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1. Introduction

It is firmly established that deficiencies of essential macro- and 
micronutrients are associated with the development of different 
diseases [1-3].  However, the pathological consequences of a 
nutrient deficiency often lack a clear or direct relationship with 
the functions of that nutrient in the body.  Magnesium deficiency 
(MgD) is an excellent example of this scenario [4].

MgD can be caused by numerous factors including decreased 
dietary Mg intake, stress [5], high levels of alcohol consumption 
[6], and inherited renal magnesium transport disorders [7] that 
are associated with excessive Mg loss.  Additionally, endocrine 
diseases (diabetes mellitus [8], metabolic syndrome [9]) and 
administration of some medical agents (diuretics, proton-pump 
inhibitors, cardiac glycosides, epidermal growth factor receptor 
inhibitors, calcineurin inhibitors [10], aminoglycoside antibiotics, 
amphotericin B, cisplatin, pentamidine, and cyclosporine [11]) 
can also result in MgD.  Several review articles have been pub-
lished on Mg metabolism and related disorders [12, 13].

Prior literature, particularly studies using animal models, 
suggests a correlation between MgD and the development of 
oxidative stress (OS) [14].  However, Mg is not an acknowledged 
functional component of the antioxidant defence system (AOS).  

Therefore, mechanisms of OS associated with a lack of Mg are 
still a matter of debate.  Furthermore, the role of Mg in oxidative 
damage to molecules, cells and tissues in the pathogenesis associ-
ated with MgD remains unclear.  Here, we present a critical anal-
ysis of the relationship between OS and MgD and a mechanism 
explaining the interaction between them.

2. Origin and measurement of oxidative stress

Sies H. defined OS in the body as “an imbalance between oxi-
dants and antioxidants in favour of the oxidants, potentially lead-
ing to damage” [15].  The above-mentioned oxidants are ‘reactive 
species’ (RS) (reactive oxygen (ROS)/nitrogen/chlorine) [16]; 
some RS are free radicals.  Many RS play a critical physiological 
role, and their production is essential for the normal life cycle of 
an organism.  However, overproduction of RS can cause oxidative 
damage to molecules, cells and tissues [17], which contributes to 
the development of many diseases [18-20].

OS can be assessed by measuring an imbalance between RS 
oxidant production and the functional activity of the AOS.  Both 
the production and the damaging activity of RS are complicated 
and multifaceted.  Additionally, there are many components in 
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ABSTRACT

Magnesium deficiency (MgD) has been shown to impact numerous biological processes at the cellular and 
molecular levels.  In the present review, we discuss the relationship between MgD and oxidative stress (OS).  
MgD is accompanied by increased levels of OS markers such as lipid, protein and DNA oxidative modifica-
tion products.  Additionally, a relationship was detected between MgD and a weakened antioxidant defence.  
Different mechanisms associated with MgD are involved in the development and maintenance of OS.  These 
mechanisms include systemic reactions such as inflammation and endothelial dysfunction, as well as chang-
es at the cellular level, such as mitochondrial dysfunction and excessive fatty acid production.
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1 http://www.niehs.nih.gov/research/resources/databases/bosstudy/index.cfm

the AOS interact to regulate OS [21].  Therefore, several different 
markers are used to measure the production of RS oxidants and 
the ability of the AOS to detect OS [16, 22].  Many authors specu-
late that an imbalance between pro- and anti-oxidants results in an 
increased level of oxidative degradation of biomolecule products, 
such as lipid peroxidation products.  Furthermore, an increased 
concentration of oxidative damage markers can also indicate OS 
[23].  A wide range of available analytical approaches allows the 
quantification of lipid peroxidation and free radical-based DNA 
or protein damage [24].  However, many of these techniques lack 
sensitivity or specificity, particularly when estimating oxidant 
stress levels in vivo.  Currently, there is no gold standard for 
measuring OS, i.e., a specific marker whose level is consistently 
affected by OS of different origins [25].  A recently started multi-
investigator project (the Biomarkers of Oxidative Stress Study 
(BOSS)) aims provide such a marker1; however, currently none 
of the existing methods for OS detection can be considered abso-
lutely reliable.

