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This paper gives the technical solutions of implementing the space-time epidemic-type aftershock sequence
(ETAS) model for short-term (1-day) earthquake forecasts for the all-Japan region in the Collaboratory for
the Study of Earthquake Predictability (CSEP) project in Japan. For illustration, a retrospective forecasting
experiment is carried out to forecast the seismicity in the Japan region before and after the Tokachi-Oki earthquake
(M 8.0) at 19:50:07 (UTC) on 25 September 2003, in the format of contour images. The optimal model
parameters used for the forecasts are estimated by fitting the model to the observation records up to the starting
time of the forecasting period, and the probabilities of earthquake occurrences are obtained through simulations.
To tackle the difficulty of heavy computations in fitting a complicated point-process to a huge dataset, an “off-line
optimization” and “online forecasting” scheme is proposed to keep both the estimates of model parameters and
forecasts updated according to the most recent observations. The results show that the forecasts have captured
the spatial distribution and temporal evolution of the features of future seismicity. These forecasts are tested
against the reference Poisson model that is stationary in time but spatially inhomogeneous.
Key words: ETAS model, probability forecast, point process, random simulation, information score.

1. Introduction
Statistical models for describing the occurrence process

of earthquakes can be used for short-term or real-time
earthquake forecasts (Vere-Jones, 1970). The principle of
evaluating the probabilities of earthquake occurrence by
using point process models, which are formulated with
conditional intensity functions, was framed by Vere-Jones
(1998). Among the different models for seismicity, the
epidemic-type aftershock sequence (ETAS) model, which
describes the features of earthquake clustering of fore-
shocks, mainshocks, and aftershocks, has become a stan-
dard model for testing hypotheses and a starting point for
short-term earthquake forecasts (see, e.g., Helmstetter and
Sornette, 2003; Zhuang et al., 2004, 2008; Hainzl and
Ogata, 2005; Lombardi et al., 2010).

In the study reported here, we constructed an “off-
line optimization and online forecast” framework for 1-
day earthquake forecasts by using the space-time ETAS
model, implemented in both the Collaboratory for the
Study of Earthquake Predictability (CSEP) project in Japan,
maintained by Earthquake Research Institute, University
of Tokyo (Nanjo et al., 2011 this issue), and the CSEP
project of the Southern California Earthquake Center. Sim-
ilar models and procedures were also been implemented
by Helmstetter et al. (2006) and Werner et al. (2011) in
their earthquake forecasting experiments. The main dif-
ference between our implementation and previous reported
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ones is the “off-line optimization”, which will be explained
in Section 3. For illustration, a retrospective forecast-
ing experiment for the Japan region before and after the
2003 Tokachi-Oki earthquake (MJ = 8.0) is carried out in
Section 4.

2. The Forecasting Model
Our forecasting model is the ETAS model. The catalog

of earthquakes is considered to be a list of earthquakes iden-
tified by their occurrence times, magnitudes, and locations.
We first assume that the distribution of the magnitude m is
separable from the other components, with a density func-
tion taking the form of

s(m) = βe−β(m−mc), m ≥ mc, (1)

i.e., the probability density form of the Gutenberg-Richter
law for earthquake magnitudes above a magnitude threshold
mc, and β is linked with the Gutenberg-Richter b-value by
β = b ln 10. The expected number of earthquakes in the
unit space-time window centered at a time t (day) and a
spatial location of a longitude x (deg) and a latitude y (deg),
given the observations before t , can be written as

λ(t, x, y) = μ(x, y) +
∑

i : ti <t

ξ(t, x, y; ti , xi , yi , mi ), (2)

where μ(x, y) (unit: events/(day·deg2)) represents the
spontaneous (background) seismicity rate, which is a func-
tion of spatial locations but constant over time, and
ξ(t, x, y, m; ti , xi , yi , mi ) (unit: events/(day·deg2)) is the
contribution to seismicity rate by the i th event occurring
previously. In practice, ξ(t, x, y; ti , xi , yi , mi ) is assumed
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separable and dependent on the differences in time and spa-
tial locations to the initiating event, or explicitly,

ξ(t,x,y;ti ,xi ,yi ,mi )=κ(mi ) g(t −ti ) f (x−xi , y−yi ; mi ),

(3)

where

κ(m) = A eα(m−mc), m ≥ mc, (4)

