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An algorithm for deriving core magnetic field models from the Swarm data set
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In view of an optimal exploitation of the Swarm data set, we have prepared and tested software dedicated to
the determination of accurate core magnetic field models and of the Euler angles between the magnetic sensors
and the satellite reference frame. The dedicated core field model estimation is derived directly from the GFZ
Reference Internal Magnetic Model (GRIMM) inversion and modeling family. The data selection techniques and
the model parameterizations are similar to what were used for the derivation of the second (Lesur et al., 2010)
and third versions of GRIMM, although the usage of observatory data is not planned in the framework of the
application to Swarm. The regularization technique applied during the inversion process smoothes the magnetic
field model in time. The algorithm to estimate the Euler angles is also derived from the CHAMP studies. The
inversion scheme includes Euler angle determination with a quaternion representation for describing the rotations.
It has been built to handle possible weak time variations of these angles. The modeling approach and software
have been initially validated on a simple, noise-free, synthetic data set and on CHAMP vector magnetic field
measurements. We present results of test runs applied to the synthetic Swarm test data set.
Key words: Satellite, Earth observation, magnetism, main field, SHA model, Swarm.

1. Introduction
The pioneering satellite Magsat (Langel et al., 1982), the

Danish satellite Oersted and the low earth orbiting satel-
lite CHAMP have opened opportunities for the investiga-
tion of the various contributions to the Earth’s magnetic
field (e.g. the main field, the lithospheric field, the external
fields), but also of their interactions and impacts on our so-
ciety. In the light of recent perception from palaeomagnetic
records, indicating surprisingly fast magnetic field reversals
(Nowaczyk et al., 2012), and in view of the fast evolution
of the field revealed by CHAMP satellite data (Lesur et al.,
2008), it is important to pursue data collection, which is
foundation for global studies of core dynamics and core-
mantle interaction. The Swarm mission with three satel-
lites, two flying side by side and one in a higher orbit, and
its well-suited instrumentation, is able to contribute to this
objective. A backbone for magnetic field investigations is
to have a valid, consolidated, ideally up-to-date magnetic
field model describing the main field contribution originat-
ing in the Earth’s fluid core. The focus implies a reliable
description of its time derivatives: the elusive small scale
Secular Variation (SV) and Acceleration. Depending on
the interest of the modelers and the time period in focus,
several approaches with different model designs are avail-
able, e.g. CM4 (Sabaka et al., 2004), POMME (Maus et al.,
2006), CHAOS (Olsen et al., 2010) and GRIMM (Lesur
et al., 2008, 2010) series.

To help with the successful exploitation of the expected
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Swarm data, ESA has supported a processing environment
to create so-called Level 2 products (Olsen et al., 2013).
The aim is to provide the scientific community with state-
of-the-art models of the known different contributions to the
magnetic field. The products are grouped into two cate-
gories: The CAT-2 products, with mature and strongly au-
tomatized algorithms creating Level 2 products with small
delays, and, the CAT-1 software based on mature and ac-
cepted algorithms that require scientific supervision. De-
scribed in the following is the outline of the so called Dedi-
cated Core field Model (DCO) branch of the Swarm CAT-1
processing environment.

The DCO software is split into a slow and a fast lane.
Each lane is split in the determination of the dedicated core
field model and an estimation of the misalignment angles
between magnetic field sensors and the satellite reference
frame. The slow lane is designed to cover all available data
and therefore is suited for time-spans of at least one year.
The fast lane focuses on short periods but requires nonethe-
less to cover all local times, i.e. generally about at least three
or four months. While the slow lane aims at a precise de-
scription of the secular variation, and is therefore character-
ized by a complex description of the time dependencies, the
main goal of the fast lane is to have an early view on the
accuracy of the predictive core field model used by other
Swarm CAT-1 chains. Also the fast lane is used to assess
the validity of the misalignment angles between magnetic
field sensors and the satellite reference frame used for the
processing of the Swarm Level-1b magnetic data (Tøffner-
Clausen and Hansen, 2007). The outputs of the fast lane are
for internal validation only and not released to the public.
They are not described any further in this manuscript.

The structure of the paper is as follows: the DCO core
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field modeling and the misalignment angle (i.e. Euler angle)
estimations are introduced in separate sections, even though
they are an integral part of the software. For each of these
we first present an outline of the algorithm, and then the
specific adaptation for the Swarm set-up. Finally the DCO
processing approach is tested and applied to a synthetic data
set established in the framework of this study. Results of
application to real data are also shown for the Euler Angle
determination.

