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Lipid peroxidation is a free radical oxidation of polyunsaturated fatty acids such as linoleic acid or arachi-

donic acid. This process has been related with various pathologies and disease status mainly because of the

oxidation products formed during the process. The oxidation products include reactive aldehydes such as

malondialdehyde and 4-hydroxynonenal. These reactive aldehydes can form adducts with DNAs and pro-

teins, leading to the alterations in their functions to cause various diseases. This review will provide a short

summary on the implication of lipid peroxidation on cancer, atherosclerosis, and neurodegeneration as

well as chemical and biochemical mechanisms by which these adducts affect the pathological conditions.

In addition, select examples will be presented where antioxidants were used to counteract oxidative dam-

age caused by lipid peroxidation. At the end, isoprostanes are discussed as a gold standard for the assess-

ment of oxidative damages.
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INTRODUCTION

Lipid peroxidation is a free radical oxidation of polyun-

saturated fatty acids (PUFAs) such as linoleic acid or

arachidonic acid. The basic mechanism of lipid peroxida-

tion is found in the radical chain reaction observed in typi-

cal autoxidation process, an oxidation by molecular oxygen

(O2): initiation-propagation-termination (Porter, 1986). There-

fore, lipid peroxidation is self-propagating and will proceed

until substrate is consumed or termination occurs. In this

way, lipid peroxidation is fundamentally different from

other forms of free radical injury in that it is a self-sustain-

ing process capable of extensive tissue damage (Porter et

al., 1995). In initiation step, abstraction of hydrogen at bis-

allylic position afforded lipid pentadienyl radical, from which

various regioisomeric and stereoisomeric peroxyl radicals

are formed leading to a complex mixture of peroxyl prod-

ucts (Scheme 1) (Marnett, 1999). The primary products of

lipid peroxidation are lipid hydroperoxides (LOOH). They

provide sources of a variety of reactive oxygen species (ROS)

that cause oxidative stress along with other ROS such as

superoxide (O2

·-), ozone (O3), and hydroxyl radical (HO·)

etc. There are also examples of enzyme-catalyzed oxida-

tion of lipids where lipoxygenases (LOXs) (Brash, 1999)

and cyclooxygenases (COXs) (Rouzer and Marnett, 2003;

Rouzer and Marnett, 2009) are involved. When arachidonic

acid (AA) is a substrate, isomers of HpETEs (hydroperoxy

eicosatetraenoic acids) and HETEs (hydroxy eicosatetraenoic

acids) are formed as primary lipid peroxidation products

from LOX activity. COXs catalyze the formation of a rather

specific hydroperoxide (prostaglandin (PG) G2) and hydroxy

product (PGH2) from AA. In this review, non-enzymatic

lipid peroxidation and the related toxicology will be dis-

cussed.

Lipid peroxidation has been implicated in various dis-

eases and pathological conditions (Negre-Salvayre et al.,

2010) such as carcinogenesis (Marnett, 2000), cardiovascu-

lar diseases (Steinberg et al., 1989; Glass and Witztum,

2001; Lee and Blair, 2001), neurodegeneration, (Bradley et

al., 2010; Markesbery et al., 2005) and aging (Muller et al.,

2007).

Phenolic antioxidants are typically used to inhibit lipid

peroxidation. This class of antioxidants have a weak O-H

bond dissociation enthalpy (BDE) such that it can transfer

its hydrogen atom to lipid peroxyl radical to perturb a radi-

cal chain reaction. α-tocopherol (α-TOH) is the most active

phenolic chain-breaking antioxidants found in nature. Its O-

H BDE (78.3 kcal/mol) is low enough to inhibit lipid per-

oxyl radical (LOO·), a chain propagating species, from

propagating the chain reaction (Scheme 2).

Many toxicological aspects of lipid peroxidation are

attributed to various reactive aldehydes generated from oxi-

dized lipids. These aldehydes react with cellular nucleo-

philes such as proteins, nucleic acids and glutathione (GSH)
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to form a variety of adducts. The formation of those adducts

are related to various pathologies. The reactive aldehydes

make up a large part of endogenous electrophile repertoires

that include malondialdehyde (MDA), 4-hydroxy-2-alka-

nals (i.e., 4-hydoxy-2-nonenal (4-HNE)) and γ-ketoaldehydes

(i.e., levuglandins). With tremendous advances in mass

spectroscopy techniques coupled with reverse phase HPLC,

detections and measurements of DNA adduct with lipid per-

oxidation products have been significantly progressed (Blair,

2008).

