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A barred-olivine (BO) chondrule usually has an olivine rim that covers the chondrule surface. Numerous
experiments have been carried out to reproduce the BO texture. However, the rim structure could be reproduced
only in a few studies reported in the literature. The difficulty in reproducing the rim structure lies in the fact
that its formation condition has not been constrained experimentally or theoretically. In the present paper, we
have carried out numerical simulations of crystal growth of a highly-supercooled melt droplet of pure forsteritic
composition (Mg2SiO4), and succeeded in reproducing the double structure, i.e. the rim and the dendrite. The
droplet cools from the surface, the temperature of which should be cooler than the center of the droplet. Since a
crystal grows faster along the cooler surface than across the hotter center, the rim was found to be formed when
the temperature difference between the center of the droplet and its surface is large enough. From our results,
both from numerical simulations and analytical consideration, we found that the double structure of rim and the
dendrite could be formed only when the cooling rate is within a narrow range, which depends upon the degree
of supercooling. Our results, for the first time, could explain why the formation of rim of BO texture was hardly
reproduced in the previous experiments reported in the literature to date.
Key words: Chondrule solidification texture, melt growth, supercooling, hypercooling, phase-field simulation.

1. Introduction
Chondrules are millimeter-sized, spherical-shaped grains

containing olivine, pyroxene, metal, sulfide, and glass with
igneous textures. They are considered to have been formed
from molten droplets about 4.6 billion years ago in the so-
lar nebula (Amelin et al., 2002); it is believed that they
melted and cooled again to solidify in a short period of
time (Sorby, 1877; Nelson et al., 1972; Tsuchiyama et
al., 1980; Lofgren and Russell, 1986; Jones and Lofgren,
1993; Osada and Tsuchiyama, 2001; Tsuchiyama et al.,
2004). Since chondrules possess about 80 vol.% of chon-
dritic meteorites in the most abundant cases (Jones et al.,
2000), they must carry information about the early history
of our solar system. Chondrules have various textures com-
monly described as porphyritic, barred, and radial textures;
all of these textures appear for the same chondrule bulk
composition (Lux et al., 1981; Lofgren and Russell, 1986).
Many authors have carried out dynamic crystallization ex-
periments to constrain the formation condition of each tex-
ture (Hewins et al., 2005 and references therein), however,
the formation mechanism is not yet fully understood.

Barred-olivine (BO) chondrules are characterized by par-
allel set(s) of olivine bars in a thin section (Weisberg, 1987).
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It has been considered that olivine bar crystals are actu-
ally platy in three-dimensions (Tsuchiyama et al., 2000;
Noguchi, 2002). A BO chondrule usually has an olivine rim
that covers the chondrule surface. This olivine rim has the
same crystallographic orientation as inner olivine platelets.
The olivine rim has not been reproduced in early dynamic
crystallization experiments except in a limited number of
runs (Lofgren and Lanier, 1990; Radomsky and Hewins,
1990). Tsukamoto et al. (1999, 2001) succeeded in repro-
ducing the rim structure from a forsterite melt droplet in
a container-less crystallization experiment using an aero-
acoustic levitation technique. They found from their in-situ
observation that the droplet cooled very rapidly at a rate of
Rcool ≈ 100–1000 K s−1, and then crystallized at a large
supercooling of �T ≈ 600 K within a very short period
of time (less than 1 s). However, they reproduced the rim
structure only in a few cases, so the formation condition was
not constrained from their experiments. On the other hand,
Tsuchiyama et al. (2004) also succeeded in reproducing the
rim structure by evaporation in vacuum. The cooling rate
was Rcool = 1000 K hr−1, which is much slower than that
of the container-less experiments by about three orders of
magnitude. They did not observe the solidification process
of the sample in-situ, so detailed information such as the
timing of nucleation, the solidification timescale, and crys-
tal growth pattern were not available. They considered that
the rim was formed by the rapid crystal growth along the
droplet surface, which should become cooler than the in-

1087



1088 H. MIURA et al.: FORMATION OF RIM OF BARRED-OLIVINE CHONDRULE

terior because of the latent heat of evaporation. However,
their hypothesis has not been verified yet.

To clarify the formation condition of the rim, the crystal-
lization process inside the chondrule melt droplet should be
investigated. We carried out numerical simulations of crys-
tallization of a highly-supercooled melt droplet with a pure
forsteritic (Mg2SiO4) composition (Miura et al., 2010). We
considered the situation that a tiny crystal seeded at the
droplet surface triggers crystallization of the droplet. We
found that the rapid crystal growth along the droplet sur-
face occurs when the cooling rate is very large. However,
we did not investigate over a wide range of supercooling of
the droplet in the previous paper.