2. Core Field Modeling: Heritage and Adapta-
tions

The GRIMM approach was established and developed
with the rapidly growing CHAMP data set and the char-
acteristics of the model have been generally preserved in
this implementation. Nonetheless, a few changes have been
introduced in the focus of the approach and in its applica-
tion. It is not foreseen to use observatory data. However,
it is mainly in the handling of the external and induced
fields that the approach has evolved. A careful selection
of their parametrization is necessary, firstly since the mod-
eling needs to be based on the available indices, secondly
since other indices than in the usual GRIMM approach are
used, and thirdly because of the specific characteristics of
the data set actually at hand. As modelling the core field
from satellite data is a difficult process, a Scientist in Loop
(SIL) is required to adjust the software configuration and
make final decisions for delivery.
2.1 Selection

The first step in the modeling attempt is to decimate and
select the available data to remove data carrying signals that
cannot be separated from the core field signal, or that cannot
be modeled in detail, or finally that are generally noisy.
Local time windows, various indices and flags are used as
selection criteria. The important distinction is between the
polar region with magnetic latitudes outside the ±55◦ range
on one hand and the mid- and low-latitude satellite data
on the other. For the latter, data are rotated to the Solar
Magnetic (SM) system of coordinates. The following series
of indices related to the external field are used as input for
the selection criteria:

MMA is the a time series of spherical harmonic model
coefficients of the large-scale magnetospheric field and
its Earth-induced counterparts (Hamilton, 2013);

AUX DST is the name of a Swarm L2 Product with DST
indices including quick-look and preliminary esti-
mates from World Data Center for Geomagnetism in
Kyoto, in listing format (Olsen et al., 2013);

AUX IMF is the name of a Swarm L2 Product with the
values of the Interplanetary Magnetic Field propagated
to the Earth magnetosphere (Olsen et al., 2013).

The following selection criteria apply:

- the z-component of the interplanetary magnetic field
(IMF-Bz) must be positive, for minimizing the noise
associated with possible re-connection of the mag-
netic field lines with the Interplanetary Magnetic Field
(IMF);

- a 20 s minimum is required between sampled points
for minimizing correlated errors generated by non-

modeled lithospheric field;
- data local time must be between 23:00 and 05:00 for min-

imizing the contribution from the magnetic field gener-
ated in the ionosphere. The sun must also be below the
horizon at 100 km above the Earth’s reference radius
(a = 6371.2 km),

- the value of the MMA must be less than 30 nT and its time
derivative norm lower than 100 nT/day to select mag-
netically quiet periods. While the original GRIMM
scheme is using the Vector Magnetic Disturbance In-
dex, Thomson and Lesur (2007), with bounds set to
20 nT and 100 nT/day, our selection is using either the
fast MMA product or, the AUX DST product. The
choice is made depending on the availability of the
MMA or whether or not the MMA turns out to be not
appropriate for the purpose. The thresholds used will
need adapting to the actual data set. It is one of the
tasks of the SIL to choose and justify the choice.

- the quality flags should indicate data of a minimum qual-
ity threshold. This is set mainly to reject outliers. Data
with only one star camera reading should normally be
rejected unless the weak data density requires their se-
lection. The handling of the flag information has been
implemented as for CHAMP data, but cannot actu-
ally be fine-tuned for Swarm before true readings from
Swarm are available.

Outside the ±55◦ magnetic latitude interval, at high lati-
tudes, the three component vector magnetic satellite data
are used in North, East, Center (NEC) system of coordi-
nates and for all local times. These two selection criteria
were chosen to avoid significant gaps in the time series of
high-latitude data. Even if these selection criteria are used
for the initial core field inversion, they may be tuned by the
SIL if this seems recommended by the initial results. In par-
ticular, for the application to the synthetic Swarm test data
set (TDS-1, see Olsen et al., 2013) the high latitude data
were selected with a tight time window.
2.2 Model parametrization and estimation

The current section describes the model parametrization
based mainly on the GRIMM inversion scheme. The al-
gorithm does not attempt to estimate either the magnetic
toroidal fields generated by the field-aligned currents, or
the field generated in the ionosphere at high latitudes. As
it has been found from a comparison between GRIMM and
a preliminary version of GRIMM-2, modeling these fields
improves the fit to the data only marginally. Apart from the
lithospheric field, the model includes the core field, a rep-
resentation of the large scale external fields and their asso-
ciated internally induced counterparts. The core field Bc is
modeled as the gradient of an internal potential field given
as a series of spherical harmonics (SHs) (Lesur et al., 2008):

