GSTF Journal on Computing (JoC) Vol.4 No.3, October 2015

DOI 10.7603/s40601-014-0021-9

High-level simulation of concurrency operations in
microthreaded many-core architectures

Irfan Uddin

Received 16 Jun 2015 Accepted 01 Jul 2015

Abstract—Computer architects are always interested in ana-
lyzing the complex interactions amongst the dynamically allocated
resources. Generally a detailed simulator with a cycle-accurate
simulation of the execution time is used. However, the cycle-
accurate simulator can execute at the rate of 100K instructions
per second, divided over the number of simulated cores. This
means that the evaluation of a complex application with complex
concurrency interactions on contemporary multi-core machine
can be very slow. To perform efficient design space exploration we
present a co-simulation environment, where the detailed execution
of concurrency instructions in the pipeline of microthreaded
cores and the interactions amongst the hardware components are
abstracted. We present the evaluation of the high-level simulation
framework against the cycle-accurate simulation framework.
The results show that high-level simulator is faster and less
complicated than cycle-accurate simulator and has reasonable
accuracy.

Keywords—High-level simulation, many-core systems, concur-
rent systems.

I. INTRODUCTION

The detailed simulation of a complex MultiProcessor
System-on-Chip (MPSoC) in software increases the wall-clock
execution time of the simulator. This cost of wall-clock time
in the cycle-accurate simulation of many-core architectures
is becoming increasingly expensive in the future many-core
systems. As the modern interpretation of Moore’s law implies
that: The number of cores will double every next generation.
The number of cores in a system are scaling up to hundreds
or thousands, we believe that the detailed simulation of the
components in the core become less interesting. Instead, the
focus is shifting towards the overall behavior of the chip, where
the simulation of creation, communication and synchronization
of concurrency are more important.

In this article, we explore specifically the microthreaded
many-core architecture also known as the Microgrid [15], [17],
[14], [19] which implements the microthreading model [16]
in hardware. This requires special attention, because existing
simulation techniques do not yet account for the combined use
of multiple cores, data-flow scheduling and hardware multi-
threading. Every core in the Microgrid supports fine-grained
multi-threading and implements the concurrency management
of the model in its instruction set (ISA). There exists a cycle-
accurate simulator for the Microgrid, named as MGSim [20],
[26], [19], [25], [20]. It simulates all the low-level details
of the architecture and therefore becomes very slow in the
execution of large applications. The detailed simulation of the

DOI: 10.5176/2251-3043_4.3.337

architecture is not suitable for design space exploration [29]
and therefore a high-level simulator is desirable as a com-
plementing tool. The techniques presented in this paper for
scheduling, resource management and abstraction may be used
to simulate other many-core architectures e.g. Intel SCC,
Sun Sparc Tx, Tile64 etc. The high-level simulator of the
Microgrid is named as HLSim [34], [28], [33], [32], [31] and
is developed to make quick and reasonably accurate design
decisions in the evaluation of the architecture using multiple
runs of benchmarks which can consist of billion of instructions
execution.

The objective of HLSim is to evaluate applications and
make system-level decisions to the architecture and if nec-
essary these decisions can be validated using MGSim. The
applications used for the evaluation expose dynamic behavior
as they adapt to the resources available at run-time, in order to
improve efficiency in the architecture or application. HLSim
provides help to the designers of the Microgrid, in investigating
the implementation of operating system services to support the
dynamic adaptation, in particular dynamic resource allocations
and mappings.

The rest of the paper is organized as follows. We will give
a background to the Microgrid in section II. We present the
high-level simulation technique for the Microgrid in section III.
The high-level simulation of concurrency constructs is given
in in section IV and the evaluation of the framework against
MGSim is given in section V. The related work is presented
in section VI and the paper is concluded in section VII.

