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Endothelium-derived relaxing factors (EDRFs), including nitric oxide (NO), prostacyclin (PGI
2
), and

endothelium-derived hyperpolarizing factor (EDHF), play pivotal roles in regulating vascular tone.

Reduced EDRFs cause impaired endothelium-dependent vasorelaxation, or endothelial dysfunction.

Impaired endothelium-dependent vasorelaxation in response to acetylcholine (ACh) is consistently

observed in conduit vessels in human patients and experimental animal models of hypertension. Because

small resistance arteries are known to produce more than one type of EDRF, the mechanism(s) mediating

endothelium-dependent vasorelaxation in small resistance arteries may be different from that observed in

conduit vessels under hypertensive conditions, where vasorelaxation is mainly dependent on NO. EDHF

has been described as one of the principal mediators of endothelium-dependent vasorelaxation in small

resistance arteries in normotensive animals. Furthermore, EDHF appears to become the predominant

endothelium-dependent vasorelaxation pathway when the endothelial NO synthase (NOS3)/NO pathway

is absent, as in NOS3-knockout mice, whereas some studies have shown that the EDHF pathway is dys-

functional in experimental models of hypertension. This article reviews our current knowledge regarding

EDRFs in small arteries under normotensive and hypertensive conditions.
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ENDOTHELIUM-DERIVED RELAXING FACTORS 
(EDRFS)

Vascular endothelial cells play pivotal roles in maintain-

ing cardiovascular homeostasis. The endothelium provides

not only a physical barrier between the vessel wall and

lumen, but also performs a critical function for the mainte-

nance of blood pressure by releasing vasorelaxing factors

and vasocontracting factors. Evidence of EDRFs in regulat-

ing vascular reactivity was first suggested in the 1980s by

Furchgott and Zawadzki (1), who reported that vascular

relaxation by acetylcholine (ACh) required the presence of

endothelial cells, and demonstrated that ACh stimulated

endothelial cells to release EDRF to relax the underlying

vascular smooth muscle. Today, it is well known that the stimulation of endothelial cells by neurotransmitters, hor-

mones, substances derived from platelets, and mechanical

shear stress causes the release of EDRFs and/or endothe-

lium-derived contracting factors (EDCFs) according to cell

conditions (Table 1) (2). Classically, the term EDRF referred

mainly to NO; however, it has since been recognized that

there are several types of EDRFs, including NO, PGI2, and

EDHF. Each EDRF induces the relaxation of proximal vas-

cular smooth muscle cells through its own pathway (Fig.
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Table 1. Endothelium-derived relaxing factors (EDRFs) and
endothelium-derived contracting factors (EDCFs) of small
resistance arteries

EDRFs EDCFs

Nitric oxide (NO)

Prostacyclin (PGI2)

Endothelium-derived hyperpolarizing

factors (EDRFs):

Potassium ion (K
+
)

Myo-endothelial gap junctions

Epoxyeicosatrienoic acids (EETs)

Hydrogen peroxide (H2O2)

Endothelin-1

Angiotensin II

Thromboxane A2 (TxA2)

Prostaglandin H2

Reactive oxygen species

(ROS)
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1A). EDCFs include endothelin-1, angiotensin II, throm-

boxane A2 (TxA2), prostaglandin H2, and reactive oxygen

species (ROS), all of which cause vascular contractions as

well as various other functions (3). Thus, the endothelium

can directly regulate vascular tone through the production

and release of EDRFs and EDCFs.

Nitric oxide (NO). Seven years after presentation of the

first evidence of EDRF by Furchgott and Zawadzki, the

extraordinary discovery that EDRF was the freely diffus-

ible gas NO was made (4). In 1992, NO was voted “mole-

cule of the year” by Science, and in 1998 Robert F.

Furchgott, Louis J. Ignarro, and Ferid Murad were honored

with the Nobel Prize for their discoveries concerning “NO

as a signaling molecule in the cardiovascular system.”