Bc = −∇Vc(θ, φ, r, t), (1)

Vc(θ, φ, r, t) = c
Lc∑

l=1

l∑
m=−l

(c

r

)l+1
gm

l (t)Y m
l (θ, φ), (2)

gm
l (t) =

Nt∑
i=1

gm
l i ψ6

i (t), (3)
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where c = 3485 km is the Earth’s core reference radius,
Y m

l (θ, φ) are the Schmidt semi-normalized SHs. Nega-
tive orders, m < 0, are associated with sin(|m|φ) terms,
whereas null or positive orders, m ≥ 0, are associated with
cos(mφ) terms. The maximum SH degree Lc for the core
field model is set to Lc = 20, even if the contribution of the
lithospheric field is known to be significant at these SH de-
grees. The time dependency of the Gauss coefficients gm

l (t)
is represented as a series of Nt B-splines, ψ6

i (t), of order 6.
The knots are chosen to be half a year apart. This spline or-
der, increased during the development of the GRIMM inver-
sion family since the first version, focuses on the estimation
of the secular variation and acceleration. The spline knot
spacing of half a year is taken from the third generation of
the GRIMM model family.

The field generated in the lithosphere is assumed to be
independent of time and defined by:

Bl = −∇Vl(θ, φ, r) (4)

Vl(θ, φ, r) = a
L l∑

l=Lc+1

l∑
m=−l

(a

r

)l+1
gm

l Y m
l (θ, φ), (5)

where a = 6371.2 km is the Earth’s reference radius and
L l the maximum degree for the lithosphere. As in the sec-
ond and third versions of GRIMM, a reference lithospheric
field model is subtracted from the data in the pre-processing
phase. Because of that, the present modeling effort ef-
fectively corresponds to a correction of the original litho-
spheric field model. The maximum SH degree for this cor-
rection is not required to be large and is generally set be-
tween 20 and 30. In the specific application to the TDS-1
the SH maximum degree was set to 20, this means no litho-
spheric field coefficients were determined and the reference
lithospheric field model is the AUX-LIT field model (Olsen
et al., 2013), used in DCO usually truncated to max SH de-
gree 60. This model is a single-epoch snapshot represented
as spherical harmonic expansion with coefficients from or-
der 16 to 250 and will remain unchanged at least during the
first few years of the Swarm mission.

The handling of the large scale external fields in principle
distinguishes between firstly, a magnetospheric field model
in the solar magnetic system of coordinates (SM) varying
slowly in time and, secondly, a fast varying external field
model, combined with its induced counterpart. This lat-
ter field is in the usual earth fixed, earth centered system
of coordinates (geocentric), and parametrized in time by an
index controlling the rapid variations of the field. The exter-
nal field index is preferentially the MMA Level 2 product
(Hamilton, 2013). In case the MMA index is not available
or found not to be appropriate, the DST index can be used
alternatively.

Assuming, the MMA index is used, the external field for
the slowly varying part is described by

Be = −∇ (�e(θ, φ, r, t)) , (6)

�e(θ, φ, r, t) = a
Le∑

l=1

l∑
m=−l

( r

a

)l
qm

l (t)Y m
l (θ, φ), (7)

qm
l (t) =

N e
t∑

i=1

qm
l i ψ1

i (t), (8)

where it is understood that the vectors and coordinates are in
SM system. The temporal variations of the external Gauss
coefficients qm

l (t) are defined by a piecewise constant repre-
sentation with a 100 day knot spacing. This knot definition
is consistent with a preprocessing of the MMA data that in-
cludes removing 100 day averages over the full time series.
For the fast varying part the external field is described by:

Bm = −∇ (�m(θ, φ, r, t)) , (9)

�m(θ, φ, r, t) = a
Le∑

l=1

l∑
m=−l

{( r

a

)l
q̃m

l (t)Y m
l (θ, φ)

+
(a

r

)l+1
g̃m

l (t)Y m
l (θ, φ)

}
, (10)

q̃m
l (t) =

N e
t∑

j=1

q̃m
l j mma

e
j (t), (11)

g̃m
l (t) =

N e
t∑

j=1

g̃m
l j mma

i
j (t). (12)