(unit: events) is the expectation of the number of children
(productivity) spawned by an event of magnitude m;

g(t) = p − 1

c

(
1 + t

c

)−p

, t > 0, (5)

(unit: day−1) is the probability density function (p.d.f.) of
the length of the time interval between a child and its parent;
and

f (x, y; m) = q − 1

π Deγ (m−mc)

[
1 + x2 + y2

Deγ (m−mc)

]−q

, (6)

(unit: deg−2) is the p.d.f. of the relative locations between
the parent and children. In the above formulations, A, α,
c, p, D, q, and γ are constant parameters to be estimated
from model fitting.

It is easy to see that such a model is a branching pro-
cess with immigrants: the background (immigrant) process
is a Poisson process; once an event occurs, irrespective of
whether it is from the background processes or triggered by
a previous event, this earthquake triggers a non-stationary
Poisson process, specified by Eq. (3) as its children pro-
cess. This model is also a kind of self-excitation process
(Hawkes, 1971a, b).

The above formulations are according to Zhuang et al.
(2005) and Ogata and Zhuang (2006), which are improved
versions of the ones in Ogata (1998). Many other forms can
also be found in the studies carried out during last 20 years
(see, e.g., Console et al., 2003; Helmstetter et al., 2003).

For an observation of the process, recorded as a list in
the form of {(ti , xi , yi , mi ) : i = 1, · · · , N }, from a spatial
region S and a time interval [0, T ], the likelihood has the
standard form (see, e.g., Daley and Vere-Jones, 2003)

ln L =
∑

i : (ti ,xi ,yi )∈S×[0,T ]

ln λ(ti , xi , yi )

−
∫ T

0

∫∫
S
λ(t, x, y) dx dy dt +

N∑
i=1

ln s(mi ).

(7)

If the background seismicity rate μ(x, y) is known, the
model parameters, θθθ = (A, α, c, p, D, q, γ ), can be esti-
mated through maximizing the likelihood function. In com-
putation, we use the Davidon-Fletch-Powell method to min-
imize −ln L (Fletcher and Powell, 1963).

Once the conditional intensity function is estimated, it
provides us with a good method to estimate the probability
that an event is a spontaneous event or is triggered by others
(Kagan and Knopoff, 1976; Zhuang et al., 2002, 2004).

Consider the contribution of the spontaneous seismicity rate
at the occurrence of the i th event,

ϕi = μ(xi , yi )

λ(ti , xi , yi )
. (8)

If we keep the i th event with probability ϕi for all the
events in the process, we can realize a process with the
occurrence rate of μ(x, y) (see Ogata (1981), or Zhuang
(2006), for justification). Thus it is natural to regard ϕi as
the probability that the i th event is a spontaneous event.

3. Model Estimation
To use the model specified by Eq. (2) to forecast seismic-

ity, the following technical problems need to be solved: (1)
estimating background seismicity rate, (2) estimating the
model parameters (A, α, c, p, D, q, γ ), and (3) forecasting
by using the fitted model. The solutions to (1), (2) and (3)
are addressed in Subsections 3.1 to 3.3, respectively.
3.1 Estimating time-independent total seismicity and

background seismicity
Given a dataset of earthquake occurrence times, loca-

tions, and magnitudes, the time-independent total seismic-
ity is usually estimated by some nonparametric method,
such as splines (Ogata, 1998), kernel functions (Zhuang
et al., 2002; Helmstetter et al., 2007), grid averag-
ing (Tsukakoshi and Shimazaki, 2006), and Tessellation
(Ogata, 2004b). In this paper, we consider using the vari-
able kernel estimate (Zhuang et al., 2002). This approach
is simple and tackles a serious disadvantage of the simple
kernel estimate with a fixed bandwidth: for a spatially clus-
tered point dataset, a small bandwidth gives a noisy or vari-
able estimate for the sparsely populated area, while a large
bandwidth mixes up the boundaries between the densely
populated areas and the sparsely populated areas. There-
fore, given observations in the time interval [0, T ], instead
of the kernel estimate

λ̂0(x, y) = 1

T

∑
j : t j ∈[0,T ]

