and studying compounds 
that inhibit both P-gp and MRP1 simultaneously. No such 
compounds have yet been discovered. A potent P-gp and 
MRP inhibitor, VX-710, showed positive results in vitro 
[26]. However, during Phase II clinical trial only 7 out of 36 
patients treated with VX-710 had even a partial response 
[27]. Currently researchers are investigating other strategies 
that would overcome MDR with greater efficacy. 

In the past, scientists thought that cancer cells were able 
to acquire the resistant phenotype and over-express efflux 
transporters only through various genetic and epigenetic 
changes [28, 29]. Modulation of P-gp and MRP1 expression 
was reported to be a consequence of increased mRNA 
stability, gene transcription and gene amplification [30, 31], 
as well as upregulation of oncogenes and downregulation of 
tumor suppressor genes [32]. However, recent research 
proposed and substantiated the idea of non-genetic 
intercellular transfer of proteins mediated by so called, 
microparticles [33]. 

Microparticles (MPs) are small vesicles that are released 
from the surface of cells by the process of outward 
membrane budding [34]. They usually express 
phosphatidylserine (PS) on their outer layer and are about 0.1 
to 1 micrometers in diameter [35]. In the past they were 
considered insignificant blebs that did not have any 
important function in the body [36]. However, according to 
the recent research, MPs play an essential role in many 
physiological functions including intercellular 
communication, inflammation, coagulation, vascular 
homeostasis and oncogenic transformation [37, 38]. MPs 
levels are elevated in many disease states including 
atherosclerosis, cerebral malaria, HIV, sepsis, different 
autoimmune disorders and cancer [39], suggesting their role 
in pathogenesis and a possible therapeutic target. 

MPs act as cellular messengers transferring their content 
short and long distance to recipient cells. MPs can carry 
diverse types of cargo including cellular proteins (such as 
efflux transporters), second messengers, cytokines, integrins, 
transcription factors, and genetic material from their cells of 
origin [40]. 

MPs can confer MDR phenotype to cancer cells though 3 
complimentary pathways: 1) Intercellular transfer of P-gp 
and MRP1; 2) Intercellular transfer of regulatory nucleic 
acids that ensure acquisition of MDR phenotype; and 3) 
Internal sequestration of anticancer drugs to reduce the 
amount of free active drug. 

Intercellular transfer of P-gp through MPs was first 
reported by Bebawy et al [41]. They observed drug sensitive 
leukemia cells (CCRF-CEM) acquired functional P-gp after 
exposure to MPs shed from drug resistant leukemia cells in 
as little as 4 hours. Likewise, functional MRP1 was detected 
after 12 hours of co-culture of MPs and drug-sensitive 
leukemia cells in vitro [42]. An in vivo experiment done on 
murine tumor xenograph models (MCF-7) also demonstrated 
ability of MPs to transfer MDR to recipient cells. P-gp loaded 
MPs were injected subcutaneously near the tumors. In about 
24 hours, P-gp could be detected in the recipient tumor cells, 
and acquired MDR phenotype remained stable for at least 
two weeks [43]. 

Acquisition and incorporation of MDR phenotype is also 
mediated by MPs transfer of regulatory nucleic acids. 
Especially of interest are microRNAs (miRNAs). MiRNAs 
are a class of endogenous single stranded non-coding 
regulatory RNAs that are typically 19-25 nucleotides in 
length [44]. They modulate activity of specific mRNA 
targets and regulate protein synthesis [45]. MiRNAs have 
been shown to significantly affect cellular mechanisms 
including proliferation, metabolism, apoptosis and resistance 
to chemotherapeutic agents [46].  Changes in miRNA 
expression were linked to drug resistance of some common 
antineoplastics including topotecan, doxorubicin, cisplatin, 
and methotrexate [47, 48]. Furthermore, recent studies had 
identified specific miRNAs directly associated with MDR in 
cancer. For example, miR-27a and miR-451 expression were 
shown to activate MDR1/P-gp expression in resistant human 
ovarian cells [49]. Similarly, overexpression of miR-21 and 
downregulation of the PDCD4 (tumor suppressor protein) 
were demonstrated to upregulate the number of P-gp 
expressing breast cancer cells and induce chemoresistance 
[50]. In addition, miR-297 was also recently found to play a 
role in development of MDR by modulating MRP expression 
in colorectal tumors [51]. These studies suggest that 
miRNAs transferred by MPs from drug resistant to drug 
sensitive cells are able to transform transcriptional landscape 
and ensure acquisition of MDR phenotype in the recipient 
cells by regulating mRNA expression. 