DNA adduct formation and carcinogenesis. Oxidative

stress is well known to play an important role in carcino-

genesis (Klaunig and Kamendulis, 2004; Jacobs and Mar-

nett, 2010). Endogenous DNA adducts with reactive aldehydes

generated from lipid peroxidation provide an important eti-

ology of human genetic diseases and cancer. The DNA adducts

lead to the alterations in DNA structure such as DNA base

modifications and frame shifts. Pyrimido[1,2α]purin-10(3H)-

one (M1G), a major DNA (dG)-MDA adduct, is one of the

most important adducts and is found to be a strong mutagenic

agent (Chaudhary et al., 1996; Niedernhofer et al., 2003).

M1G induced frame shift mutations (-1 and -2) when posi-

tioned in a reiterated (CpG)4 sequence but not when posi-

tioned in a nonreiterated sequence in Escherichia coli and

in COS-7 cells (VanderVeen et al., 2003). The spectrum of

mutations induced by the naturally occurring M1G was

determined by site-specific approaches using M13 vectors

replicated in Escherichia coli (Fink et al., 1997). In E. coli,

M1G-modified genomes containing a cytosine opposite to

M1G resulted in roughly equal numbers of M1G→A and

M1G→T mutations with few M1G→C mutations. The total

mutation frequency was approximately 1%, which represents a

500-fold increase in mutations compared with unmodified

M13MB102 vector. Transformation of modified genomes

containing a thymine opposite M1G allowed an estimate to

be made of the ability of M1G to block replication (Fink et

al., 1997). Interestingly, this adduct can be even found in

normal healthy individuals. It was found that DNA from

healthy individuals contain about 5,400 MDA-dG adducts

per cell in liver (Chaudhary et al., 1994). This study demon-

strated the normal endogenous level of DNA adduct forma-

tion caused by lipid peroxidation in disease-free subjects,

and the crucial role of chemical carcinogenesis of endoge-

nous source, antioxidants and DNA repair system. DNA

adduct with 4-HNE (Minko et al., 2009) was also found to

Scheme 1. Pathways of lipid peroxidation.

Scheme 2. α-Tocopherol inhibits lipid peroxyl radical propagation.
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generate p53 gene mutation (Chung et al., 2003) which can

play a role in carcinogenesis.

Not only these DNA damages, i.e., mismatch or frame

shift in DNA replication, caused by adduct formation, but

also intracellular signal transduction can be caused by those

reactive aldehydes. In particular, it is reported that 4-HNE

inhibits the activation of NF-κB in human colorectal cancer

cell line (RKO) and human lung cancer cell line (H1299).

At doses that inhibit IkBα degradation, HNE inhibits IκB

kinase (IKK) activity by direct reaction with IKK (Ji et al.,

2001). It was also found that activation of the heat shock

response by HNE is dependent on the expression and

nuclear translocation of heat shock factor 1 (HSF1), which

promotes the expression of heat shock protein 40 (Hsp40)

and Hsp70-1. HNE disrupts the inhibitory interaction

between Hsp70-1 and HSF1, leading to the activation heat

shock gene expression (Jacobs and Marnett, 2007). With

increasing amount of data accumulated, there are attempts

to deconvolute the biological activity and metabolic fates of

these reactive aldehydes in systemic view. For example,

oxidative damages on proteins by HNE (Codreanu et al.,

2009) and global gene expression change by HNE (West

and Marnett, 2005) were investigated.

Lipid peroxidation in LDL and chain-breaking anti-
oxidants. One of the most biologically important lipid