The aim of this paper is to clarify the formation condi-
tion of the rim structure. We carry out numerical simula-
tions for a wide range of supercooling and cooling rate by
using the phase-field method, which is one of the most ef-
fective numerical methods to simulate crystal growth in a
supercooled liquid. As a first step, we consider the situa-
tion of container-less crystallization experiments using lev-
itation methods (Tsukamoto et al., 1999, 2001; Nagashima
et al., 2006, 2008; Srivastava et al., 2010) because in these
experiments the thermal profile of the droplet and the crys-
tal growth pattern were observed in-situ, so we can verify
the results of our numerical simulations. For comparison,
we consider a droplet of pure forsteritic (Mg2SiO4) compo-
sition, which was adopted in these experiments.

Glass formation, which is expected to occur when a melt
droplet cools very rapidly, is not taken into consideration in
this paper. Tangeman et al. (2001) reported the first synthe-
sis of a forsterite (Mg2SiO4) composition glass using con-
tainerless conditions. Nagashima et al. (2008) summarized
the condition for glass formation in a Mg2SiO4-MgSiO3

system for various cooling rates (see their figure 4). Under
levitated conditions, a pure forsterite melt becomes a glass
when it cools at Rcool ≈ 300 K s−1 or faster. In contrast,
under non-levitated conditions, an extremely large cooling
rate of Rcool ≈ 106–107 K s−1 is required for glass forma-
tion because of the heterogeneous nucleation on the contact
area (e.g., sample holder). This suggests that glass forma-
tion from a pure forsteritic melt is very difficult once nucle-
ation occurs.

We describe the basic equation of the phase-field method
in Section 2, where the basic concept of the phase-field
method is summarized in Appendix A. In Section 3, we
show the results of the calculation, in which various crystal
growth patterns appear inside the droplet. In Section 4, we
discuss the conditions for rapid crystal growth along the
droplet surface and propose a new constraint for chondrule
formation, especially, for barred-olivine chondrules. We
present some conclusions in Section 5.

2. Method
2.1 Basic equations

We employ the phase-field method for the crystallization
of a pure material from its melt (model I in Wang et al.,
1993). In their model, the solid and liquid phases were
distinguished by φ = 0 and φ = 1, respectively. We
adopt the same basic equations as those used in our previous
paper, in which the cooling term at the droplet surface was

taken into consideration (Miura et al., 2010). The time
evolutions of phase φ and temperature T are given by
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(2)
respectively, where μ is the kinetic coefficient (see
Eq. (A.5)), TM is the equilibrium melting point, � ≡ σ/L
is the capillary length, σ is the interfacial free energy be-
tween crystal and liquid, L is the latent heat of crystal-
lization per unit volume, W is the thickness of the solid-
liquid interface, c is the volumetric heat capacity per unit
volume, and κ is the thermal conductivity. Functions p(φ)

and g(φ) are given by p(φ) = φ3(10 − 15φ + 6φ2) and
g(φ) = φ2(1 − φ)2, respectively, and the prime indicates
the derivative by φ. Equation (2) can be obtained by in-
tegrating a time-dependent thermal diffusion equation over
a small volume element V having a boundary A and then
applying Gauss’s theorem (Miura et al., 2010). As is an in-
tersection of the boundary A and the droplet surface if such
a surface exists. n is the outward pointing unit normal of the
boundary da. The second term of Eq. (2) represents the en-
ergy loss at the droplet surface caused by thermal radiation,
thermal conduction with ambient nebula gas, and latent heat
of evaporation, where qs is the net heat flux.

Although one could introduce anisotropies in μ and σ

to express an anisotropic interface and to simulate facet for-
mation (McFadden et al., 1993; Uehara and Sekerka, 2003),
for simplicity we do not take anisotropy into account.

The governing equation of phase φ, Eq. (1), was derived
from an entropy function to satisfy the entropy production
being positive in any small volume element (Wang et al.,
1993). The details of the derivation will be found in the
reference. We briefly describe the physical meaning of
Eq. (1) in Appendix A.
2.2 Numerical scheme

Chondrules are three-dimensional spherules, so a three-
dimensional calculation is desirable. However, this requires
an unrealistically large number of computational nodes for
a chondrule-sized object (∼109 μm3). To reduce the com-
putational cost, we consider a two-dimensional disk in the
xy-plane (circle but not a sphere), assume uniformity in the
z-direction and drop the derivative by z. Figure 1 shows a
schematic picture of the square mesh used for computation.
We adopt a computational domain of −250 ≤ x ≤ 250 μm
and −250 ≤ y ≤ 250 μm to consider a droplet of 250 μm
in radius, and discretized by a 1000 × 1000 square mesh
(mesh sizes for x- and y-directions are �x = �y = 0.5
μm). Other numerical procedures are the same as Miura et
al. (2010).

We carried out a convergence test with smaller mesh sizes
of �x = �y = 0.25 μm, and found that the calculation
result was not modified except for minor changes in the
shapes of dendrite tips.