The external and internal part of the MMA series, mmae
j (t)

and mmai
j (t) control the time dependencies and are scaled

on 100 day periods by q̃m
l j , g̃m

l j , respectively.
The maximum SH degree for the external field is set to

Le = 2, but only a certain subset of the external coeffi-
cients may actually be used depending on the data set and
the apparent significance of the coefficients. Particularly for
the test using the TDS-1 data set, only the orders 0 and ±1
were chosen for the slowly varying external field model,
whereas for the fast varying fields parametrized with the
MMA index only the SH degree 1 and the order 0 SH de-
gree 2 coefficients were included. Later application on real
measurements may require an adaptation of these settings.
2.3 Procedures

Calculating a core magnetic field model consists of esti-
mating the Gauss coefficients defining the model such as to
minimize the functional:

� =
∑

i

wi |di − ηi · (Bci + Bli + Bei + Bmi )|2

+
∑

i

∣∣Fi (g
m
l )

∣∣2
, (13)

where the wi are weights, the di are magnetic data readings
at (θi , φi , ri , ti ) in the direction ηi , and Bci , Bli , Bei , Bmi

are vector model values at the same positions. The Fi (gm
l )

are functions of the core field Gauss coefficients that can be
used to constrain the core field model behaviour. In a matrix
form this reduces to:

� = (d − Gm)t W (d − Gm) + mt D m, (14)

where the model vector m is made of the Gauss coefficients
of the models, the matrix G can be derived from the expres-
sions of the model given in the previous section (Eqs. (1)–
(12)) and d is the data vector. Normally, the problem is
linear and in principle can be solved rapidly, but the defini-
tion of the weight matrix W and the data selection process
require an iterative process to be set up.

In a first step we aim for a valid, not necessarily per-
fect, core field model and a corresponding, appropriate ex-
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ternal field description. For this first step we assume a Gaus-
sian distribution of the residuals. The mid-latitude dipole-
aligned Z-component data are used exclusively for the ex-
ternal field part and do not enter into the estimation of the
core field. This is equivalent to the infinite variance ap-
proach set in Olsen et al. (2007) and therefore requires sev-
eral iterations of the optimization process until further up-
dates in the model parameters become insignificant. The
model nonetheless requires some constraints to be set on
the temporal evolution of the core field model. These con-
straints are introduced through the matrix D in the func-
tional defined in Eq. (14). We use effectively the same ap-
proach as in the second and third version of GRIMM de-
scribed in Lesur et al. (2010), where the acceleration is min-
imized at the end points of the model whereas the third time
derivative is minimized over the model time span. But it is
not excluded that we revise this approach if necessary.

At this stage the distributions of the data residuals for
all components and data types are inspected in order to
estimate the parameters k and α of slightly modified Huber-
Weights (Olsen, 2002). These weights are defined by:

w(x) =
{

1 if |x | ≤ k(
k
|x |

)2−α

if |x | > k
. (15)

Recommended values for k are approximately 1, and setting
α = 1 gives exactly Huber-Weights. For residual values
in between ±k, a Gaussian distribution is assumed. These
weights require an iterative re-weighted least squares ap-
proach (Farquharson and Oldenburg, 1998) and the iterative
process is stopped when changes in the model parameters
become insignificant.

3. Euler Angles
The main instruments for estimating the orientation of

the magnetic sensors in space are the star cameras. These
are rigidly mounted on the so-called “optic bench” that also
carries the magnetometers. So, in principle, the angles (i.e.
Euler angles) between the magnetic sensors and the star
cameras are known and should not vary in time. However,
since the satellites are under stress during the launch and
sustain large temperature gradients along their orbit path, it
is known that these angles have to be re-estimated during
the flight. The algorithm we shortly describe below for this
purpose is fundamentally the same as the one proposed in
Olsen et al. (2007), but we use quaternions here. Small
corrections to the Euler angles established before launch
can be estimated, assuming a known magnetic field and
using the magnetometer readings to find their orientations.
Alternatively, we can co-estimate the magnetic field model
and the Euler angles. This latter algorithm is described
below after an introduction to quaternions.
3.1 Quaternions

Rotations, in particular those describing the attitude of
the magnetic sensors relative to the satellite reference frame
can be given in quaternion format. The quaternions were in-
vented by Sir William Rowan Hamilton in 1843 and form a
four-dimensional normalized division algebra over the real
numbers—i.e. a quaternion is defined by four real values,
usually noted (q1, q2, q3, q4). They allow for a continu-

ous, pole-free representation of rotations. They also allow
for a numerically proper nesting and interpolation of rota-
tions (they are typically used to efficiently describe rota-
tions, as in computer graphics). The quaternions are nor-
malized such that:

1 = q2
1 + q2

2 + q2
3 + q2

4 (16)

The representation of a rotation matrix is then (from Wertz,
1978):

R =
⎡⎣ q2

1 −q2
2 −q2

3 +q2
4 2(q1q2+q3q4) 2(q1q3−q2q4)

2(q1q2−q3q4) −q2
1 +q2

2 −q2
3 +q2

4 2(q2q3+q1q4)

2(q1q3+q2q4) 2(q2q3−q1q4) −q2
1 −q2

2 +q2
3 +q2

4

⎤⎦ . (17)

In the following, the notation of the quaternion is us-
ing the convention proposed in Wertz (1978), p. 762, equa-
tion E-7a. Here, q4 is the scalar component of the rotation
whereas (q1, q2, q3) defines the rotation axis. We note that
a given rotation is described by a unique quaternion as long
as the sign of q4 is imposed.
3.2 Algorithm

Finding the Gauss coefficients describing the measured
magnetic field reduces, as described in the previous section,
to solving a linear system:

d − G m = 0, (18)

where constraints applied to the core field model are ig-
nored for simplicity. The extension to that case is straight-
forward, as these constraints do not enter the algorithm de-
veloped for the Euler angle estimation.

We can rewrite this equation for an iterative scheme at
iteration k as:

δdk = d − G mk

= G δm
(19)

with mk+1 = mk + δm. The data vector d is expressed in
an Earth-fixed system of coordinates. It is calculated from
the readings in the sensor system of coordinates ds through
two successive rotations:

d = R̂(t) R ds , (20)

where R is the rotation from the sensor system to the satel-
lite reference frame that we want to estimate, and R̂(t) is a
rotation that is given and depends on the measured satellite
position and orientation. The relation between R and the
quaternion is given in Eq. (17) and the linear system (18)
can be written:

R̂(t) R ds − G m = 0. (21)

Since the matrix R has a non-linear dependence relative to
the quaternion, this system is solved iteratively. At iteration
k it can be written:

δdk = dk − G mk

= G δm − ∑4
i=1 δqi R̂ ∂Rk

∂qi
ds ,

(22)

where the data vector dk has an index k because it depends
on the values of the quaternion [qi,k]{i=1:4} through Eq. (20).
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As for the magnetic model parameters we have: qi,k+1 =
qi,k + δqi . The matrices ∂Rk

∂qi
are easily calculated from the

Eq. (17).
Unfortunately, finding the model parameters and the

quaternions by solving the linear system of Eq. (22) it-
eratively through least squares does not impose that the
Eq. (16) is maintained. It may be imposed by explicit re-
normalization after each iteration before updating the dk ,
but it is much more efficient to implement the constraint di-
rectly in the inversion scheme. The quaternions are updated
by qi,k+1 = qi,k + δqi and we have to impose:

1 =
∑

i

q2
i,k+1. (23)

After neglecting the second order terms this leads to:

1 −
∑

i

q2
i,k = 2

∑
i

qi,kδqi (24)

The set of Eqs. (22) and the Eq. (24) must be solved si-
multaneously for the δm and [δqi ]{i=1:4}, the latter equation
should be scaled by a large factor for the constraint to be
fully efficient.
3.3 Procedures

We have organized the software to cover two operation
modes that consist of either estimating the core field model
and the quaternions independently, or of co-estimating both.
The need to cover these two operation modes changed the
internal data organization in comparison to the original
GRIMM scheme. With the introduction of the quaternions
and rotation matrices, the problem becomes clearly non-
linear and more than one iteration is required. The estima-
tion of the core field model independently also requires sev-
eral iterations. The software is therefore organized with two
embedded iterative loops, the outer loop being used to han-
dle the non-linearity of the quaternion determination. The
data are therefore read in the sensor system of coordinates
and the outer loop includes, as an initial task, a rotation of
these data in an Earth-fixed system using the current val-
ues of the quaternions. It is always possible to reduce the
complexity of the problem by either imposing a core field
model, in which case the inner loop is skipped, or by im-
posing a set of quaternions with the possibility of reading
directly the data in an Earth-fixed system of coordinates. In
all cases, it is the iterative re-weighted least-squares algo-
rithm used in GRIMM model family that is applied to solve
the system of equations.