Lastly, MPs are also able to sequester drugs within their 
intravesicular space, which leads to reduced amount of free 
flowing drug available for anti-tumor action. After MPs were 
exposed to daunorubicin and doxorubicin, the remaining free 
drug concentrations were measured using fluorescence 
analysis and degrees of sequestration were calculated. For 
drug sensitive MPs degrees of sequestration were 22 and 38 
a.u. for daunorubicin and doxorubicin respectively, and for 
drug resistant MPs - 5 and 4 a.u., respectively. Furthermore, 
using imaging techniques authors found that drug resistant 
MPs carried some P-gp transporters in inside-out orientation 
on their surface. Thus, P-gp acted as influx pumps and helped 
MPs sequester antineoplastic agents [52]. 

Recent studies have demonstrated that MPs are elevated 
in many cancer types including breast [53], gastric [54] and 
pancreatic [55]. MPs were found to play a critical role not 
only in cancer drug resistance but in many other aspects of 
tumor aggressiveness including development of metastases 
(by transfer of miRNA and matrix degrading proteinases) 
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[56], angiogenesis (by the dissemination of VEGF) [57, 58], 
improved cellular survival (by the removal of cytosolic 
caspase 3) [59] and avoidance of immune surveillance (via 
expression of LMP-1 and Fas ligand) [60]. Therefore, a 
growing body of research is focusing on inhibiting cancer 
microparticle formation [61]. 

This review will focus on elucidation of MPs biogenesis 
and enumeration of novel inhibitors of MPs formation that 
may become effective treatments against cancer multidrug 
resistance. 

 

II.  FORMATION OF MICROPARTICLES  

Microparticles are produced by an unusual mechanism 
that does not require the help of endoplasmic reticulum and 
Golgi apparatus [62]. Currently, it is thought that 
microparticles are released from a cell upon cellular 
activation or apoptosis after disruption of phospholipid 
asymmetry when PS (that is usually found on the surface of 
MPs) is redistributed from the inner leaflet of the plasma 
membrane to the outer leaflet [63]. Cellular activation-
induced MP release is associated with the activity of calpains 
[64], while apoptosis-induced MP formation is regulated by 
the Rho family of small GTPases [65]. 

Calpains are calcium-activated cysteine proteinases that 
are involved in proteolysis, cytoskeletal remodeling, cell 
motility and apoptosis [66]. There are currently 14 known 
human calpain isoform genes [67]. The two well-studied 
members are mu-calpain and m-calpain which differ in their 
catalytic subunit called calpain-1 and calpain-2, respectively 
[68]. When a cell is activated, intracellular calcium 
concentration rises and activates calpain, which hydrolyses 
the actin binding proteins and disrupts the cytoskeleton 
immediately under the phospholipid bilayer. These structural 
changes facilitate microparticle membrane budding [69]. 

The Rho family of small GTPases, including RhoA, Rac 
and Cdc42, regulates actin cytoskeleton organization and 
dynamics [70]. These molecules play a significant role in 
formation of stress fibers and their signaling pathways affect 
gene expression and cell survival [71]. Recently, they were 
also shown to be key regulators of microparticle formation 
and shedding [72]. RhoA, Rac and Cdc42 are mutated or 
overexpressed in many kinds of resistant cancers, suggesting 
their involvement in MDR [73]. The downstream signaling 
pathway of Rho A that induces MP formation includes Rho-
associated coiled-coil containing protein kinase (ROCK), 
LIM kinase (LIMK) and Cofilin [74]. During apoptosis when 
cytoskeletal rearrangements occur, activated caspases 
(enzymes associated with apoptosis) cleave ROCK which 
fuels cellular transformation and production of MPs [74]. 

 

III.  INHIBITION OF MICROPARTICLES FORMATION 

A. Is it safe to inhibit microparticles? 

Currently, not everything is known about MP functions in 
the body, therefore it is difficult to assess safety of 
microparticle inhibitors in clinical studies. There is a very 
rare autosomal human disease, called Scott Syndrome, which 
is characterized by lack of MP formation and impaired 
thrombin generation resulting in severe bleeding. However, 
bleeding was not reported to be a side effect in animal 
models that were given microparticle inhibitors [75]. 
Moreover, MPs were shown to induce generation of both 
thrombin [76] and plasmin [77]. Therefore, it is not clear if 
inhibition of MPs leads to coagulation imbalances or not. In 
any way, all MP inhibitors available to date do not suppress 
MP formation completely; and therefore, should not cause 
serious side effects. 