We put a seed crystal at the droplet surface to trigger the
crystal growth of the supercooled droplet. At the beginning
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Fig. 1. Two-dimensional square mesh for computation. The thick solid
curve is the actual surface of droplet. The computational cells inside
(white) and outside (gray) the actual surface are defined by whether po-
sitions of their centers locate the inside or outside, respectively. The
computational surface (thick dashed lines) is the mesh boundaries be-
tween inside cells and outside cells. The crystal growth is triggered by
a seed crystal at the droplet surface.

of the calculation, we substitute φ = 0 only at the seeding
point without any change in temperature (see Fig. 2(a), for
example). The radius of the seed crystal is assumed to be
10 μm.
2.3 Initial temperature profile

In this paper, we suppose that a completely-molten melt
droplet cools rapidly from the surface. Due to the surface
cooling, the droplet surface is cooler than the center. The
temperature profile inside the droplet is given by an ana-
lytic solution of the thermal diffusion equation assuming a
uniform cooling (∂T/∂t does not depend on r ) and a con-
stant value of qs (Miura et al., 2010). The analytic solution
is given by

T0(r) = Ts,0 + δTc−s,0

[
1 −

(
r

rd

)2
]

, (3)

where Ts,0 is the temperature at the droplet surface, rd is the
droplet radius, and

δTc−s,0 = qsrd

2κL
(4)

is the temperature difference between the center and surface
of the droplet with the thermal conductivity of the liquid
phase equal to κL. The subscript “0” means t = 0, namely,
at the time when the seeding occurs.
2.4 Physical properties of forsterite sample

In this study, we consider the sample of pure forsteritic
composition. The physical properties we adopted are as
follows; c = 5.7 × 107 erg cm−3 K−1, L = 2.4 × 1010 erg
cm−3, TM = 2163 K (Nagashima et al., 2006, 2008), κC =
5.0 × 105 erg cm−1 K−1 s−1 (Pertermann and Hofmeister,

2006), κL = 2.0 × 105 erg cm−1 K−1 s−1 (Moriya, 1963),
σ = 620 erg cm−2 (Tanaka et al., 2008), μ = 0.4 cm
s−1 K−1 (Tsukamoto et al., 1999, 2001; Nagashima et al.,
2006), and W = 0.25 μm (Murray et al., 1995), where
κC is the thermal conductivity of the crystal phase. These
parameters are the same as those adopted in Miura et al.
(2010).
2.5 Input parameters

2.5.1 Heat flux at droplet surface qs Let us esti-
mate the heat flux qs at the droplet surface from container-
less crystallization experiments (Tsukamoto et al., 1999;
Nagashima et al., 2006, 2008). Samples were melted dur-
ing levitation using a CO2 laser and then quenched by turn-
ing off the laser (Tsukamoto et al., 1999). In this case, the
droplet cools at a maximum rate due to the thermal radia-
tion and the heat conduction by the gas-jet (Nagashima et
al., 2008). The cooling rate can be controlled to be slower
by adjusting the output power of the laser (Nagashima et
al., 2006).

The net heat flux at the droplet surface determines the
cooling rate of the droplet Rcool. The heat flux qs is calcu-
lated by (Miura et al., 2010)

qs = crd Rcool/3. (5)

In Table 1, we summarize the cooling rate Rcool and the heat
flux qs expected in container-less experiments. In this table,
we use c of a pure forsteritic melt (see Section 2.4). The
typical heat flux is found to be qs ≈ 108–109 erg cm−2

s−1. Based on Table 1, we adopt the following values;
qs = 5×108, 1×109, 2×109, 5×109, 1×1010 erg cm−2 s−1.
The smallest value is the same order of magnitude to that
estimated from the container-less experiments. The reason
why we consider larger qs values is to see how the growth
pattern changes at such an extremely large cooling rate.

2.5.2 Supercooling at droplet surface ��������Ts,0 The
molten droplet becomes largely supercooled by a few hun-
dred K or more in the container-less environment (Nelson et
al., 1972; Tsukamoto et al., 1999; Nagashima et al., 2006,
2008; Tanaka et al., 2008). Tsukamoto et al. (1999) carried
out container-less crystallization experiments by using an
aero-acoustic levitator and observed a forsterite melt droplet
being supercooled by �T ≈ 600 K at a cooling rate of
Rcool ≈ 400 K s−1. Nagashima et al. (2006) adopted a gas-
jet levitator and observed a forsterite melt droplet being su-
percooled by �T ≈ 1000 K at a cooling rate of Rcool ≈ 100
K s−1. Tanaka et al. (2008) modeled the homogeneous nu-
cleation and sequential crystal growth inside a supercooled
melt droplet based on classical nucleation theory and found
that a forsterite melt droplet should be supercooled by about
1000 K even if it cools at a much smaller cooling rate, e.g.,
Rcool = 10−2 K s−1.