NO is a diffusible and lipophilic-free radical with an in

vivo half-life of less than 5 sec. NO is formed from L-argin-

ine and molecular oxygen by NO synthase (NOS). NO

serves several important roles in the vasculature. First, NO

maintains vascular tone by relaxing vascular smooth mus-

cle cells. NOS3-derived NO freely diffuses from the endot-

helial cells into the adjacent smooth muscle cells. The most

well-recognized mechanism of NO for vasorelaxation is the

activation of soluble guanylyl cyclase (sGC) in smooth mus-

cle cells. Activated sGC catalyzes the conversion of guanosine

triphosphate (GTP) to cyclic guanosine monophosphate

(cGMP). cGMP directly and indirectly modulates numer-

ous targets, including protein kinases such as protein kinase

G (PKG), phospholipase C (PLC), phosphodiesterases,

tyrosine kinases, tyrosine phosphatases, and ion channels.

PKG, the primary downstream target of cGMP in smooth

muscle cells, activates the myosin light-chain phosphatase

(MLCP), which dephosphorylates smooth muscle myosin.

This process abrogates tonic contraction of the contractile

apparatus, and results in vasorelaxation (5). Oelze et al.

suggested that the phosphorylation of vasodilator-stimulated

phosphoprotein (VASP) is a useful biochemical marker for

monitoring the NO-stimulated cGMP/PKG pathway in vas-

cular tissue (6). VASP was originally characterized as a sub-

strate of both PKG and protein kinase A (PKA) (7). VASP

belongs to the Ena/VASP family, and exists in numerous

cell types including platelets, endothelial cells, smooth mus-

cle cells and fibroblasts (8). Three VASP phosphorylation

sites, Ser 157, Ser 239 and Thr 278, have been identified.

Ser 239 is the major PKG-induced phosphorylation site,

while Ser 157 is the major PKA-induced phosphorylation

site (9). Several studies have demonstrated that VASP mod-

ulates vascular smooth muscle cell proliferation (10), but it

appears not to have any functional roles in the cGMP- or

cyclic adenosine monophosphate (cAMP)-induced relax-

ation of aortae from mice, although its phosphorylation is

increased by cGMP or cAMP treatment (11).

Fig. 1. Endothelium-derived relaxing factors of small resistance arteries in normotensive and hypertensive conditions. EC: endothelial
cells, SMC: smooth muscle cells. (A) Small resistance arteries induce vasorelaxation via multiple vasorelaxing pathways including NOS,
COX, and EDHF pathways in the normotensive condition. COX in endothelial cells produces PGI2. PGI2 can cross the membrane of
endothelial cells, and binds IP receptor on the plasma membrane of smooth muscle cells, which induces the activation of the adeny-
lyl cyclase (AC)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signal transduction pathway. Activated PKA phospho-
rylates target proteins, resulting in vasorelaxation. NOS3 produces NO in response to several stimuli such as shear stress, hypoxia, and
vasoactive neurotransmitters. NO activates soluble guanylyl cyclase (sGC) in smooth muscle cells. Activated sGC catalyzes the conver-
sion of guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP). cGMP directly and indirectly modulates numerous
targets, including protein kinases such as protein kinase G (PKG), resulting in vasorelaxation. Intercellular K+ ion, EETs, hydrogen perox-
ide (H2O2), and gap junctions, proposed candidates of EDHF, induce various K+ channels activation by complex mechanisms to facili-
tate hyperpolarization of the underlying smooth muscle cells, which results in vasorelaxation. (B) The NOS-dependent component
becomes the primary EDRF pathway in small arteries in the hypertensive condition, in which NOS utilizes both NOS-derived NO/cGMP
and NOS-dependent H2O2 to promote vasorelaxation, while other EDRFs are diminished.
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NO also has many other effects beyond vasorelaxation to

maintain vascular homeostasis. NO inhibits smooth muscle

cell proliferation, platelet aggregation, platelet and monocyte

adhesion to the endothelium, low-density lipoprotein (LDL)

oxidation, expression of adhesion molecules and endothe-

lin-1 production (12).

Prostacyclin (PGI2: cyclooxygenase-derived metabolite).
In addition to NO, endothelial cells produce and release

PGI2 in response to shear stress, hypoxia, and several other

stimuli that also release NO. PGI2 is lipid soluble and thus,

after production in endothelial cells, it can cross the mem-

branes of endothelial cells as a local vasorelaxing factor.