3. Oxidative stress and magnesium deficiency

Early clinical studies have provided evidence of the impact of the 
OS associated with MgD on human pathology.  The gold standard 
for verifying MgD in clinical studies is the parenteral Mg toler-
ance test (low dose Mg load test) [26, 27].  Unfortunately, this 
test was rarely used in published studies; thus, there is a lack of 
reliable clinical data that provides evidence for the relationship 
between MgD and OS.

Diabetic patients only displayed an increased concentration 
of oxidised LDL in association with a reduced level of serum Mg.  
Patients with normal serum Mg levels did not demonstrate this 
increase in oxidised LDL concentrations [28].  It has been shown 
that low dietary Mg intake is accompanied by poor DNA repair 
capacity [29] and increased genomic instability [30].

Barbagallo et al. established a strong, direct correlation be-
tween RBC Mg levels and GSH/GSSG concentration (circulating 
reduced/oxidized glutathione) (r = 0.84, P < 0.0001) [31].  In 
another study, a negative correlation between Mg levels and OS 
stress markers (plasma superoxide anions and malondialdehyde) 
was observed in groups of the population chronically exposed 
to stress [32].  Interestingly, no correlation between low Mg 
intake and antioxidant capacity has been found among Korean  
adults [33].

Animal studies were conducted to obtain biologically relevant 
evidence of causal relationships between MgD and OS.  Mg-
deficient feed is used to induce dietary MgD in animals.  It was 
demonstrated that the lipoprotein fractions (VLDL and LDL) 
from three-week old Mg-deficient rats were more susceptible to 
oxidative damage caused by CuSO4-induced oxidation than lipo-
protein fractions from control rats.  The triacylglycerol and alpha-
tocopherol levels in plasma were significantly higher, whereas the 
level of alpha-tocopherol in the VLDL + LDL fraction was signif-
icantly lower in the Mg-deficient group compared to the control 
group.  After exposing tissue homogenates to Fe-induced lipid 
peroxidation, the concentration of thiobarbituric acid-reactive 
substances was significantly higher in tissues from Mg-deficient 
rats than in those from control rats [34].

MgD was accompanied by a two-fold decrease in glutathione 
(GSH) concentration in RBCs [35].  In other types of cells, the 

overexpression of glutathione transferase has been suggested to 
be the cause of GSH depletion [36].  After six weeks, the MgD 
diet led to a significant decrease of both plasma and RBC Mg 
levels, followed by a marked increase in plasma malondialdehyde 
and a corresponding decrease in the total number of radical-trap-
ping antioxidant markers [37].  In another study, rats fed the MgD 
diet displayed an impaired redox capacity, marked by increased 
levels of thiobarbituric acid-reactive substances and oxysterols in 
the plasma as well as an increased susceptibility of RBC to free-
radical-induced haemolysis in vitro [38].  High levels of thiobar-
bituric acid-reactive substances in the aorta of rats fed the Mg 
deficient diet correlated with a significant reduction in the activity 
of superoxide dismutase and catalase as well as an increase in the 
net fractional rates of collagen synthesis [39].  In mice, hypomag-
nesaemia led to a decrease in GSH concentration and lowered 
the activity of superoxide dismutase, glutathione reductase, and 
glutathione S-transferase in RBCs.  However, catalase activity 
increased and the activity of glutathione peroxidise was not sig-
nificantly altered [40].  Boparai et al. found evidence for lipid 
peroxidation and protein oxidation in the plasma and liver of rats 
that received a low Mg diet [41].  Based on these findings, we in-
vestigated the effects of MgD on the intensity of protein oxidative 
damage.  Fifty adult, female Wistar rats with weights between 
200-250 g were divided into two groups.  One group received a 
low Mg diet (Mg content ≤ 15 mg/kg) and demineralized water 
for two months to induce hypomagnesaemia.  The other group 
was fed a basal control diet (Mg content ≈ 500 mg/kg) and water 
(with Mg content 20 mg/l) for an equal duration.  To evaluate the 
Mg concentration, a two ml sample of heparinized venous blood 
was collected every week from the sublingual vein while the rats 
were under isoflurane anaesthesia [42].  RBC and plasma Mg lev-
els were measured via a previously described colorimetric assay 
method in which Mg is stained using thiazole yellow [43].  After 
Mg concentration in rats fed the low Mg diet had decreased, the 
animals were treated with one of the following supplementations: 
Mg L-aspartate, Mg N-acetyltaurate, Mg chloride or Mg sulphate 
(50 mg of elementary Mg per kg body weight for 14 days).  Pro-
tein carbonyls (PC) concentration was assessed using the reaction 
of carbonyl groups with 2, 4-dinitrophenylhydrazine (DNPH) and 
measuring the resulting protein-bound 2, 4-dinitrophenylhydra-
zones.  The yellow product was quantified by spectrophotometry 
at 363 nm [44].  We then calculated the ratio between the concen-
trations of carbonyl products (mol/L) and total protein (g/L).  We 
found that the increased level of PC in rats fed the low Mg diet 
was partially or completely reversed by treatment with certain or-
ganic and inorganic Mg salts [45].