      Since MPs play a central role in MDR development 
and in other manifestations of cancer aggressiveness, much 
research has been done to identify compounds that may 
inhibit or modulate MP biogenesis or release from tumor 
cells. These include calpain inhibitors, RhoA inhibitors, 
ROCK inhibitors, calcium channel blockers, pantethine, 
glutaminase inhibitors, some anti-platelet drugs and some 
lipid-lowering agents. 

B.   Calpain Inhibitors 

Calpains are required for MP formation. Increased 
expression of calpain was observed in several cancer types 
including schwannomas, meningiomas, renal cell carcinomas 
and colorectal adenocarcinomas [78, 79, 80]. It has been 
speculated that inhibiting calpain may prevent microparticle 
release into the bloodstream and reduce the incidence of 
acquired MDR. There are several studies showing that 
calpain inhibitors can decrease the amount of circulating 
MPs and increase sensitivity of different tumors to multiple 
structurally unrelated anti-cancer drugs. 

Calpastatin is an endogenous inhibitor of calpains [81]. 
Following calcium influx, calpastatin is released into the 
cytosol and reversibly inhibits up to four molecules of 
calpain at once by blocking calpain’s active sites [82]. 
Calpastatin serves as a structural and functional template in 
the development of novel calpain inhibitors. Most calpain 
inhibitors available to date target the thiol- containing active 
site of the calpain. They display limited selectivity to 
calpains and are often vulnerable to rapid degradation by 
proteinases in vivo [83]. Structure-activity relationship 
(SAR) studies have fixed pharmacokinetic properties of 
calpain inhibitors but they were not successful in refining 
their selectivity [84]. Other calpain inhibitors that target 
calpain’s allosteric site have demonstrated higher selectivity 
to calpain and are currently under investigation [85]. 

One calpain inhibitor, MDL-28170, has been shown to 
significantly reduce MP release from activated platelets [86]. 
Similarly, another calpain inhibitor, Calpeptin, has been 
shown to reduce the formation of MPs from activated 
platelets by about 70% [87]. Moreover, these two calpain 
inhibitors, Calpeptin and MDL28170, were shown to 
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increase sensitivity of HER2 positive breast cancer cells to 
Trastuzumab, a HER2 monoclonal antibody. Skbr3 cells 
were spread on fibronectin in the presence of Trastuzumab 
alone as a control or along with each calpain inhibitor. 
Inclusion of each inhibitor increased cells sensitivity to 
Trastuzumab by more than 15% (P<0.01) [88]. 

In another experiment on human melanoma cells 
allosteric calpain inhibitor, PD150606, combined with a 
proteasome inhibitor, had significantly reduced viability of 
cisplatin resistant tumor cells [89]. Furthermore, effect of 
calpain inhibitors, PD- 150606 and ALLM, were studied in 
drug resistant human breast adenocarcinoma cells. Both 
inhibitors caused about 20% drop in MP production. 
Interestingly, PD-150606 worked only on activated cells, 
whereas ALLM showed an inhibitory effect on both 
stimulated and unstimulated cancer cells [90]. 

 

C. Inhibitors of Rho-A, Rac, Cdc42 and their  downstream 

effectors 

Rho-A, Rac, Cdc42 and their downstream effectors 
(LIMK and ROCK) are also essential players in MP 
biogenesis. Blocking or limiting their function prevents 
production of MPs and reduces cancer resistance and 
aggressiveness. Knockout of Rho-A expression using 
adenovirus-mediated RNA interference inhibited 
microparticle biogenesis in cervical carcinoma HeLa cells 
[72]. Similar experiments in lung [91], colorectal [92] and 
ovarian [93] cancer cells showed that Rho-A knockout 
decreased proliferation, migration and metastasis of cancer 
cells, all functions that are associated with MPs. Likewise, 
AZA1 which inhibits both Rac1 and Cdc42 but not RhoA 
was found to suppress prostate cell migration and growth 
[94]. 

     A recent study on breast cancer cell lines revealed that 
microparticle-mediated acquisition of MDR is closely linked 
to enhanced metastatic capacity of the recipient cancer cells. 
As shown in the experiment, when highly metastatic, drug 
resistant cells were co-cultured with lowly metastatic drug-
sensitive cells, the latter ones acquired MDR and an 
increased metastatic capacity [95]. Putting these studies 
together reveals that MPs are the source of both metastasis 
and cancer resistance; and therefore, these compounds that 
suppress metastasis are possibly also suppressing 
microparticles and MDR. 