II. BACKGROUND

The Microgrid [15], [3], [13], [30] is a general-purpose,
many-core architecture that implements hardware multi-
threading using data-flow scheduling and a concurrency man-
agement protocol in hardware to create and synchronize
threads within and across the cores on chip. The suggested
concurrent programming model for this chip is based on
fork-join constructs, where each created thread can define
further concurrency tree hierarchically. This model is called
the microthreading model and is also applicable to current
multi-core architectures using a library of the concurrency
constructs called svp-p#l [35] built on top of pthreads. Our
work focus on the microthreaded architecture where each
core contains a single issue, in-order RISC pipeline with
an ISA similar to DEC/Alpha, and all cores are connected
to an on-chip distributed memory network [14], [4]. Each
core implements the concurrency constructs in its ISA and is

©The Author(s) 2015. This article is published with open access by the GSTF
108 Published online: 13 December 2015

GSTF Journal on Computing (JoC) Vol.4 No.3, October 2015

able to support hundreds of threads and their contexts, called
microthreads and tens of families (i.e. ordered collections of
indexed microthreads) simultaneously. The channels for the
communication and synchronization of the family introduced
in the microthreading model are implemented in registers
of the Microgrid. The registers allocated to a thread are
categorized as; globals, locals, shareds and dependents.

To program this architecture, we use a system-level lan-
guage called SL [18] which integrates the concurrency con-
structs of the microthreading model as language primitives. It
works as an intermediate language for high-level programming
languages (such as SAC [12]), a compiler [11] or with little
effort by the programmer.

III. HIGH-LEVEL SIMULATION

The high-level simulator for the Microgrid is implemented
in C++ using POSIX threads. We have introduced separation of
concerns between application and architecture models, mean-
ing that we have separate application and architecture models
and either can separately be modified in order to improve
performance. The application model simulates microthreads in
the microthreading model [16] on the host machine and the ar-
chitecture model simulates resources of the Microgrid. HLSim
is an implementation of a discrete-event simulation [22]. The
threads in the application model generates events to represent
the concurrency or the computation in the code. These events
are mapped to the architecture model which simulates the
cycles required by the events on the architecture and advances
the simulated time. The cycles represent the load on the
multi-processor based on per instruction timing weight. The
framework of HLSim consists of three parts.

e Application model: It is the microthreaded program
that executes on the host machine, but generates
events with the estimates for concurrency and block of
computational constructs. It provides fully functional
execution of the program and there are parameters that
can be changed for performance based on simulation
results e.g. place size, window size etc.

e Mapping function: The events generated by the ap-
plication model are stored in an ordered queue where
the top of the queue represent the event with the least
workload. This layer is responsible to pass timing
information to the architecture model and can be
changed implicitly with changing in the application
model.

e Architecture model: This layer simulates the hardware
of microthreaded many-core architecture. It provides
location of execution, simulated time, distribution of
threads on cores etc. to the application model. We
are using different models for the architecture model;
One-IPC HLSim, Signature-based HLSim, Cache-
based HLSim and Analytical-based HLSim.

The events for the concurrency constructs are blocking and
computational constructs are non-blocking. By blocking we
mean that the application model stops execution until notified
by the architecture model, and by non-blocking we mean
that the application model keeps sending events without any

acknowledgement until the next blocking event is generated
and blocked by the architecture model.

In order to evaluate the performance of an instruction
stream, we do not implement the instruction issue mechanism
(as in MGSim), rather we estimate the number of cycles re-
quired for the execution of the instruction stream and simulate
these cycles in the high-level simulator to demonstrate the
behavior of threads executing in the Microgrid [34], [28],
[33]. We estimate the performance using basic blocks in
every thread in the application model. In order to extract
concurrency constructs from the instruction stream, a basic
block is logically divided into two parts:

e Computational constructs: The part of the basic block
which consists of instructions that perform computa-
tion. These instructions are executed natively on the
host machine and the estimated number of instructions
in the basic block is sent in the form of events
to the architecture model. The estimated number of
instructions represent the number of cycles required
for their computation. The technique of estimating the
workload of instruction is given in [34], [33].

e Concurrency constructs: The part of the basic block
which does not perform any computation but takes
care of concurrency management known as concur-
rency constructs (i.e. allocate, create, sync, read from
shared, write to shared etc.). The time taken by
concurrency constructs are calculated based on the
dynamic state of the system. For example a sync event
will take time based on the number of cores where the
family is distributed. The time is estimated and then
mapped to the architecture model of HLSim which
advances the simulated time.