In this paper, we suppose that a forsterite melt droplet
never nucleates homogeneously at a relatively low super-
cooling (�T < 600 K), so the crystallization is triggered
by a collision with a micron-sized crystal (seeding). De-
pending on the timing of the seeding, crystallization occurs
at various values of supercooling. In this paper, we adopt
values of the supercooling at the droplet surface when the
seeding occurs of �Ts,0 = 200 K, 300 K, 400 K, 500 K,
and 600 K.
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Table 1. Cooling rate Rcool of molten droplet in container-less crystallization experiments using levitation methods. We read Rcool from each cooling
curve obtained at each experiment just before the droplet crystallized. We calculate the heat flux qs and the initial temperature difference between the
center and surface of the droplet δTc−s,0 by using Eqs. (5) and (4), respectively. Refs: [1] Tsukamoto et al. (2001), [2] Nagashima et al. (2006), [3]
Nagashima et al. (2008).

Sample Radius Cooling rate Heat flux Temp. diff. Levitation Ref.

composition rd [μm] Rcool [K s−1] qs [erg cm−2 s−1] δTc−s,0 [K] method

forsterite ≈1000 ≈350 ≈6.7 × 108 ≈170 aero-acoustic [1]

forsterite ≈1000 ≈50 ≈1.0 × 108 ≈25 gas-jet [2]

forsterite ≈1000 ≈70 ≈1.3 × 108 ≈10 gas-jet [3]

Mg1.8SiO3.8 ≈1000 ≈30–40 ≈(0.6–0.8)×108 ≈5 gas-jet [3]

Here, we introduce a hypercooling limit �Thyp defined
by (Glicksman and Schaefer, 1967; Herlach, 1994);

�Thyp = L/c. (6)

The crystallization process from a highly supercooled melt
changes drastically when the supercooling exceeds �Thyp.
When �T < �Thyp, crystallization takes place by a two-
step process. Once nucleation has initiated solidification,
the subsequent growth of the solid phase leads to the re-
lease of the latent heat of crystallization. In the case of
rapid crystal growth, a steep rise in temperature will oc-
cur, termed recalescence, which takes place under near-
adiabatic conditions. After recalescence, some fraction of
the liquid phase still remains. The remaining liquid will so-
lidify under near-equilibrium conditions as the latent heat is
removed. The latter step was termed a “filling-in” process
(Chalmers, 1964). On the other hand, when �T > �Thyp,
the supercooled melt solidifies exclusively during recales-
cence, so there is no remaining liquid because the droplet
temperature during recalescence does not exceed the melt-
ing point. The hypercooling limit of a pure forsterite melt
is �Thyp = 425 K (Nagashima et al., 2006).

3. Result
3.1 Dendritic growth

Figure 2 shows a result of phase-field simulation for
�Ts,0 = 200 K (Ts,0 = 1963 K) and qs = 5 × 108 erg cm−2

s−1. This is a gray contour map of the phase value ranging
from φ = 0 (solid phase, black) to φ = 1 (liquid phase,
white). The transition layer between the solid and liquid is
too thin to distinguish in this map, meaning that the solid-
liquid interface is very sharp. At the beginning, there is a
tiny seed crystal on the right hand side at the droplet surface
(panel (a)). At 0.02 s after seeding, a dendritic crystal grows
from the seed crystal (panel (b)). The temperature distribu-
tion is shown by isothermal lines in terms of T −TM. Crystal
growth is accompanied by release of the latent heat of crys-
tallization, so the temperature around the dendritic crystal
increases up to almost the melting point. On the other hand,
the supercooling far from the dendritic crystal is still large,
resulting in a steep temperature gradient ahead of the grow-
ing dendrite tips. The dendritic crystal is spreading into the
entire region inside the droplet (panel (c)). Around 0.06 s
after seeding, the rapid dendritic crystal growth comes to a
stop because the temperature inside the droplet increases to
the melting point (panel (d)). It is found that a liquid phase
still remains at the gap between dendrite tips. Finally, the
remaining liquid solidifies completely as the latent heat of

Fig. 2. Result of phase-field simulation for �Ts,0 = 200 K and
qs = 5 × 108 erg cm−2 s−1. A circle of 250 μm in radius is the ex-
ternal shape of droplet and the target of the calculation is only inside
the circle. Black and white regions represent crystal and liquid phases,
respectively. The temperature distribution is shown by contours with
labels indicating T − TM, namely, negative and positive labels mean
supercooled and above melting point, respectively. The interval of the
isotherms is 50 K. The initial condition (a), and t = 0.02 s (b), 0.04 s
(c), and 0.06 s (d) after seeding.

crystallization is removed by the surface cooling. It took
0.42 s to solidify completely. The luminosity of the droplet
increases rapidly from panel (a) to (d), and then decreases
gradually (Miura et al., 2010).
3.2 Dendritic growth with rim structure