Some research teams have focused on understanding these 
mechanisms on the cellular level.  MgD promoted apoptosis in 
rat hepatocyte primary culture, which was accompanied by an 
accumulation of malondialdehyde and a decreased GSH concen-
tration [46].  N-acetylcysteine partially attenuated the apoptosis 
of human and rat hepatocytes induced by low extracellular Mg 
concentrations, but surprisingly, also increased both caspase-3 
activity and lipid peroxidation in hepatocytes exposed to physi-
ological Mg concentrations [47].  Two hours after exposure to 
low Mg, human umbilical vein endothelial cells (HUVEC) were 
more sensitive to the oxidant action of H2O2 and demonstrated an 
increased level of the DNA damage marker 8-hydroxy-deoxygua-
nine compared to controls cultured in physiologic concentrations 
of Mg [48].  Dickens et al. found enhanced free radical-induced 
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intracellular oxidation and cytotoxicity in bovine endothelial cells 
incubated in a low-Mg medium [49].

4. Mechanisms of oxidative stress caused by 
magnesium deficiency

MgD is believed to indirectly enhance oxidative damage of 
biomolecules by inducing a stress response (Figure 1).  It is pos-
sible that a decreased ratio of Mg to Ca stimulates catecholamine 
release from the adrenal glands.  However, catecholamines in-
crease the production of ROS.  This creates a vicious positive 
feedback cycle where, for example, elevated blood epinephrine 
levels result in a further reduction of the Mg concentration [50].  
Contrastingly, MgD leads to the activation of the rennin-angio-
tensin system that also induces OS [51].

Inflammation is the other important cause of the OS that re-
sults from MgD [52].  MgD stimulates the production of acute 
phase proteins (e.g., C-reactive protein) [53].  The decrease of 
extra- and intracellular Mg concentrations sensitizes immuno-
competent cells to proinflammatory stimuli.  Collectively, factors 
that would not normally cause an immune response lead to an 
oxidative burden in phagocytes and neutrophil activation in Mg-
deficient organisms.  Furthermore, low a blood Mg concentration 
directly stimulates phagocyte priming and results in oxidative 
burden [54], possibly due to the rise of intracellular Ca levels 
[55].  Excessive amounts of RS, created by NADPH oxidase and 
myeloperoxidase, enter into the space around the neutrophils and 
macrophages [55] and damage biomolecules, particularly compo-
nents of lipoproteins and the surrounding cells [56].  In contrast, 
Mg repletion therapy promotes an anti-inflammatory response 
and decreased levels of proinflammatory markers in initially Mg 
deficient rats [57, 58].