IV. HIGH-LEVEL SIMULATION OF CONCURRENCY
CONSTRUCTS

The concurrency constructs in microthreaded many-core
systems are explained in detail in [30]. In this section we
describe the latency of concurrency constructs simulated in
HLSim.

A. Allocation

The allocate message is sent from the parent core to the
group of cores where the family is delegated. The message
travels to all cores in the group to see if it can allocate at least
one thread table entry, one family table entry and 31 registers
in each core. When all the cores succeed the message goes
backward from the last core to the first core in the group and
these entries are allocated asynchronously. The allocate process
for a family of four cores is shown in fig. 1.

The latency of the allocate message from the parent core
to the first core is 14 cycles. The allocation to any additional
core will increase the latency by 5 more cycles given in Eq: 1,
where nc is the number of cores in the given place.

latency = 14+ 5 X nc @))]

In case of balanced strategy (c.f. [30]), the allocate process
has a latency of 2 cycles compared to 5 cycles, as the message

©The Author(s) 2015. This article is published with open access by the GSTF

109

GSTF Journal on Computing (JoC) Vol.4 No.3, October 2015

Core

Delegation Network

Distribution

Core

4

Message on
delegation network

N >

8

Success

Network

Core
9

Success

Core
10

Success

Core
11

(Check if:

at least 1 thread table entry
at least 1 family table entry
and at least 31 registers

|~

Check if:
at least 1 thread table entry
at least 1 family table entry
and at least 31 registers

)

Check if:
at least 1 thread table entry
at least 1 family table entry
and at least 31 registers

-

Check if:
at least 1 thread table entry
at least 1 family table entry
and at least 31 registers

& i J G .) _ ‘) L ,)
Allocate Failed ,I< 3 Fail Fail TFail Tl
() () () ()
Allocate 1 thread table entry, Allocate 1 thread table entry, Allocate 1 thread table entry, Allocate 1 thread table entry,
y VN y VN Y e Y

Allocate Succeeded Jagerssesreereesrmmm e e,

allocate 1 family table entry

allocate 31 registers

allocate 1 family table entry

allocate 31 registers

allocate 1 family table entry

allocate 31 registers

allocate 1 family table entry

allocate 31 registers

. / .

/ - / - /

Message on
Distribution network

Fig. 1: The allocation process of a family on a group of four cores.

travels one way; from the parent core to the first core and then
keeps on going until the last core. On the return the message
goes directly to the selected core via delegation network, which
is the least loaded and takes 3 more cycles. The allocation
process takes one cycle on the parent core, and the rest of the
latency can actually be tolerated given that there are enough
threads in the pipeline.

B. Configuration

After the family is allocated, some parameters need to be
passed to the first core for the configuration of the family.
These parameters are start, limit, step and window size. Every
parameter sends a separate message, but they are optional and
in many cases there will be less than 4 messages. The latency
of the configuration process depends on the parameterised
creation. There are three possible cases:

e In the create construct, if no parameter or a constant
or variable is used the default value is assumed. Then
no message is passed for configuration and therefore

no cycle is consumed.

When some constants or variables are used, which are
different than the default values. In that case 1 to 4
instructions create messages, where every message has
the latency of one cycle.

When some variables are used where the values are
not known at compile time and not the same as default.
Then for every parameter one message is passed,
where the latency of every message is one cycle.

The configuration process completes asynchronously i.e.
as soon as the configure messages are sent, the create process
can start on the parent core. In the high-level simulation we do
not consider the individual messages as per every parameter
in the configuration. We group the 1-4 messages into a single
high-level message which takes 4 cycles.

C. Creation

After the configuration messages have been sent on the
delegation network, the creation process starts on the parent

core. The parent core sends the create message to the first
core in the group of cores where the family is delegated. As
soon as the threads are created on the first core the parent core
is notified, where the parent core can then send the message
to write the shared and global channels. The latency of create
message is independent of the number of cores allocated, mode
or strategy and it is always 20 cycles. However it takes only
one cycle on the parent core and the rest of the cycles can be
tolerated.