Figure 3 shows a result for �Ts,0 = 300 K (Ts,0 = 1863
K) and qs = 2 × 109 erg cm−2 s−1. At the beginning, one
can see concentric isothermal lines of T0 − TM = −250 K
and −200 K (panel (a)), meaning that there is a large tem-
perature difference between the center and surface of the
droplet. The temperature difference calculated by Eq. (4) is
δTc−s,0 = 125 K, so the temperature at the droplet center
(T0 − TM = −175 K) is 175 K below the melting point.
At 0.008 s after seeding, a dendritic crystal grows from a
seed crystal as well, as shown in Fig. 2(b) (panel (b)). At
0.016 s after seeding, it is found that the dendritic crystal
growing across the droplet center is suppressed compared
with Fig. 2(c) (panel (c)). At 0.024 s after seeding, the crys-
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Fig. 3. Result of phase-field simulation for �Ts,0 = 300 K and
qs = 2 × 109 erg cm−2 s−1. The initial condition (a), and t = 0.008
s (b), 0.016 s (c), and 0.024 s (d) after seeding. Others are the same as
Fig. 2.

tal is growing rapidly along the droplet surface (panel (d)).
The crystal along the droplet surface is one of the branches
of the dendritic crystal, and it seems to be surrounding the
droplet like the rim of a BO chondrule.
3.3 Rim growth

Figure 4 shows a result for �Ts,0 = 400 K (Ts,0 = 1763
K) and qs = 1 × 1010 erg cm−2 s−1. One can see dense
concentric isotherms at the beginning (panel (a)). The tem-
perature difference between the center and surface is calcu-
lated to be δTc−s,0 = 625 K from Eq. (4). The inner most
isotherm is T0 − TM = 200 K, indicating a temperature
above the melting point. The crystal growth pattern is com-
pletely different from Figs. 2 and 3. No dendritic crystal
grows inside the droplet (panel (b)). The crystal grows only
along the droplet surface where the temperature is below
the melting point. At 0.016 s after seeding, almost of all of
the droplet surface is covered with the crystal (panel (c)).
There is liquid remaining inside the crystal rim (panel (d)).
The remaining liquid gradually solidifies from the outside
to the inside as the latent heat of crystallization is removed
through the shell crystal.
3.4 Parallel dendritic growth

Figure 5 shows a result for �Ts,0 = 500 K (Ts,0 = 1663
K) and qs = 2 × 109 erg cm−2 s−1. The temperature differ-
ence between the center and surface of the droplet is calcu-
lated as δTc−s,0 = 125 K, so the temperature at the center
(T0−TM = −375 K) is 375 K below the melting point. Note
that the temperature distribution can be divided into two re-
gions; a hypercooled region along the surface, and normally
supercooled at the central region, where “normally” means
that the supercooling does not exceed the hypercooling limit
�Thyp (see Eq. (6)). The seed crystal grows isotropically at
first (panel (b)). However, when the crystal-liquid interface

Fig. 4. Result of phase-field simulation for �Ts,0 = 400 K and
qs = 1 × 1010 erg cm−2 s−1. The interval of the isotherms is 100
K. The initial condition (a), and t = 0.008 s (b), 0.016 s (c), and 0.024
s (d) after seeding. Others are the same as Fig. 2.

Fig. 5. Result of phase-field simulation for �Ts,0 = 500 K and
qs = 2 × 109 erg cm−2 s−1. The interval of the isotherms is 100 K.
The initial condition (a), and t = 0.003 s (b), 0.006 s (c), and 0.009 s
(d) after seeding. Others are the same as Fig. 2.

reaches the normally supercooled region, it splits into some
parallel branches (panel (c)). After the tips of the branches
pass the normally supercooled region, it is found that a liq-
uid phase remains among the branches (panel (d)). The re-
maining liquid solidifies as the latent heat of crystallization
is removed.
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Fig. 6. Result of phase-field simulation for �Ts,0 = 600 K and
qs = 5 × 108 erg cm−2 s−1. The interval of the isotherms is 100 K.
No labels indicating T − TM is displayed for the purpose of visualiza-
tion. The initial condition (a), and t = 0.0016 s (b), 0.0032 s (c), and
0.0048 s (d) after seeding. Others are the same as Fig. 2.

3.5 Isotropic growth
Figure 6 shows a result for �Ts,0 = 600 K (Ts,0 = 1563

K) and qs = 5 × 108 erg cm−2 s−1. The temperature differ-
ence between the center and surface of the droplet is only
δTc−s,0 ≈ 30 K. The temperature at the center (T0 − TM =
−570 K) is 570 K below the melting point, so the entire
droplet is hypercooled. From panels (b)–(d), one can see
that the crystal grows isotropically from the seed crystal.
There is no remaining liquid after the crystal growth front
has passed because the liquid can solidify completely with-
out removal of the latent heat of crystallization. The shape
of the crystal-liquid interface is quasi-planar, which denotes
macroscopic planarity of the interface, but on the micro-
scopic scale of the heat-flow the interface does not necessar-
ily behave as a plane front (Glicksman and Schaefer, 1967).

4. Discussion
4.1 Constraint on cooling rate for rim formation

Here, we derive the constraint on the cooling rate for rim
formation based on the discussion of Miura et al. (2010).