PGI2 binds IP receptor on the plasma membrane of smooth

muscle cells, which induces the activation of the adenylyl

cyclase (AC)/cAMP/PKA signal transduction pathway. Acti-

vated PKA phosphorylates target proteins, resulting in

vasorelaxation (13).

The rate limiting step of prostacyclin synthesis is the

release of arachidonic acid from membrane-bound phos-

pholipids by phospholipase A2 (PLA2), which is activated

by increased intracellular Ca2+ (14). Arachidonic acid is

metabolized by three major enzyme systems: lipoxygenase,

epoxygenase (isoforms of cytochrome P450 (CYP)), and

cyclooxygenase (COX). Lipoxygenase produces lipoxides,

which are mainly vasoconstrictive. CYP products have impor-

tant effects on vascular tone: epoxyeicosatrienoic acids (EETs)

are candidates of EDHF as mentioned below, and hydroxye-

icosatetraenoic acids (HETEs) exert vasoconstricting action

(15). COX converts arachidonic acid to prostaglandin H2,

which is further converted into several potential vasoactive

prostanoids such as PGI2 and TxA2. Although PGI2 is the

major prostanoid produced in endothelial cells, the balance

between PGI2 and TxA2 production appears to be important

for the regulation of vascular tone because TxA2 is vaso-

contractive in some vessels, unlike PGI2 (16).

Endothelium-derived Hyperpolarizing Factor (EDHF).
The existence of EDHF has been proposed based on obser-

vations that a substance released from the endothelium causes

the hyperpolarization of vascular smooth muscle cells dur-

ing NOS- and COX-independent relaxation in some small

resistance vessel such as intramyocardial and small mesen-

teric arteries (17,18). EDHF has been described as one of

principal mediators of endothelium-dependent vasorelax-

ation in normotensive animals (19). The contribution of

EDHF-mediated relaxation appears significantly greater in

small resistance vessels than in large conduit vessels (20).

Moreover, recent studies provided convincing evidence that

EDHF appears to become the predominant endothelium-

dependent vasorelaxation pathway when the endothelial

NOS/NO pathway is absent, as demonstrated in NOS3-

knockout mice (21).

In resting conditions, the basal openings of the potassium

ion (K+) channels result in resting membrane potentials

around −60 mV in vascular smooth muscle cells, and low

openings of voltage-gated Ca2+ channels provide a basal

Ca2+ influx to establish resting basal vascular tone. Depolar-

ization is caused by the inhibition of K+ channels and activa-

tion of Ca2+ channels, which in turn causes vasoconstriction. If

K+ channels are stimulated to be opened by certain stimuli, K+

efflux occurs and causes hyperpolarization, which decreases

the opening of voltage-gated Ca2+ channels to reduce Ca2+

influx, resulting in vascular relaxation (22). Because hyper-

polarization is caused by the opening of K+ channels, phar-

macological inhibition of these channels has been applied

to investigate EDHF-mediated responses. Indeed, EDHF-

mediated response is blocked by a combination of charyb-

dotoxin, which blocks both large and intermediate conduc-

tance Ca2+-activated K+ channels (BKCa and IKCa, respectively),

and apamin, which blocks small conductance calcium-acti-

vated K+ channels (SKCa). However, these findings do not

rule out the participation of other K+ channels such as

inward rectifier K+ channel (KIR), voltage-gated K+ channel

(Kv), ATP-sensitive K+ channel (KATP) or Na+/K+-ATPase in

EDHF-mediated responses.

Although it appears that EDHF is important to maintain

normal vascular tone and resistance in small resistance

arteries, the identity and exact role of EDHF in the patho-

genesis of hypertension as well as under normal conditions

are not completely understood. Such confusion may be

attributed to the existence of more than one EDHF within a

single vessel. Candidates proposed as EDHFs include K+

ion, gap junctions, EETs, and hydrogen peroxide (H2O2)

(23).