Another early marker of MgD is endothelial dysfunction [59].  
Under physiological conditions, the endothelium produces sig-
nalling molecules, which maintain the dynamic balance between 

thrombin formation and fibrinolysis.  These signalling molecules  
also control and inhibit excessive synthesis of proinflammatory 
cytokines [60].  The endothelial dysfunction linked to MgD has 
one important feature.  Endothelial dysfunction is frequently as-
sociated with reduced NO production in endotheliocytes [61].  
However, preclinical studies in animal and tissue models have 
demonstrated that MgD actually increased NO production in the 
endothelium and other cells via the activation of an inducible 
isoform of NO-synthase [62-65].  Elevated NO production can 
be a disadvantage because it is accompanied by a simultaneous 
increase of RS, such as superoxide [66].  Under these conditions, 
excessive NO does not cause vasodilation, but rather, reacts with 
superoxide to form peroxynitrite [67].  A potent vasoconstrictor, 
peroxynitrite easily causes oxidative damage to biomolecules 
and cellular structures [68, 69].  Mak et al. have shown that, in 
particular, excessive NO production is responsible for a decreased 
concentration of GSH in red blood cells [62].  Moreover, hyper-
production of NO can provoke the apoptosis of certain cell types 
[70].  Finally, endothelial dysfunction and a hyperactivated in-
flammatory response can potentiate each other [61].

Intracellular production of RS can be enhanced by impaired 
mitochondrial function.  MgD facilitates the uncoupling of oxida-
tive phosphorylation, which leads to electron loss in the electron 
transport chain [71].  Low Mg levels result in an accumulation of 
calcium in the cytosol [72, 73] that contributes to the uncoupling 
of oxidative phosphorylation as well as the stimulation of other 
peroxidation pathways [74-76].  An overproduction of peroxyni-
trite that also results from MgD further exacerbates mitochondrial 
dysfunction [77, 78].

Apart from the enhanced generation of ROS and free radicals, 
MgD also increases the amount of substrates that are available for 
radical oxidation.  MgD promotes hypertriglyceridemia, in which 
numerous, easily-oxidized lipoproteins enter the blood stream 
[79] and the activity of lipoprotein lipase is down-regulated [80].  
Additionally, MgD contributes to insulin resistance and the over-
production of contra-insulin hormones (epinephrine and cortisol) 
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Fig. 1 - Pathogenic relationship between magnesium deficiency and oxidative stress.
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[81, 82].  The key factors implicated in hyperlipidaemia are: the 
activation of lipolysis in fat tissue, the excessive release of free 
fatty acids, the stimulation of lipogenesis in the liver followed by 
the hyperproduction of triglyceride-rich atherogenic lipoproteins 
and the inhibition of HDL synthesis [34, 83-85].  In cellular mem-
branes, an increased ratio of Ca to Mg stimulates phospholipase 
A2 activity [86, 87], which is responsible for the mobilisation 
of unsaturated fatty acids (UFA) from phospholipids.  Free UFA 
as well as those bound to triglycerides and phospholipids can be 
easily oxidized by ROS to form lipid hydroperoxides.  These hy-
droperoxides can decompose to form new radicals, thus initiating 
branching chain reactions that lead to a self-sustaining peroxida-
tion process [88, 89].

5. Suggestions for clinical application

As Mg is suggested to be an important player in the pathogenesis 
of diseases [2-13, 90-93] and is associated with disturbed anti-
oxidant regulation [28, 31, 32, 37-40, 45, 48-50], estimation and 
correction of impaired magnesium status is highly recommended 
in MgD patients.

6. Conclusion

To summarise, MgD and OS are undoubtedly strongly linked 
together.  Moreover, several well-established and also several 
emerging mechanisms of OS in Mg deficient organisms were 
described.  Nevertheless, many aspects of the causal relation-
ship between MgD and OS still remain fragmented.  Therefore, 
further preclinical and clinical studies are necessary to clarify the 
mechanisms involved in relationship between MgD, OS and OS-
associated diseases.
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