D. Synchronization

The parent thread completes the creation process and
continues with other instructions (if any). After that the syn-
chronization message is issued, but depending on whether the
threads of the family are still executing, the parent thread
can be suspended. When all the threads of the family are
terminated the synchronization is activated to synchronize the
family.

Actually the time the sync message is issued by the parent
thread, the sync message travels from the parent core to the
first core. Every core knows the number of threads allocated
from a family. As soon as all the threads allocated to the
core terminate, the core passes this information to the next
core. At the last core when all threads are terminated, the
message is acknowledged to the parent core that the family
can be synchronized. This process of synchronization is shown
in fig. 2.

The synchronization process takes 14 cycles when the
family is allocated to only one core. Any additional core takes
two more cycles. This is given in Eq: 2, Where uc is the
number of cores used by the family. The synchronization takes
1 cycle on the parent core, and the rest of the cycles can
actually be tolerated given a sufficient amount of threads in
the pipeline.

latency = 14 + 2 X uc 2)

©The Author(s) 2015. This article is published with open access by the GSTF

110

GSTF Journal on Computing (JoC) Vol.4 No.3, October 2015

Distribution
Network

Core Core
4 8

Delegation Network

Threads of the family
on this core terminated

Core
11

Threads of the family
on this core terminated
Last core sync
the famil

Core Core
9 10

Threads of the family Threads of the family
on this core terminated on this core terminated

l Sync completed =<

Fig. 2: The synchronization of a family created on a group of four cores.

E. Release

Once the family is synchronized, the memory modified
by the created thread is defined in the parent core and their
context are released. A message can then be sent from the
parent core to the first core on delegation network to release
the resources. The message then travels from the first core
to the last core on the distribution network. This process is
completed asynchronously and therefore we do not simulate
this timing in HLSim.

V. RESULTS

In this section we present results to evaluate One-IPC
HLSim against MGSim.

A. Ratio in simulated time

We show the ratio of simulated time in One-IPC HLSim
over MGSim in fig. 3. A ratio closer to 1 means that the simu-
lated time in MGSim and One-IPC HLSim are converging. In
the given graph, the ratio does not stay close to 1 and illustrates
the inaccuracy in One-IPC HLSim. This inaccuracy is mainly
because of the assumption in simulation that every instruction
takes one cycle to complete all the time, while in MGSim the
assumption can be true only if there are sufficient threads in
the pipeline.

B. The effect of window size on simulated time

The simulated time of both simulators based on the window
size is shown in fig. 4. The One-IPC HLSim always takes one
cycle per instruction, and therefore the increased number of
threads per family does not have any effect on the performance,
resulting in a straight line for all window sizes. MGSim,
however, shows an increase in the performance when the
size of the window increases because of latency tolerance.
However, the performance line in MGSim does not even touch
the line of One-IPC HLSim. It means that MGSim never gets to
the point where the latency of instructions is one cycle, because
it has the overhead of concurrency and long latency operations.
After a window size of 16, we do not see any change in cycles
because the number of threads that can be created is reached.
There are 256 threads in total (i.e. 28 = 256) and concurrency
is 128 threads (i.e. 256/2), therefore the maximum number of
threads per core is 16 (i.e. 128/8 = 16).

C. Simulation time

In this experiment, we execute an approximation of the
Mandelbrot set using different complex plane sizes and differ-
ent number of cores. We show two experiments of simulation
time; in the first experiment we execute a complex plane of
different sizes using selected number of cores, and in the
second experiment we execute a particular complex plane on
different number of cores. In the first experiment the X-axis
shows the size of the complex plane and Y-axis shows the
simulation time in the range of program execution. In the
second experiment the X-axis shows the number of simulated
cores and the Y-axis shows the simulated time in the range
of program execution. There is no particular reason to use
Mandelbrot instead of FFT for simulation time, but to give a
different application for evaluation.