A small increase of  ion (1~15 mmol/L) in the intercel-

lular space between endothelial cells and smooth muscle

cells can lead to hyperpolarization of vascular smooth mus-

cle cells, thereby causing vasorelaxation (24). Edwards et al.

observed that ACh increased intercellular K+ concentra-

tions, and that this finding was correlated with ACh-induced

hyperpolarization of both endothelial and smooth muscle

cells, resulting in vasorelaxation. K+-induced hyperpolariza-

tion is associated with the activation of IKCa and SKCa on

endothelial cells, and KIR and Na+/K+ pump on smooth mus-

cle cells, suggesting that K+-induced hyperpolarization was

initiated by the opening of various K+ channels.

Myo-endothelial gap junctions connect endothelial cells

and smooth muscle cells. Gap junctions resemble pores

allowing the transfer of ions and polar molecules, thereby

providing the transmission of hyperpolarization between

cells. Gap junctions are formed by the docking of connex-

ins presented on the adjacent cells. In many vessels, phar-

macological blockade of gap junctions blunts EDHF-mediated

responses (25,26). Antibodies against connexin 40 also

block EDHF-mediated response in the endothelial cells of

rat small mesenteric arteries (27). Interestingly, in spontane-

ously hypertensive rats (SHR), the protein expressions of

K
+
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connexins in endothelial cells of the mesenteric arteries were

altered compared to those in Wistar-Kyoto rats (WKY),

suggesting that gap junction-mediated response may be

dysfunctional under hypertensive condition (28).

Epoxyeicosatrienoic acids (EETs), metabolites of arachi-

donic acid produced by the epoxygenase (cytochrome

P450, CYP) pathway, have been proposed as an important

regulator of vascular tone, especially coronary, cerebral, and

renal vascular beds (29,30). Agonists such as ACh and

bradykinin release 14,15-EET from endothelial cells (31).

Exogenous 11,12- and 14,15-EETs induce vasorelaxation of

bovine coronary arteries via activation of BKCa (32,33).

EETs activate BKCa by several mechanisms. EETs-medi-

ated BKCa activation can be elicited through G-protein sig-

naling pathway in coronary smooth muscle cells (34), the

cAMP/PKA pathway in renal afferent arteries (35), or by

Vanilloid transient receptor potential channel (TRPV4)-

mediated transient intracellular Ca2+ modulation in cerebral

arteries (36). In human subcutaneous arteries, non-NO and

non-PGI2-mediated relaxation by ACh is blocked by micon-

azole, which is a CYP inhibitor (37). EDHF-mediated relax-

ation and hyperpolarization are attenuated by the transfection

of porcine coronary arteries with CYP 2C8/34 antisense oli-

gonucleotides (30). Thus, EETs are synthesized in endothe-

lial cells, and cause hyperpolarization of smooth muscle

cells via the activation of K+ channels.

 has been reported to induce contractions and/or

relaxation in vascular tissue, dependent on species, vascu-

lar bed, and experimental conditions. H2O2 has been shown

to cause contractions in aorta, pulmonary artery, and supe-

rior mesenteric artery of the rat, the porcine pulmonary

artery, and the canine basilar artery (38). H2O2 also medi-

ates endothelium-dependent and -independent vasorelax-

ation in mouse, rat, and human mesenteric arteries and in

porcine, canine and human coronary microvessels (39,40).

It has been proposed that H2O2 can act as a EDHF due to

the observation that EDHF-mediated relaxation and hyper-

polarization by ACh after the blockade of NOS and the

COX pathway was prevented partially or totally by a cata-

lase, H2O2 metabolizing enzyme, in small mesenteric arteries

from mice (41). H2O2 has been reported to cause hyperpo-

larization by several mechanisms including the cGMP or

cAMP-meditated pathway, activation of PKA/PLA2 to release

PGI2, or direct activation of various K+ channels dependent

on the vascular bed and species (39). Endothelial cells gen-

erate ROS in healthy conditions as well as pathophysiologi-

cal conditions. There are several endothelial sources of

ROS such as NOS3, COX, lipoxygenase, CYP, and nicoti-

namide adenine dinucleotide phosphate (NADPH) oxi-

dases (42). In studies by Matoba et al., ACh-induced H2O2

production was markedly reduced in small mesenteric arter-

ies from NOS3-knockout mice, suggesting that NOS3 is an

endothelial source of H2O2 (41). However, other sources such

as xanthine oxidase and NADPH oxidase may produce H2O2

because catalase-sensitive H2O2 production is observed in

NOS3-knockout mice (41).