As there is a possibility that the Euler angles vary with
time, for example as a result of a thermal bending of the
optical bench, the quaternions have to be parametrized in
time. Our approach is to split long time spans into relatively
short segments where the quaternions are assumed constant.
The objective is to have segments covering no more than 30
days, while a full local time coverage, achieved typically
in 4 months for one satellite, is still necessary to derive
robust core field models. This 30 day window requirement
imposes a different data selection scheme is applied for the
quaternion estimation than for the core field estimation. For
stability of the quaternion estimation it is essential to select
a significant number of vector data for each segment. This
is typically achieved by selecting data on a larger local time

window than the tight 23:00 to 05:00 window used for core
field modeling.

The stability of the quaternion estimation is expected to
be a critical issue, so we apply the following scheme. A
first estimation is done on a relatively large window (e.g.
100 days) that is progressively reduced to 30 days. This pro-
vides good starting values for the non-linear estimation and
the new quaternions determined on smaller time window
can be required not to differ too much from the starting val-
ues. Outliers, destabilizing the quaternion estimation, can
be also hand-picked and removed from the data set. A clear
advantage of the scheme is that it gives us hints about the
overall robustness of the estimates.

The distinct 30 days segments for the Euler angle deter-
mination may become very unequally populated. To avoid
invalid results, low population thresholds apply, and the re-
sulting gaps in the Euler Angle time series may be filled by
interpolation. Ultimately the most robust segment may rep-
resent the final quaternion estimate if a fairly smooth tem-
poral variation of the angles is assumed.

4. Tests
The basic functionality of the software has been fully

tested on an ideal synthetic vector data set, where the noise
and external fields were ignored and an ideal distribution of
data on the sphere was assumed. The performances of the
algorithm were extensively tested on the data sets defined
below. Results are given in the next section.
4.1 Data sets

Tests were conducted on two data sets:

• The full CHAMP data set covering 10 years from 2001
to 2010;

• TDS-1, a synthetic multicomponent data set used for
closed loop and processing tests. External, internal and
induced fields as well as noise were taken into account
for generating this data set, but the field contributions
associated with the field aligned currents were not in-
cluded. This TDS-1 was supplied by DTU (see Olsen
et al., 2013) and the Swarm Science Study (Olsen
et al., 2007). The data are provided in two systems
of coordinates: In a North-East-Center (NEC) system
and in the sensor system of coordinates. In the latter
a time constant misalignment error was introduced for
each satellite, in order to test the Euler angle estima-
tion process.

5. Results
The results we present correspond to the output of the

final stage of the iterative process using modified Huber
weights. To obtain these results, the field models and
quaternions were calculated independently. For this test,
and due to the specific characteristics of the data set, our
data selection scheme was modified by introducing a local
time selection at high latitude. This proved to be benefi-
cial probably because the field-aligned currents are not con-
tributing to the synthetic data. As the core field model used
to build the TDS-1 is known, a comparison with the DCO
outputs is possible. We will refer to this known core field
model as the reference model.
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Difference for main field coefficients

Difference for Secular Variation coefficients

Fig. 1. Comparison of the estimated DCO coefficients with the given
reference core field model coefficients. The unscaled differences for the
main field are shown in upper part of figure, the unscaled differences for
the secular variations are shown in its lower part. These differences are
presented for four snapshots inside the data span.

Table 1. Standard deviations of the residuals to the fit to the data in nT.

Satellite ABC A B C

Type

X (SM) 2.76 2.73 2.72 2.84

Y (SM) 2.93 2.87 2.87 3.06

X (HL) 7.51 7.67 7.67 7.16

Y (HL) 6.05 6.18 6.21 5.72

Z (HL) 6.23 6.35 6.38 5.91

The final fit to the selected data extracted from the TDS-
1, gives residuals with standard deviations usually about 2–
3 nT for the mid- and low latitude regions, and 6–7 nT for
the polar area (see Table 1). We note that standard devia-
tions for the polar residuals are smaller than the values ob-
tained with CHAMP data (Lesur et al., 2010). At mid- and
low-latitudes, the values are similar to those obtained with
GRIMM-2, but significantly larger than those obtained with
GRIMM-3. Again this is probably due to the specificity of
the data set rather than to the modeling and parametrization
approach.