The simulation of large number of cores in MGSim in-
creases the complexity of the simulator and therefore has
an impact on the simulation time, because of the interaction
between simulated cores. But in HLSim, the complexity does
not change with increasing the number of simulated cores, and
therefore the simulation time remains close to a straight line
shown in fig. 5. This is one of the key benefits of HLSim, that it
does not effect the simulation time with the increased number
of simulated cores. In design space exploration, we can use
HLSim with a large number of cores on the chip to execute
large applications with little impact on simulation time.

D. IPC - Simulation accuracy

Instructions Per Cycle (IPC) shows the efficiency (not
performance, as that also depends on the clock frequency) of
the architecture. For each core the IPC should be as close
to the number of instructions the architecture is capable of
issuing in each cycle. In case of the Microgrid, with single
issue, the IPC of each core should be as close to 1 as possible.
However, for c¢ cores, the overall IPC may be up to c, i.e.
each core may issue 1 instruction per cycle. We can measure
the average IPC, i.e. sum of the IPC of c cores divide by
c. Because of the pressure on memory and load balancing
MGSim can perform with different efficiency level in different
applications. The IPC in HLSim depends on the abstraction
over the detailed instruction execution in MGSim. In order to
see a direct comparison we can compute the percentage error
of One-IPC HLSim to MGSim and this is shown in table I.

©The Author(s) 2015. This article is published with open access by the GSTF

111

GSTF Journal on Computing (JoC) Vol.4 No.3, October 2015

25

20 -

10 - =
5 L 4
0

1024 2048 4096 8192 16384 32768 65536
FFT data size

Ratio (simulated time)

(Cycles in MGSim/Cycles in One-IPC HLSim)

Fig. 3: Ratio in simulated time of FFT using different data sizes and executing on 64 simulated cores.

220000

200000 1

180000

160000

140000

120000

Simulated time (Cycles)

100000 - =

80000 |- =

60000 =

40000 \ \ \ \ \ \ \ \ \ \ \ \ \ \

Window size

MGSim —+— One-IPC HLSIim —¢—

Fig. 4: The effect of changing the window size on the execution of FFT of size 2% 23 cores.

Application One—1PC ﬁ%izle— MGSim 100
GOL (Torus) 6.4%
GOL (Grids) 30.84%
FFT 58.39%
LMK7 42.66%
Mandelbrot 0.90%
MatrixMultiply 14.15%
Smooth 32.11%

TABLE I: Percent error in the average IPC of different cores in MGSim and One-IPC HLSim.

©The Author(s) 2015. This article is published with open access by the GSTF
112

GSTF Journal on Computing (JoC) Vol.4 No.3, October 2015

5000 —

4500

4000

3500

3000 |

2500 |- 4

Simulation time (Seconds)

2000 |- 4

1500 =

1000 + =
/

500 1 . \ \
12 4 8 16 32 64

Number of cores

MGSim —+— One-IPC HLSIim —x<—

Fig. 5: Simulation time in the execution of Mandelbrot set (Complex plane: 1000 x 1000) on different number of cores of
One-IPC HLSim and MGSim.

1600

1500 - -
1400 - -
1300 - -
1200 - -
1100 - =
1000 - =
900 + -
800 -
9 700 |- -
& 600 -
500 -
400 =
300 + -
200 + -
100 - I -
0
GOL(Torus) GOL(Grids) LMK7 Mandelbrot MatrixMultiply Smooth
One-IPC HLSIim MGSim

Fig. 6: The average IPS achieved by One-IPC HLSim and MGSim.

©The Author(s) 2015. This article is published with open access by the GSTF
113

GSTF Journal on Computing (JoC) Vol.4 No.3, October 2015

E. IPS - simulation speed

Instructions per second (IPS) is used to measure the basic
performance of an architecture i.e. we measure the simulated
instructions per second using a known contemporary processor.
The average IPS (average across all the cores) achieved by
One-IPC HLSim and MGSim is shown in fig. 6. We can see
that the IPS of MGSim is approximately 100 KIPS, and the
IPS of One-IPC HLSim is approximately 1MIPS. Different
simulators used in industry and academia with their simulation
speed in terms of IPS are; COTSon [1] executes at 750KIPS,
SimpleScalar [2] executes at 150KIPS, Interval simulator [5]
executes at 350KIPS and Sesame [8] executes at 300KIPS. and
MGSim [4] executes at 100KIPS. Compared to the IPS of these
simulators the IPS of HLSim is very promising. It should be
noted that the referenced simulation frameworks given above
simulate only small (2-4 cores) number of cores on the chip. In
MGSim and HLSim we have simulated 128 cores on a single
chip, given this large number of simulated cores on a chip,
IMIPS indicates a high simulation speed.