    Inhibitions of RhoA down-stream effectors, LIMK and 
ROCK, were also successful in reducing MP production. 
There is only one study showing that blockage of LIMK 
expression by LIMK si-RNA inhibits microparticle 
formation [72]. However, ROCK inhibitors have been 
extensively studied for more than a decade. They have been 
proven effective treatments for multiple disease states such 
as glaucoma [96], ocular hypertension [97], erectile 
dysfunction [98] and advanced solid tumors [99]. In cancer, 
ROCK inhibitors were found to suppress tumor invasion, 
metastasis and MDR [100]. 

Inhibition of ROCK with Y-27632 compound reduced 
MP formation in human breast cancer cells by 25% [90]. 
Another study showed that Y-27632 almost completely 
inhibited MP formation in various cancerous cell lines, 
including HeLa cervical cancer cells, MDAMB231 breast 
cancer cells, and U87 brain tumor cells [101]. 

Fasudil, initially approved in Japan for treatment of 
cerebral vasospasms and pulmonary hypertension [102], is 
the the only clinically available ROCK inhibitor. It has been 
shown to suppress cancer migration, metastasis [103] and 
angiogenesis [104]. Moreover, fasudil and another 
Rho/ROCK inhibitor Y27632 were proven to enhance 
efficacy of cisplatin. Treatment with cisplatin at 100 microM 
together with fasudil or Y-27632 showed a synergistic 
growth inhibitory effect in the cisplatin-resistant cell line. On 
the other hand, in a cisplatin-sensitive cell line, cisplatin in 
combination with ROCK inhibitors had similar effects as 
cisplatin alone. An explanation for the difference in response 
lies in the understanding of microparticle-mediated drug 
resistance [105]. ROCK inhibitors increase cisplatin efficacy 
in cisplatin resistant cell lines because they inhibit 
microparticle formation, suppressing the transfer of drug 
resistance and malignant miRNAs between the cells. 

One of the newest ROCK inhibitors with improved 
selectivity and potency, AT13148, which has shown 
promising results in animal studies, has recently entered 
Phase I clinical trial for advanced solid tumors [99]. 

 

D. Calcium Channel Blockers (CCBs) 

Increase in intracellular calcium concentration initiates 
calpain activity and results in MPs formation. Therefore, it 
has been hypothesized that CCBs are able to decrease 
amount of MPs in body circulation. 

In one experiment, diabetes patients were given 
benidipine, a dihydropyridine CCB, for 6 months. At the end 
of therapy, their MP levels were found to be significantly 
lower than in the beginning [106, 75]. Likewise, in another 
study, the CCB nifedipine was shown to reduce platelet MPs 
by about 50 % in patients with transient ischemic attacks 
[107, 75]. 

However, in an in-vitro experiment, verapamil, a non-
dihydropyridine CCB, did not reduce the number of MPs 
released from drug-resistant breast cancer cells. On the 
contrary, verapamil showed a significant increase in MP 
count relative to the control (by about 45%) [90]. 

     There seems to be a controversy regarding the effect 
of CCBs on microparticle formation. Perhaps, there is an 
unknown mechanism that differentiates between 
dihydropyridines and non-dihydropyridines influence on 
MPs. Additionally, verapamil was already studied in clinical 
trials as a P-gp inhibitor and failed to slow the progression of 
cancer or decrease mortality rates because doses high enough 
to possibly convey a survival advantage caused intolerable 
cardiac side effects [108]. Further research is needed to 
identify those CCBs that can effectively decrease MP levels 
and not cause cardiac or other complications. 
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E. Pantethine 

     Pantethine is a dimer of a pantothenic acid linked by a 
disulfide cystamine. It has been shown to inhibit the early 
step of inflammation-coagulation cascade by blocking 
translocation of phosphatidylserine (PS) [109]. Since 
movement of PS is important in MP biogenesis, pantethine 
was studied and was found to decrease MPs both in vitro and 
in vivo. 