peroxidations occurs in low-density lipoprotein (LDL). LDL

is the major carrier of cholesterol and cholesteryl esters of

fatty acids. Thus, the oxidation of LDL is accompanied by

the extensive oxidation of linoleic acids and arachidonic

acids (720 and 180 molecules per LDL, respectively) in

LDL particle. Inference from epidemiological and biochem-

ical studies suggested that the oxidation of LDL can lead to

the generation of fatty streak, which has been believed an

initial event of atherosclerosis. This oxidation theory sug-

gested retentive and oxidative events trigger biochemical

changes in artery wall that lead to lipid deposition. Since

antioxidants such as vitamin E (α-tocopherol) defend against

oxidation of lipids (lipid peroxidation), vitamin E has been

the focus of several large supplementation studies against

atherosclerosis, but there is no clear link found between the

vitamin and disease progression (Upston et al., 2003). It

was later found that α-TOH is not a particularly good anti-

oxidant in LDL. Indeed, under some conditions, α-TOH in

LDL acts as a prooxidant to increase the oxidation of cho-

lesteryl linoleate and phospholipids. α-TOH can mediate

lipid peroxidation through tocopherol-mediated peroxida-

tion (TMP) mechanism (Bowry et al., 1992)
 where toco-

pheroxyl radical (α-TO·) abstracts hydrogen atom from

lipid molecule (L-H) to regenerate L•, the chain carrying

radical, albeit slowly (Scheme 3). In fact, additional supple-

mentation of α-TOH from 18 µM to 83 µM resulted in

about two-fold increase in the oxidation of both cholesteryl

linoleate and phospholipids in the absence of co-antioxi-

dants (Bowry et al., 1992). Thus, can not provide protec-

tion against lipid peroxidation in atherosclerosis condition

where extensive oxidative stress possibly deplete endoge-

nous co-antioxidants that coordinate with lipophilic α-TOH

for the effective protection in LDL particles.

This finding shed a new light on the strategy for the

development of novel chain-breaking antioxidant for the

treatment of atherosclerosis. It is required that new antioxi-

dant not only should have excellent antioxidant activity but

also should not mediate TMP process. Indeed there are a

few examples of remarkably successful antioxidants where

pyridinol-based antioxidants inhibit the oxidation of choles-

teryl linoleate in isolated human LDL, and do not partici-

pate antioxidant-mediated peroxidation (AMP) (Nam et al.,

2007; Kim et al., 2005; Serwa et al., 2010). Additional sup-

plementation of lipophilic pyridinol antioxidants from 75 µM

to 150 µM afforded about two-fold decrease in the oxidation

of cholesteryl linoleate in the absence of co-antioxidants.

Neurodegeneration. Due to the high concentration of

polyunsaturated fatty acids in brain relative to other organs,

lipid peroxidation is one of the major outcomes of free radi-

cal-mediated injury to brain. Biochemical studies have

demonstrated increased concentrations of reactive products

from lipid peroxidation in diseased regions of Alzheimer’s

disease (AD) brain. For example, an elevated level of 4-

HNE was found in ventricular fluid in AD (Lovell et al.,

1997) and acrolein (Lovell et al., 2001) was also found at

Scheme 3. Mechanism of α-Tocopherol-mediated peroxidation
(TMP).

Fig. 1. Reactive aldehydes generated from lipid peroxidation.
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high level in AD brain, with toxic effect toward hippocam-

pus. HNE was also found to bind to histones that provide a

protective shield for DNA against oxidative stress, proba-

bly because of their abundant lysine residues, and this bind-

ing affects the conformation of the histone. This histone-

HNE adduct affects the ability of the histone to bind to

DNA leading to the vulnerability of DNA toward oxidation

in AD brain (Drake et al., 2004). Immunohistochemical

studies have localized protein adducts of these aldehydes to

lewy bodies in Parkingson Disease (PD) and dementia with

lewy bodies (DLB), and to neurofibrillary tangles and some

components of senile plaques in AD, DLB, and mouse

models of Aβ cerebral amyloidogenesis (Montine et al.,

2004). The enzymatic product of the COXs, PGH2, rear-

ranges in part to highly reactive γ-ketoaldehydes, levuglan-

din (LG) E(2) and LGD(2). These γ-ketoaldehydes react

with free amines on proteins to form a covalent adduct. It

was found that LGE enhances oligomerization of amyloid β

(1-42) thus increases neurotoxicity on primary cultures of

cerebral neuron of mice (Boutaud et al., 2006). The forma-

tion of LG adducts of protein (levuglandinyl-lysine adducts)

in brains of AD patients showed that this post-translational

modification is increased significantly in the hippocampus

in Alzheimer’s disease. The magnitude of the increase was

correlated with the pathological evidence of severity (Zagol-

Ikapitte et al., 2005).