VI. RELATED WORK

High-level simulator avoids unnecessary details of execu-
tion and communication in the architectures at the expense
of losing accuracy. High-level simulators are commonly used
in the domain of embedded systems e.g. [21], [24], [27].
However, these type of simulators are rarely used in general-
purpose multi- or many-core systems. Eeckhout et al. have
worked on statistical simulation of single-core general-purpose
processors [7], [6], [9] and multi-core processors [10]. Simi-
larly, Nussbaum and Smith [23] has also worked on statistical
approaches to provide high-level simulation of multi-core
Pprocessors.

RAMP [36] is an open-source, community-developed,
FPGA-based emulator of parallel architectures. It is not just a
hardware architecture project, but the most important goal is
to support the software community to take advantage of the
potential capabilities of parallel microprocessors, by providing
a platform through which the software community can col-
laborate with the hardware community. It provides multiple
levels for evaluation, where one of the level provides the
implementation of distributed memory network and hence a
framework to experiment with the memory architecture.

In One-IPC HLSim we have focused on the abstraction
of concurrency operations in the microthreaded many-core
architecture. The detailed execution of concurrency operations
require that all instructions are executed in the pipeline, which
can be very slow, given the number of concurrency opera-
tions in a complicated application. The abstraction of these
constructs reduces the execution of complexed applications in
HLSim which is required in the early design space exploration
of many-core architectures.

VII. CONCLUSION

We have presented a high-level simulation framework
which integrates the architecture model to the application
model in a concurrent system. The architecture model abstracts
the instruction stream from the detailed execution of the
instructions in the pipeline and the details of communica-
tion in the concurrency of the microthreading model. These

abstractions improve the simulation speed of the high-level
simulator. The architecture model is based on the assumption
that every instruction takes one cycle to complete and can be
true only when there are sufficient threads to tolerate latency.
In the case of inefficient threads the latency of long latency
operation can not be tolerated and hence One-IPC HLSim
can not be considered as an accurate simulation model. The
future research will address the areas to provide the simulation
of fine-grained latency tolerance to improve the accuracy of
HLSim.

REFERENCES

[1] Eduardo Argollo, Ayose Falcén, Paolo Faraboschi, Matteo Monchiero,
and Daniel Ortega. Cotson: infrastructure for full system simulation.
SIGOPS Oper. Syst. Rev., 43(1):52-61, 2009.

[2] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An Infrastruc-
ture for Computer System Modeling. Computer, 35(2):59-67, 2002.

[3] Thomas A. M. Bernard, Clemens Grelck, Michael A. Hicks, Chris R.
Jesshope, and Raphael Poss. Resource-agnostic programming for many-
core microgrids. In Proceedings of the 2010 conference on Parallel
processing, Euro-Par 2010, pages 109-116, Berlin, Heidelberg, 2011.
Springer-Verlag.

[4] K. Bousias, L. Guang, C. R. Jesshope, and M. Lankamp. Implemen-
tation and evaluation of a microthread architecture. J. Syst. Archit.,
55:149-161, March 2009.

[S] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper:
exploring the level of abstraction for scalable and accurate parallel
multi-core simulation. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC ’11, pages 52:1-52:12, New York, NY, USA, 2011. ACM.

[6] Lieven Eeckhout, Robert H. Bell Jr., Bastiaan Stougie, Koen De
Bosschere, and Lizy K. John. Control flow modeling in statistical
simulation for accurate and efficient processor design studies. SSIGARCH
Comput. Archit. News, 32(2):350, 2004.