After incubation of 1 mM of pantethine with mouse brain 
endothelial cells, the concentration of MPs was decreased by 
51% [110, 75]. A similar experiment with pantethine and 
human umbilical vein endothelial cells showed MP 
production reduced by 24% compared to controls. In vivo, 
malaria-infected mice that were treated with 30mg injections 
of pantethine for 7 days had significantly lower levels of 
circulating MPs (by about 50%) compared to control mice 
that were also infected with malaria but were not treated with 
pantethine. Interestingly, pantethine did not reduce MP 
levels in mice not infected with malaria suggesting that 
pantethine acts selectively on disease-promoting MPs and 
does not have a negative influence on normal function of 
MPs in the body [39]. The effect of pantethine on MP 
formation was also recently studied in tumor cells. Pantethine 
was incubated with activated drug resistant human breast 
adenocarcinoma cells for 25 hours, and MP release was 
quantified by flow cytometry. Pantethine reduced MP 
formation by 24% relative to control [90]. 

 

F.  Anti-platelet drugs – Ticlopidine and Clopidogrel 

 Ticlopidine and clopidogrel are anti-platelet agents used 
for prevention of thrombosis after a heart attack, stroke, stent 
placement or other similar conditions. These disease states 
are associated with high MP levels [111]. Ticlopidine 
(200mg/day) was shown to reduce MP levels in diabetic 
patients by 20 to 30%. Nevertheless, even after use of 
ticlopidine the numbers of MPs were still elevated compared 
to healthy individuals [111, 75]. 

The effect of clopidogrel on MP formation was assessed 
in 26 subjects with stable coronary artery disease. Amount of 
circulating MPs was inversely correlated with clopidogrel C-
max and AUC [112]. In addition, in another recent study 
clopidogrel was found to decrease accumulation of MPs at 
the site of thrombosis and reduce tumor growth and 
metastasis in mice with pancreatic cancer [113]. 

 

G.  Lipid-lowering agents – Statins and EPA/DHA 

Statins are drugs of choice for prevention of 
cardiovascular events. Statins inhibit cholesterol biosynthesis 
in the liver, and they also have many pleiotropic effects on 
vascular function including anti-inflammatory and anti-
thrombotic effects [114]. Recently, rosuvastatin was reported 
to influence the number of circulating microparticles. One 
week after rosuvastatin discontinuation, microparticle levels 

significantly increased suggesting its role in suppression of 
microparticle formation [115]. However, evidence regarding 
the effect of other statins on MP production is mixed. 
Atorvastatin decreased platelet derived MPs but increased 
endothelial MPs [116], while simvastatin had no effect on 
any microparticles in one study [117], but was found to 
increase endothelial MPs in another study [118]. 

EPA/DHA is also used as a lipid-lowering agent and 
prophylaxis against cardiovascular events. In a 12-week 
study, EPA/DHA daily use was associated with significantly 
reduced levels of platelet-derived MPs [119]. Furthermore, 
when EPA was combined with pitavastatin for a 6 month 
period in diabetic patients; reduction in platelet-derived MPs 
was significantly greater than EPA alone (50% vs 20%) 
[120]. 

 

H. Glutaminase inhibitors - BPTES and 968 compounds 

Metabolism in cancer cells is slightly different from 
metabolism in healthy human cells. Healthy human cells 
usually convert pyruvate into citrate in mitochondria to make 
ATP. Cancer cells, on the other hand, primarily convert 
pyruvate into lactic acid, and increase glutamine metabolism 
to produce alpha-ketoglutarate for entrance into citric acid 
cycle [121]. 

Inhibition of glutaminase, an enzyme that catalyzes 
glutamine transformation into glutamate, was found to inhibit 
microparticle formation. In an experiment showing that 
glutaminase activity is linked with microparticle biogenesis, 
MDAMB23 breast cancer cells were treated with 
glutaminase allosteric inhibitors, BPTES (bis-2-(5-
phenylacetamido-1,2,4-thiadiazol-2-yl) ethylsulfide) and 968 
(bromo- dibenzophenathridine). After a two day period, 
immunofluorescence analysis showed that untreated cells had 
5 times more MP budding than BPTES and 968 treated cells 
[72]. Thus, BPTES and 968 compounds warrant further 
research as potential clinically useful inhibitors of 
microparticle formation. 

 

IV.   CONCLUSION 

Overcoming cancer MDR is not an easy task. 
Microparticle’s ability to confer MDR by sequestering 
chemotherapeutic agents and transferring P-gp, MRP1 and 
miRNA from one cell to another make MPs an excellent 
target for circumvention of acquired cancer resistance. Many 
compounds that inhibit MP formation have been identified 
and are currently under investigation. This area of research 
requires further development to select, improve and test those 
compounds that show the most promise in providing safe and 
effective treatment against MDR. 
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