The absolute differences between the obtained core field
model and the reference model Gauss coefficients are
shown for four selected epochs in the upper part of Fig. 1.
Corresponding results for the SV are also shown in the

Fig. 2. The figure shows the contribution for each order to the overall
requirement function in nT/year as a function of time over days since
2000.0. The 3 nT/y requirement limit is marked as horizontal dashed
gray line. The increasing deviation towards the begin and end of the
data covered period are obvious.

Fig. 3. Differences from known misalignment angles as a function of time
for each 30 day window after removal of outliers and underpopulated
segments. Data gaps are interpolated. The γ angle, in particular on
satellite C (highest orbit) shows largest differences. The horizontal
dashed lines at 3 arcsecs are the Swarm threshold requirement standard
deviation.

lower part of this figure. The absolute difference of g3
0 is

anomalously large, but this difficulty has never been ob-
served when handling real data. The absolute differences
for the SV are small.

To assess the quality of the SV model, an error E(l) has
been defined by:

E(l, t) =
√√√√(l + 1)

+l∑
m=−l

∣∣ġm
l (t) − ġr

m
l (t)

∣∣2
(25)

where ġm
l are the first time derivatives of the estimated



M. ROTHER et al.: DEDICATED CORE MAGNETIC FIELD MODEL FOR SWARM 1229

Fig. 4. The first component of the XYZ (or equivalently α, β, γ ) Euler rotation angles calculated for CHAMP data for 2001 to 2004 (left part) and late
period 2008 and 2009 (right part). Upper frames: Estimates from other modelers, see text. Lower frames: GRIMM/DCO results for various constant
Euler angles segment length.

core field Gauss coefficients and ġr
m
l their reference values.

Figure 2 shows this error for each SH degree l, for 2 ≤ l ≤
16, as a function of time. The deviation, that is generally
small, increases at the beginning and end of the data time
span. The value for the threshold requirement for Swarm,
3 nT/y, is indicated by the horizontal dashed gray line.

For determining the misalignment angles, we follow the
scheme presented in the previous section. We determine
a good (constant) starting value of the misalignment an-
gles by initially using a large segmentation window. After
subsequently reducing the Euler angle segmentation win-
dow size, the result for a 30-day window length is shown in
Fig. 3. The misalignment angles introduced in the TDS-1
are different for each satellite, but constant in time. Devi-
ations from a constant value in Fig. 3 is evidence of noisy
estimates. A removal of outliers and underpopulated seg-
ments has already been done and gaps in the time series are
interpolated linearly. The result of this interpolation step
is particularly obvious for the α angle (green), satellite-B,
starting at MJD 0. The value for the threshold requirement
for Swarm, a standard deviation of 3 arcsecs, is indicated
by the horizontal dashed gray lines. The scatter is largest
for the gamma angle (rotation around the Z direction), par-
ticularly for satellite C (satellite C has the highest orbit alti-
tude).

6. Discussion
The core field modeling works well under the condi-

tions of the given Swarm test data set, the fit to the data
is good. As stated above, from our experience with the

CHAMP data, the standard deviations of the residuals in
polar regions are significantly too small compared to what
we expect from real data. This is probably because no field-
aligned current models are used when generating the syn-
thetic data set. However, for equatorial regions, the resid-
uals’ standard deviations are slightly larger than expected,
possibly associated with unexpected contributions from ei-
ther the ionosphere or the induced magnetic field models.

The benefit of using quaternions for the Euler angle deter-
mination is the simplicity of the algorithm for their deriva-
tion. But, as a drawback, the quaternion norm needs to be
constrained, which for DCO is imposed through regulariza-
tion. The Euler angle estimation on TDS-1 is leading to
results within the ESA threshold requirements for the Eu-
ler angle estimation on Swarm. The γ angles are clearly
the most noisy; this is to be expected from the near-polar
configuration of the orbits. The same difficulty has been
observed with real satellite data.

An instructive test case was the application of a DCO pre-
decessor to CHAMP data, but here only a comparison with
Euler angle estimations provided by other modelers can be
presented. Even though there were extended tests of the Eu-
ler angle estimation on the full vector CHAMP data set, we
present in Fig. 4 the X angle (of a XYZ rotation convention
or equivalently the α angle of the α, β, γ notation) for a
three-year time interval with moderate to high solar activity
and the period 2008–2009.5 with low solar activity before
the final decay of CHAMP. Afterwards the data are getting
more fragile during the decay of the orbit. The GRIMM-
based estimations are compared with Euler angle estima-
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tions from Stefan Maus, the so-called SCA series), and from
Nils Olsen, the so called CHAOS-3 series, see Olsen et al.
(2009). Both Euler angles time series were provided by per-
sonal communication. The presented tests for the Euler an-
gle estimation on CHAMP data had been performed about
the end of the active mission of CHAMP using the stage of
the processing at that time and using the corresponding Eu-
ler angle time series from the external modelers available at
that time. The CHAMP data had been reprocessed mean-
while a couple of times and fully corrected public CHAMP
magnetic field data may not show all features revealed on
that earlier stage.