[7] Lieven Eeckhout, Sebastien Nussbaum, James E. Smith, and Koen De
Bosschere. Statistical simulation: Adding efficiency to the computer
designer’s toolbox. IEEE Micro, 23:26-38, September 2003.

[8] Cagkan Erbas, Andy D. Pimentel, Mark Thompson, and Simon Polstra.
A framework for system-level modeling and simulation of embedded
systems architectures. EURASIP J. Embedded Syst., 2007:2-2, January
2007.

[9] Davy Genbrugge and Lieven Eeckhout. Memory data flow modeling
in statistical simulation for the efficient exploration of microprocessor
design spaces. IEEE Trans. Comput., 57(1):41-54, 2008.

[10] Davy Genbrugge and Lieven Eeckhout. Chip multiprocessor design
space exploration through statistical simulation. IEEE Transactions on
Computers, 58:1668-1681, 2009.

[11] Clemens Grelck, Stephan Herhut, Chris Jesshope, Carl Joslin, Mike
Lankamp, Sven-Bodo Scholz, and Alex Shafarenko. Compiling the
functional data-parallel language sac for microgrids of self-adaptive
virtual processors. In 14th Workshop on Compilers for Parallel
Computing (CPC’09), IBM Research Center, Zurich, Switzerland, 2009.

[12] Clemens Grelck and Sven-Bodo Scholz. Sac: off-the-shelf support for
data-parallelism on multicores. In Proceedings of the 2007 workshop
on Declarative aspects of multicore programming, DAMP *07, pages
25-33, New York, NY, USA, 2007. ACM.

[13] Chris Jesshope. A model for the design and programming of multi-
cores. Advances in Parallel Computing, High Performance Computing
and Grids in Action(16):37-55, 2008.

[14] Chris Jesshope, Mike Lankamp, and Li Zhang. The implementation
of an svp many-core processor and the evaluation of its memory
architecture. SIGARCH Comput. Archit. News, 37:38—45, July 2009.

[15] Chris R. Jesshope. Microgrids - the exploitation of massive on-chip
concurrency. In Lucio Grandinetti, editor, High Performance Computing
Workshop, volume 14 of Advances in Parallel Computing, pages 203—
223. Elsevier, 2004.

[16] Chris R. Jesshope. Microthreading a model for distributed instruction-
level concurrency. Parallel Processing Letters, 16(2):209-228, 2006.

©The Author(s) 2015. This article is published with open access by the GSTF

114

GSTF Journal on Computing (JoC) Vol.4 No.3, October 2015

[17] Raphael ‘kena’ Poss. On the realizability of hardware microthreading— AUTHOR’S PROFILE
Revisting the general-purpose processor interface: consequences and
challenges. PhD thesis, University of Amsterdam, 2012.

[18] Raphael ‘kena’ Poss. SL—a “quick and dirty” but working intermediate
language for SVP systems. Technical Report arXiv:1208.4572v1
[cs.PL], University of Amsterdam, August 2012.

[19] Raphael ‘kena’ Poss, Mike Lankamp, Qiang Yang, Jian Fu, Michiel W. ‘ .

van Tol, Irfan Uddin, and Chris R. Jesshope. Apple-CORE: harnessing Irfan Uddin is working as Assistant Professor at Al-
general-purpose many-cores with hardware concurrency management.
Microprocessors and Microsystems, 2013, Yamar‘nah.Umversny, Rly adh, ngdom of S,audl Arabl'a. His
. . . . expertise include architectural simulation, high-level simula-
[20] Mike Lankamp, Raphael Poss, Qiang Yang, Jian Fu, Irfan Uddin, and fi desi 1 i d i lysis. H
Chris R. Jesshope. MGSim - Simulation tools for multi-core processor 10ms, design SPace €Xp 01”2.1 100 an ?Ompam 1ve ana ySl.S' €
architectures. Technical Report arXiv:1302.1390v1 [cs.AR], University has been working on the high-level simulation for a particular
of Amsterdam, February 2013. type of many-core systems, known as microthreaded many-
[21] Brett H. Meyer, Joshua J. Pieper, JoAnn M. Paul, Jeffrey E. Nelson, core architecture.
Sean M. Pieper, and Anthony G. Rowe. Power-performance simulation
and design strategies for single-chip heterogeneous multiprocessors.
IEEE Trans. Comput., 54(6):684-697, 2005.)) 3))
[22] Jayadev Misra. Distributed discrete-event simulation. ACM Comput. This article is distributed under the terms of the

Surv., 18:39-65, March 1986. Creative Commons Attribution License which
permits any use, distribution, and reproduction
in any medium, provided the original author(s)
and the source are credited.