Let us consider crystal growth from a seed crystal at one
side of the droplet surface to the opposite side. There are
two possible routes for crystal growth; along the droplet
surface and across the center. For the former case, the dis-
tance of the growth route is the longest, however, the growth
velocity is the fastest because the surface should be cooler
than the center due to surface cooling. Here, we assume that
the growth velocity of the crystal is V (�T0) ∝ �T β

0 , where
�T0 is the supercooling inside the droplet when the seeding
occurs. The index is β ≈ 2.5–3.5 according to the dendrite
growth theory (Langer and Müller-Krumbhaar, 1978; Xu,
1998). Hereinafter, we adopt β = 3 as a typical value. The
growth timescale along the droplet surface τs is given by di-

viding the arc distance πrd by the growth velocity V (�Ts,0)

as
τs = πrd

V (�Ts,0)
, (7)

where we consider a constant supercooling of �Ts,0,
namely, a constant growth velocity along the droplet sur-
face. On the other hand, the growth velocity across the
droplet center is not constant because of the temperature
gradient inside the droplet (see Eq. (3)). The growth
timescale across the center τc is given by the following in-
tegral form;

τc = 2
∫ rd

0

dr

V (�T0(r))
= 2rd

V (�Ts,0)
I (β, α), (8)

where

α ≡ δTc−s,0

�Ts,0
, I (β, α) ≡

∫ 1

0

dr̃

[α(r̃2 − 1) + 1]β
, (9)

r is the distance from the droplet center, and r̃ = r/rd. The
condition for rapid crystal growth along the droplet surface
is given by τs < τc, which is rewritten as

I (β, α) >
π

2
. (10)

By integrating I (β, α) numerically, we obtain (Miura et al.,
2010)

α >∼0.2, for β = 3. (11)

The cooling rate is rewritten as Rcool = 6ακL�Ts,0/cr2
d

by using Eqs. (4), (5), and (9). Substituting Eq. (11) into
the expression for the cooling rate, we obtain the formation
condition of the rim as

Rcool > ∼2000

(
�Ts,0

300 K

) (
rd

250 μm

)−2

K s−1. (12)

It should be noted that the condition given by Eq. (11)
or (12) is applicable only when τs < τcool, where τcool is
the cooling timescale of the droplet (Miura et al., 2010).
If not, the droplet temperature drops considerably during
solidification, so Eq. (3) cannot be used in this analysis. We
can apply the condition given by Eq. (11) or (12) to our
results because the typical growth timescale of τs < 0.1 s is
shorter than the cooling timescale of τcool > 0.1 s.
4.2 Condition to produce each growth pattern

Figure 7 shows the calculation conditions and the resul-
tant crystal growth patterns on a qs-Ts,0 diagram. The top
border is δTc−s,0 calculated by Eq. (4). The right border is
the normalized supercooling at the droplet surface defined
by (Glicksman and Schaefer, 1967)

�θs,0 = TM − Ts,0

�Thyp
. (13)

Note that the droplet surface is hypercooled when �θs,0 >

1 (see Eq. (6)). Filled symbols indicate the calculation
conditions in which the rim was formed (Section 3.1, 3.2,
and 3.3). Two solid curves in Fig. 7 show the conditions
of α = 0.2 and α = 1, respectively; the former is the
criterion for rim formation, and the latter corresponds to
the condition above which the temperature at the droplet
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Fig. 7. Calculation conditions and the resultant crystal growth patterns
on qs-Ts,0 diagram. δTc−s,0 is the temperature difference between the
surface and center of the droplet. θs = (TM − Ts,0)/�Thyp is the
normalized supercooling at the droplet surface, where �Thyp is the
hypercooling limit. The solid curves correspond to the conditions of
α = 0.2 and α = 1, respectively, where α = δTc−s,0/�Ts,0 is the
normalized temperature difference. The dashed curve is the criterion
below which the entire droplet is hypercooled.

center exceeds the melting point (see Eq. (11)). The rim
was found to be formed at conditions to the upper right
of the α = 0.2 curve. From comparison with the results
of phase-field simulations, we conclude that the condition
given by Eq. (11) or (12) are plausible as the criterion for
rim formation.

The dashed curve is the parameter space below which
the entire droplet is hypercooled. It is found that isotropic
growth (see Section 3.5) occurred at conditions below the
dashed curve.

A large star symbol indicates the condition of the
container-less crystallization experiment by Tsukamoto et
al. (1999), in which the rim surrounding parallel sets
of olivine bars was successfully reproduced from a pure
forsteritic composition melt droplet. In their experiment,
the droplet crystallized at a supercooling of �Ts,0 ≈ 600
K, which gives the normalized surface undercooling of
�θs,0 ≈ 1.4. The temperature difference inside the droplet
was estimated as δTc−s,0 ≈ 170 K (see Table 1), which
gives α ≈ 0.4. Since this experimental condition satisfied
the condition for rim formation, their sample having the rim
structure is a reasonable result.