There is growing evidence that oxidative stress (Adams

and Odunze, 1991) and mitochondrial respiratory failure with

attendant decrease in energy output are implicated in nigral

neuronal death in Parkinson disease (PD) (Fessel and Jack-

son Roberts, 2005). Using polyclonal antibody to detect

HNE-protein adduct in post-mortem brain, average of 58%

of nigral neurons were positively stained for HNE-modi-

fied proteins in PD. In contrast, only 9% of substantia nigral

neurons were positive in the control subjects. These results

indicate the presence of oxidative stress within nigral neu-

rons in PD, and this oxidative stress may contribute to

nigral cell death. HNE-protein adducts are accumulated in

age-related manner in the neuron (Yoritaka et al., 1996 ).

A number of methods exist to quantify free radicals and

their oxidation products although many of these techniques

suffer from a lack of sensitivity and specificity, especially

when used to assess oxidant stress status in vivo. Similarly,

many oxidation products are not very good in vivo biomark-

ers for the assessment of oxidative damage mainly because

of their chemical instability in vivo environment. More sta-

ble and quantitiatve biomarkers are isoprostanes (IsoPs),

(Morrow et al., 1990) isofuranes (IsoFs) (Fessel et al.,

2002) and nueroprostanes (NeuroPs) (Roberts et al., 1998).

Isoprostanes as a gold standard to assess oxidative
stress. Among the three biomarkers mentioned above,

IsoPs are known to give the most reliable and robust results

(Milne et al., 2005, 2008). IsoPs are prostaglandin-like

compounds formed in vivo by non-enzymatic free radical

oxidation of AA. In a recent multi-investigator study, termed

the Biomarkers of Oxidative Stress (BOSS) Study, spon-

sored by the National Institutes of Health (USA), it was

found that the most accurate method to assess in vivo oxi-

dant stress status is the quantification of plasma or urinary

IsoPs, and thus, currently, quantification of these compounds

provides the “gold standard” to assess oxidative injury in

vivo (Kadiiska et al., 2005). Defining normal levels of F2-

IsoPs in healthy humans (Milne et al., 2007) is particularly

important in that it allows for an assessment of the effects

of diseases on endogenous oxidant tone and allows for the

determination of the extent to which various therapeutic

interventions affect levels of oxidant stress. Elevations of

IsoPs in human body fluids and tissues have been found in

a various human disorders, including atherosclerosis (Mor-

row, 2005; Pratico et al., 1998; Davies and Roberts, 2011),

diabetes (Davi et al., 2003), obesity (Keaney et al., 2003),

cigarette smoking (Morrow et al., 1995), neurodegenerative

diseases (Montine et al., 2004), and many others. Useful-

ness of IsoPs as biomarker can be originated from their biolog-

ical activity in various oxidative stress settings. IsoPs strongly

reduce the inflammatory response in macrophage by inhib-

iting lipopolysaccharide-stimulated IκBα degradation and

subsequent NF-κB nuclear translocation and transcriptional

activity (Milne et al., 2005). Further, treatments for some of

these conditions, including antioxidant supplementation, anti-

diabetic treatments, cessation of smoking, and even weight

loss, have been shown to decrease production of F2-IsoPs

(Davi et al., 1999; Roberts et al., 2007). As an example for

the assessment of oxidative damage, it was shown that

doses of α-TOH of 1600 IU/day or greater are required to

statistically affect plasma F2-IsoP levels. Interestingly, vita-

min C supplementation does not alter IsoP levels in humans

(Roberts et al., 2007; Levine et al., 2001).

CONCLUSIONS

Mechanism of lipid peroxidation process and formation

of the oxidation products from oxidized lipids are dis-

cussed as well as their toxicological roles in various pathol-

ogies. Among the oxidation products, malondialdehyde and

4-hydroxynanenal have been a central theme not only

because they extensively form adducts with DNA and pro-

teins to alter their normal functions but also because they

are found to be correlated with disease status in vivo. Their

roles in controlling signal transduction pathways and gene

expression profiles are being studied in global networking

view, highlighting the importance of oxidative damages. As

shown in atherosclerosis case study, supplementation of

antioxidants might not be enough to ameliorate pathologies

caused by oxidative damages. In spite of increasing body of

biochemical and toxicological mechanisms and evidences in

clinical pharmacology, there are not many successful thera-
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peutic strategies developed to reduce oxidative damages

other than antioxidant supplementation. Further investiga-

tions on the chemical, biochemical and biological mecha-

nisms underneath the oxidative damages warrant the novel

strategy to treat or prevent the oxidative damages.
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