[23] Sebastien Nussbaum and James E. Smith. Statistical simulation of
symmetric multiprocessor systems. In SS ’02: Proceedings of the 35th
Annual Simulation Symposium, page 89, Washington, DC, USA, 2002.
IEEE Computer Society.

[24] Andy D. Pimentel, Cagkan Erbas, and Simon Polstra. A systematic
approach to exploring embedded system architectures at multiple ab-
straction levels. IEEE Trans. Comput., 55:99-112, February 2006.

[25] Raphael Poss, Mike Lankamp, Irfan Uddin, Jaroslav Sykora, and Leo$
Kafka. Heterogeneous integration to simplify many-core architecture
simulations. In Proceedings of the 2012 Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools, RAPIDO ’12, pages
17-24, New York, NY, USA, 2012. ACM.

[26] Raphael Poss, Mike Lankamp, Qiang Yang, Jian Fu, Irfan Uddin, and
Chris Jesshope. MGSim - A simulation environment for multi-core
research education. SAMOS, 2013.

[27] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A.
Herrod. Using the SimOS machine simulator to study complex
computer systems. ACM Trans. Model. Comput. Simul., 7(1):78-103,
1997.

[28] Irfan Uddin. High-level simulation of the Microgrid. Master’s thesis,
University of Amsterdam, Amsterdam, the Netherlands, August 2009.

[29] Irfan Uddin. Design space exploration in the microthreaded many-core
architecture. Technical report, University of Amsterdam, September
2013. arXiv Technical report.

[30] Irfan Uddin. Microgrid - The microthreaded many-core architecture.

Technical report, University of Amsterdam, September 2013. arXiv
Technical report.

[31] Irfan Uddin, Raphael Poss, and Chris Jesshope. Analytical-based high-
level simulation of microthreaded many-core architectures. In PDP,
February 2014.

[32] Irfan Uddin, Raphael Poss, and Chris Jesshope. Cache-based high-
level simulation of microthreaded many-core architectures. Journal of
Systems Architecture, 60(7):529 — 552, 2014.

[33] Irfan Uddin, Raphael Poss, and Chris Jesshope. Signature-
based high-level simulation of microthreaded many-core architectures.
SIMULECH, 2014.

[34] Irfan Uddin, Michiel W. van Tol, and Chris R. Jesshope. High-level
simulation of SVP many-core systems. Parallel Processing Letters,
21(4):413-438, December 2011.

[35] M.W. van Tol, C.R. Jesshope, M. Lankamp, and S. Polstra. An
implementation of the sane virtual processor using posix threads.
Journal of Systems Architecture, 55(3):162-169, 2009. Challenges in
self-adaptive computing (Selected papers from the Aether-Morpheus
2007 workshop).

[36] J. Wawrzynek, D. Patterson, M. Oskin, Shin-Lien Lu, C. Kozyrakis,
J.C. Hoe, D. Chiou, and K. Asanovic. Ramp: Research accelerator for
multiple processors. Micro, IEEE, 27(2):46 —57, march-april 2007.

Published online: 13 December 2015

©The Author(s) 2015. This article is published with open access by the GSTF
115

	High-level simulation of concurrency operations inmicrothreaded many-core architectures
	I. INTRODUCTION
	II. BACKGROUND
	III. HIGH-LEVEL SIMULATION
	IV. HIGH-LEVEL SIMULATION OF CONCURRENCYCONSTRUCTS
	V. RESULTS
	VI. RELATED WORK
	VII. CONCLUSION
	REFERENCES