We consider the experimental condition of Tsuchiyama
et al. (2004). In their experiment, the cooling rate of the
droplet was Rcool = 1000 K hr−1 if we assume that it is the
same as the cooling rate of the furnace. The temperature
difference between the center and surface of the droplet can
be estimated as δTc−s,0 ≈ 0.02 K for a sample radius of
rd = 500 μm and with typical thermodynamic properties
of silicates (c = 3 × 107 erg K−1 cm−3 and κL = 2 × 105

erg cm−1 s−1 K−1, Murase and McBirney, 1973). From
the condition of Eq. (11), the molten sample in their ex-
periment must have crystallized at very low supercooling
as �Ts,0 < 0.1 K to form the rim. The nucleation at such
very small supercooling might be due to the contact of the
droplet to the carbon capsule. However, the exact value
of the nucleation supercooling was not measured, so we
cannot test our new constraint with their experiment. In-
situ temperature measurement during droplet solidification
is required to clarify the condition of rim formation.
4.3 Implication for chondrule solidification textures

The numerical model that we adopted in this study was
used to simulate the crystal growth process in a supercooled
melt droplet of a single composition, namely, the composi-
tion of the crystal phase is the same as that of the parent liq-
uid phase. However, real chondrules are multi-component,
namely, the composition of the crystal phase is not neces-
sarily the same as the bulk composition of the parent liquid
(e.g., Jones, 1990). Therefore, not only the temperature dis-
tribution inside the droplet, but also the partitioning and dif-
fusion of elements near the crystal-liquid interface (Watson,
1996, 2004) should be taken into consideration. To eluci-
date the formation mechanism of chondrule solidification
textures, it is required to model the crystallization process
of a multi-component melt droplet at a largely undercooled
state (e.g., Bi and Sekerka, 1998, 2002).

Before the multi-component modeling begins, we make
some predictions for chondrule solidification textures based
on our single-component phase-field calculations. In our
model, the droplet after complete solidification is just a sin-
gle crystal spherule, probably with no solidification texture
remaining inside. However, if the droplet contains small
amounts of incompatible elements in olivine, such as Ca
and Al, these elements tend to partition into the remaining
liquid phase during crystal growth (Libourel, 1999; Pack
and Palme, 2003). The inhomogeneity in elemental com-
position should relate to the solidification texture. There-
fore, the distribution of the remaining liquid phase inside
the droplet has some implications for the formation mecha-
nism of chondrule solidification textures.

To visualize the distribution of the remaining liquid
phase, we introduce a crystallization timescale τcry into our
phase-field calculation. The timescale τcry shows how long
the liquid takes to solidify at a certain position, and it is
calculated by

τ (i, j)
cry = t (i, j)

0.1 − t (i, j)
0.9 , (14)

where t (i, j)
0.1 and t (i, j)

0.9 are the times when φi, j = 0.1 and 0.9,

respectively, at the grid point (i, j). t (i, j)
0.9 means the time

when the liquid at the grid point (i, j) begins to crystallize,
and t (i, j)

0.1 means the time when the grid point is almost
completely solidified. The remaining liquid phase should
have large τcry because it solidified very slowly.

Figure 8 is the gray-scale map of τcry for each result of the
phase-field simulation shown in Figs. 2–6. The gray map
shows the value of τcry on a logarithmic scale; darker gray
for rapidly crystallized regions and lighter gray for more
slowly crystallized ones. It is found that the shape of the
darker gray region corresponds to the crystal growth pattern
for each phase-field simulation. In panels (d) and (e), there
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Fig. 8. Distribution of crystallization timescale τcry in a completely solidified droplet. Panels (a)–(e) correspond to Figs. 2-6, respectively. Note that the
range of gray scale are different in each panel.

are some light gray lines that were not clearly identified
in Figs. 5 and 6, respectively. These lines correspond to
positions of some dents at the quasi-planar crystal-liquid
interface. As shown in Figs. 5 and 6, the interface is not
a complete plane but has some small undulations. During
the advance of the interface, the released latent heat of
crystallization poured into the dents by thermal diffusion
even at the hypercooled state. The temperature at the dents
becomes slightly higher than the ambient region, making
the growth speed slower. Therefore, the track of the dent
position remains on the map as the region where the liquid
solidified more slowly.

The gray-scale map of τcry just visualized the difference
of crystal growth timescale during solidification. The re-
lationship to the chondrule solidification textures was not
clear. However, we consider that the chondrule solidifi-
cation textures reflect the crystal growth pattern inside the
droplet. Our phase-field simulations are the first step to un-
derstand the formation mechanism of chondrule solidifica-
tion textures.