ENDOTHELIAL DYSFUNCTION IN HYPERTENSION

Endothelial dysfunction is normally characterized by

impaired endothelium-dependent vasorelaxation in response

to agonists such as ACh, bradykinin, or shear stress. Patho-

physiological mechanisms leading to impaired vasorelaxation

may be due to imbalances between endothelium-derived

vasoactive factors, either a reduction of EDRFs or an

enhancement of EDCFs. In particular, reduced production

and/or bioavailability of NO is largely considered to be a

central mechanism responsible for endothelial dysfunction,

even though other EDRFs and/or EDCFs may be involved

in the pathogenesis of endothelial dysfunction. Reduced NO

production may occur be due to decreased NOS3 protein

expression and/or reduced NOS3 activity. Recently, many

studies have shown that NOS3 protein expression is

unchanged or even increased in cardiovascular disease con-

ditions such as angiotensin II-infused hypertensive rats

(ANG) (43), deoxycorticosterone acetate-salt hypertensive

rats (DOCA) (43), SHR (44), diabetic rats (45), and athero-

sclerotic apo E-deficient mice (46). Thus, reduced NO pro-

duction may be caused by altered NOS3 activity rather than

decreased NOS3 protein expression. Indeed, altered NOS3

enzymatic activity has been reported in many hypertension

models, possibly due to mislocalization, uncoupling, and/or

lower substrate availability (47). On the other hand, NO

bioavailability can be reduced due to excessive scavenging

by O2

−. Increased generation of O2

− occurs in oxidative stress

conditions, and O2

− reacts with NO to form ONOO−, which

itself can cause vasoconstriction and lead to NOS uncou-

pling, lipid peroxidation, and vascular damage.

Endothelial dysfunction has been implicated in numerous

cardiovascular diseases, such as hypertension, coronary artery

disease, chronic heart failure, peripheral artery disease, dia-

betes, and chronic renal failure. Endothelial dysfunction is

also important in the pathogenesis of atherosclerosis because

it contributes to the initiation and evolution of prothrom-

botic, proinflammatory, and proliferative states. Furthermore,

many studies have reported endothelial dysfunction caused

by drugs and toxic materials in the environment. For exam-

ple, Cyclosporin A, an immunosuppressive agent, inhibits

endothelium-dependent relaxation to ACh (48). Arsenite also

suppresses ACh-induced vasorelaxation by inhibiting NOS

activity (49).

Endothelial dysfunction in hypertension is a systemic

phenomenon associated with impaired vasorelaxation, thereby

contributing to the further increase of arterial blood pres-

sure (50). Endothelial dysfunction has been observed in

human patients with essential hypertension or renovascular

hypertension (51). Vasorelaxation of the forearm and coro-

nary blood flow in response to the intra-arterial injection of

H2O2
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ACh were reduced, whereas response to exogenous nitrova-

sodilators such as sodium nitroprusside was not altered

(52,53). Such impaired endothelium-dependent vasorelax-

ation has also been observed in numerous studies using

hypertensive animal models.

Cause or consequence? Endothelial dysfunction can

occur at an early stage of hypertension, and hence may

make an important contribution to the increase of blood

pressure. On the other hand, endothelial dysfunction is

regarded to be a consequence of hypertension, and, in these

conditions endothelial dysfunction may contribute to fur-

ther increases in peripheral vascular resistance and cardio-

vascular complications of the disease process.

In SHR, the vasorelaxation caused by ACh in the aorta

and in perfused mesenteric resistance arteries is impaired in

adults with high arterial blood pressure, but not in young

animals (54,55), suggesting that endothelial dysfunction is a

consequence of the increased hemodynamic load and shear

stress in the hypertensive condition rather than a cause of

hypertension in genetic experimental animal models of

hypertension. In addition, the ability to correct impaired

endothelium-dependent relaxation by using the appropriate

antihypertensive treatment (56,57) supports the suggestion

that endothelial dysfunction may be secondary to the expo-

sure of chronic higher blood pressure, and that impaired

endothelium-dependent relaxation does not play a primary

role in the initiation of the hypertensive process (58).