In the lower frame of Fig. 4 the GRIMM versions dif-
fer by the estimation window length in days (w =99, 10,
20); the r2 in the label indicates an additional data filter-
ing applied to CHAMP data to reduce outliers. This filter-
ing was removing data vectors with current data residuals
after inversion larger then constant thresholds, which can
be set in the configuration for each component and data
type. The thresholds chosen are intended to remove ap-
parent short periods of outlier bursts, probably created by
suboptimal external field handling. In particular the shown
Euler angle X reveals a possibly spurious strong local time
dependency, which is common to all estimates. Deviations
can result from compromises on complexity (i.e. in external
field modeling), from the size of the local time window and
from the size of the Euler angle temporal segments. The
sensitivity of the DCO-based Euler angle determination to
model details appears weak, but the sensitivity to sparse-
ness of segment population and data quality is strong. This
is particularly true when a model-angle co-estimation ap-
proach is used. As shown on the upper frame of Fig. 4,
for the rotation along the X component, the rotations we
obtain are generally in agreement with the available refer-
ences: the apparent local time dependence, also present in
the SCA reference series, is mostly reproduced.

The amplitude of the angle α local time dependence is
about 30–50 arc secs. This is large in comparison to the
requirement of only a few arc secs for the Euler angle esti-
mation performance for Swarm. However, the mechanism
behind those strong local time dependences of the angle is
not finally clarified, even though it is generally agreed that
the dependence is likely to be a signature of the field gener-
ated by field aligned currents. This hypothesis is supported
by the results obtained with the TDS-1 where, beside the
scattering, no spurious signal in the time series of the Euler
angle correction estimations is visible (see Fig. 3). The field
aligned currents are one prominent external field contribu-
tion, that is not properly simulated in the TDS-1. On the
other hand, even though the local time dependency is not
correlating consistently with the measured temperature sig-
nal (private communication with Hermann Lühr), a bending
of the optical bench cannot be excluded. It will be interest-
ing to see, if actual Swarm measurements of vector data
lead to any significant local time dependent modulation of
the Euler angle time series, as has been experienced with
CHAMP. Also remarkable is the existence of a remain-
ing local time signal in the difference between the GRIMM
Euler angle series and the smoothed SCA solution. This
difference looks like a phase shift starting from 2002.5 or

shortly after. The appearance of this time-shift is yet unex-
plained. For short time windows (e.g. 10 days) the angles
estimation for the CHAMP data starts to be noisy. For ex-
ample the scatter of the results is significant in the SCA
estimation, for which we also show a version where a sym-
metric smoothing filter has been applied (see Fig. 4). For
our approach, a good compromise between roughness and
resolution is found for a window of 20 days (w=20). The
optimum results obtained here for the window of 20 days
may be attributed to the fact that this choice minimizes the
effects of magnetosphere related to magnetic storm activity.
The duration of a typical magnetic storm is shorter then this
20 day period.

Finally, we note that the results for the other two rotation
angles (not shown) do not present clear patterns. The Z
rotation (i.e. the γ angle) is always the most noisy estimate.

7. Conclusion
Two distinct approaches are integrated in the dedicated

core field modeling for Swarm, estimating a core field and
estimating the Euler angles. The algorithms have been ex-
tensively tested using the Swarm TDS-1. The results show
that we are able to recover the reference Gauss coefficients
used to build the synthetic data set with a very good accu-
racy. However, the quality of the core field modeling results
when applied to real data can only be assessed if the data se-
lection parameters, the external field model parametrization
and the constraints applied to the model are tuned by the
“scientist in the loop”. We are confident that the approach
we follow can be successful because it has been used on
CHAMP satellite data. The estimation of the Euler angles
has also been fully tested, on CHAMP data, where the re-
sults resembled prominent features revealed by other mod-
elers. Nonetheless, we will have to wait for probably a full
year of Swarm data before being able to assess the separa-
tion of the external field from the angles estimates.
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