5. Conclusion
The chondrule solidification texture reflects the crystal

growth pattern inside the melt droplet at the time of forma-

tion in the early solar nebula. We numerically investigated
the following two thermal effects on the crystal growth pat-
tern; (i) the cooling at the droplet surface and (ii) the re-
lease of latent heat of crystallization. Surface cooling makes
the droplet surface cooler than the center. Since the crystal
growth rate is faster along the cooler surface than across the
hotter center, the rim was formed when the cooling rate is
large enough. The release of the latent heat of crystalliza-
tion caused a rapid temperature increase near the growing
rim, resulting in a very steep temperature gradient at the
interface between the rim and the remaining liquid (melt)
phase. This “reversed” temperature gradient led to den-
drite formation due to the morphological instability. We
found that the double structure of rim and dendrite could
be formed only when the cooling rate is within a narrow
range. An understanding of these thermal effects on chon-
drule melt solidification is the first step to elucidate the for-
mation mechanism of chondrule solidification textures.
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Appendix A. Phase-Field Method (PFM)
The classical approach to the modeling of first order

phase transformations involves tracking the free boundary
that separates the growing phase (e.g., crystal) from the par-
ent phase (e.g., supercooled liquid). PFM provides an al-
ternative approach, according to which a new variable, the
phase field φ, is introduced to keep track of the phase, tak-
ing on constant values indicative of each of the bulk phases
and making a transition between these values over a thin
transition layer that plays the role of the classically sharp
interface. One of the advantages of PFM is not to require
explicit tracking of the free boundary. This makes the nu-
merical model simpler than the classical approach.

In the PFM developed by Wang et al. (1993), the crys-
tallization process can be simulated by solving the coupled
equations for the phase field and temperature field given by
Eqs. (1) and (2), respectively. The latter is easily recog-
nized as the time-dependent thermal diffusion equation tak-
ing into account the release of latent heat of crystallization,
as explained in the text.

The physical meaning of Eq. (1) except for the diffusion
term is that the phase value φ(x, t) changes to minimize the
Helmholtz free energy density f (T (x, t), φ(x, t)) as time
goes on, where T is the temperature. The Helmholtz free
energy density is given by (Wang et al., 1993)

f (T, φ)

L
= T

TM

[
3
√

2 �

2W
g(φ) − T − TM

T
p(φ)

]
. (A.1)

Figure A.1 shows f (T, φ) as a function of φ. The solid,
dashed and dotted curves are for T = TM (equilibrium),
T < TM (solidification), and T > TM (melting), respec-
tively. When T = TM, f (T, φ) has two minima at φ = 0
(solid) and φ = 1 (liquid). This stands for solid-liquid co-
existence. When T < TM, the minimum at φ = 0 is lower
than the (local) minimum at φ = 1. The difference in free
energy between these two minima gives a driving force for
solidification. On the contrary, when T > TM, the mini-
mum at φ = 1 is lower than the (local) minimum at φ = 0,
leading to melting of the solid phase.

The diffusion term of Eq. (1) makes the crystal-liquid
interface smooth. This term represents the effect that the
undulated interface in equilibrium with the parent liquid
becomes flat. This effect is termed as the Gibbs-Thomson
effect, namely, the equilibrium temperature at the curved
interface is given by

TN = TM(1 − �/ρ), (A.2)

where ρ is a local radius of curvature at a point of the
interface (positive ρ when convex toward the liquid). The
term TM�/ρ is the melting point depression due to the
surface tension.

In PFM, the solid-liquid interface has finite thickness.
The thickness w is obtained from a steady-state solution of
Eq. (1) at T = TM (Wang et al., 1993). By dropping the
time-derivative term and substituting T = TM, Eq. (1) can

Fig. A.1. The helmholtz free energy density f (T, φ) adopted in PFM of
Wang et al. (1993).

Fig. A.2. One-dimensional solution of Eq. (A.3) under equilibrium con-
dition, T = TM.

be rewritten as
∂2φ

∂x2
= 1

4W 2
g′(φ). (A.3)

The solution with boundary conditions φ → 0 as x →
−∞, and φ → 1 as x → +∞ is found to be

φ(x) = 1

2

[
tanh

(
x

2
√

2 W

)
+ 1

]
, (A.4)

where we have chosen a constant of integration to locate
the interface at x = 0. Figure A.2 shows this solution with
respect to x . If we consider the solid-liquid interface being
at 0.1 ≤ φ ≤ 0.9 (see Section 4.3), the width is found to be
w ≈ 6 W .

Wang et al. (1993) formulated the phase-field equation to
solve the crystal growth velocity V consistently with well-
known Wilson-Frenkel low in the limit of W → 0. The
Wilson-Frenkel low (Wilson, 1900; Frenkel, 1932) means
that the growth velocity V is proportional to the local su-
percooling, so we obtain

V = μ (TN − T ) , (A.5)

where the proportionality constant μ is called the kinetic
coefficient and represents the efficiency for a growth unit to
be incorporated into the crystal phase. Therefore, we can
calculate the crystal growth velocity correctly by using a
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sufficiently fine computational mesh (Murray et al., 1995;
Wang and Sekerka, 1996).
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