Indeed, antihypertensive treatment using a combination of

reserpine, hydrochlorothiazide, and hydralazine reverses

decreased endothelium-dependent relaxation in response to

ACh in aortae from Dahl salt-sensitive hypertensive rats

(56).

Sequential studies of endothelial dysfunction have rarely

been done in hypertensive human patients, and available

reports have demonstrated controversial results. ACh-medi-

ated forearm vasodilation is reduced in normotensive subjects

with familial histories of essential hypertension, suggesting

that endothelium dysfunction can precede the appearance of

hypertension and that this abnormality plays a role in the

pathogenesis of essential hypertension (59).

Heterogeneity of endothelial dysfunction dependent
on vessel size. Small arteries with diameters of 200

microns or less play a critical role in the regulation of

peripheral vascular resistance. Thus, dysregulation of vas-

cular tone in these arteries may contribute significantly to

high blood pressure.

ACh-induced vasorelaxation is blunted in conduit vessels

in genetic and experimental hypertensive rodent models

such as SHR (60), DOCA (61), Dahl salt-sensitive hyper-

tensive rats, renovascular hypertensive rats (62), and ANG

(63). However, both unchanged and impaired ACh-induced

vasorelaxation have been observed in small mesenteric

arteries from DOCA (64,65), SHR (66,67), and ANG rats

(68) and mice (69). These controversial results have also

been observed in small arteries in human patients with

essential and secondary hypertension (70-74). Therefore,

although impaired endothelium-dependent relaxation is

accepted as a general phenomenon in hypertension, certain

vascular beds appear to be more protected and have differ-

ent degrees of endothelial dysfunction than others. Several

reasons may be advocated to explain this heterogeneity,

including different EDRF existence, altered sensitivity of

smooth muscle cells to EDRF, enhanced local vascular

EDCF, age of subjects, and/or different degrees of endothe-

lial dysfunction in different vascular beds (58).

As noted above, several EDRFs including NO, PGI2, and

EDHF contribute to ACh-induced endothelium-dependent

vasorelaxation (75). Furthermore, EDHF appears to be more

important in small resistance arteries than in large conduit

arteries, and may play a crucial role in maintaining periph-

eral vascular resistance (76). Tomioka et al. demonstrated

that EDHF-mediated vasorelaxation became more predomi-

nant as vessel size became smaller, whereas ACh-induced

relaxation in the aorta was entirely mediated by NO (20). In

a study of hypertensive rats, we observed a novel mecha-

nism of the NOS pathway in small arteries distinct from

large arteries under hypertensive conditions (77), indicating

that the NOS-dependent component of ACh-induced vasore-

laxation in small arteries from hypertensive rats is increased,

and is mediated by NOS-derived NO/cGMP as well as

NOS-dependent H2O2, while other EDRFs are diminished

(Fig. 1B). This finding demonstrates that the NOS-medi-

ated pathway becomes the primary EDRF pathway in small

arteries in hypertensive conditions, in which NOS utilizes

two mediators (both NO and H2O2) to promote vasorelax-

ation compared to normotensive condition.

PERSPECTIVES

Endothelium-dependent vasorelaxation in small resistance

arteries may be different from that observed in conduit ves-

sels in hypertensive conditions. Small resistance arteries are

known to induce vasorelaxation via multiple vasorelaxing

pathways including NOS, COX, and EDHF pathways in

normotensive conditions. However, whether these vasore-

laxing pathways in small arteries are altered or not in hyper-

tensive conditions is still under investigation. We previously

found that NOS-mediated pathway plays a predominant

role in maintaining ACh-induced vasorelaxation to compen-

sate for the dysfunctional EDHF pathway in small mesen-

teric arteries under hypertensive conditions (77). Furthermore,

increased NOS-dependent pathways in the vasorelaxation

of small arteries under hypertensive conditions is mediated

by both NOS-derived NO/cGMP signaling and NOS-medi-

ated H2O2. Further studies are necessary to determine the

exact mechanism of NOS-dependent H2O2-mediated vasore-
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laxation in small mesenteric arteries under hypertensive

conditions. An increased understanding of different vasore-

laxing mechanisms in small arteries under hypertensive

conditions will help clinicians to identify the proper target(s)

to treat endothelial dysfunction in hypertensive patients.
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