Zd(x − x j , y − y j ) (9)

where Zd(x, y) denotes the Gaussian kernel function

Zd(x, y) = 1

2πd
e− x2+y2

2d2

with a fixed bandwidth d, we adopt

λ̂0(x, y) = 1

T

∑
j : t j ∈[0,T ]

Zd j (x − x j , y − y j ), (10)

where d j represents the varying bandwidth calculated for
each event j in the following way. Given a suitable integer
n p, d j takes the value of the distance between Event j and
its n pth nearest neighbor. Because d j may be zero when
several events overlap at the same location, we also set d j a
threshold value ε (e.g., a distance about 0.02◦, which is of
the order of the location error) if this distance is less than ε.

Similar to estimating total seismicity, many approaches
have also been developed for assessing background seis-
micity rate: (1) proportional to total seismicity rate of all
events or only of the big events in the catalog (Musmeci
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and Vere-Jones, 1986; Console et al., 2003); (2) using a
declustering method to decluster the catalog and use the to-
tal rate in the declustered catalog as background rate (Ogata,
1998; Helmstetter et al., 2006; Werner et al., 2011); (3)
weighting each event by background probability that it is a
background event (Zhuang et al., 2002, 2004); and (4) the
method introduced by Ogata (2004b), which is a Bayesian
smoothness prior on a tessellation grids to estimate the spa-
tial variation of the background and the model parameter at
the same time. In this study, the third method is used be-
cause it is relatively simple and gives an unbiased estimate
of the intensity function.

Using the method described in the last paragraph of
Section 2, once a background process is obtained, we
can estimate the background intensity by applying some
smoothing techniques to the background catalog. Rather
than repeat the thinning procedure and the kernel estima-
tion procedure many times to obtain an average estimate of
the background intensity, the average can be estimated di-
rectly by weighting all the events with their corresponding
background probabilities, i.e.,

μ̂(x, y) = 1

T

∑
i : ti ∈[0,T ]

ϕi Zdi (x − xi , y − yi ), (11)

where i runs over all of the events in the whole process,
and Zd is the Gaussian kernel function with a bandwidth d.
The variable bandwidth d j is defined in the same way as in
Eq. (10).

To find optimal values of n p and ε in Eq. (10) and
Eq. (11), I apply the above variable kernel functions to esti-
mate the rates of simulated inhomogeneous Poisson point
processes. Cross-validation (see, e.g., Picard and Cook,
1984) reveals that the optimal n p is in the range 3∼6,
but not in the range 20∼100 as declared in Zhuang et al.
(2002). The parameter ε does not influence the prediction
too much—if the locations of points are not rounded at a
certain precision. This parameter only becomes important
when some points happen to overlap at one location caused
by rounding the numbers. Also, smaller n p and ε make
Algorithm A easier to converge.
3.2 Iterative algorithm

As pointed out in Section 2, when the background rate is
known, the maximum likelihood method can be used to es-
timate model parameters. However, in most cases, the back-
ground rate is unknown. To estimate the model parameters
and the background seismicity rate simultaneously, Zhuang
et al. (2002) introduced the following iterative algorithm.
Algorithm A: Simultaneous estimation of the model pa-
rameters and the background intensity

A1. Given a fixed n p and ε, say 5 and 0.05◦ (equivalent
to 5.56 km on the earth surface, which is close to the
location error of earthquakes), calculate the bandwidth
h j for each event (t j , x j , m j ), j = 1, 2, · · · , N .

A2. Set � ← 0, and u(0)(x, y) ← 1.
A3. Using the maximum likelihood procedure (see, e.g.,

Ogata, 1998), fit the model with conditional intensity

function

λ(t, x, y) = νu(�)(x, y)

+
∑

i : ti <t

κ(mi )g(t − ti )

× f (x − xi , y − yi ; mi ) (12)

to the earthquake data, where κ , g, and f are defined
in Eq. (4) to Eq. (6), and ν is the relaxing coefficient,
which is introduced in order to fasten the convergency
speed of this algorithm. The model parameters are
(ν, A, α, c, p, D, q, γ ).

A4. Calculate ϕ j for j = 1, 2, · · · , N by using Eq. (8).
A5. Calculate μ(x, y) by using Eq. (11) and record it as

u(�+1)(x, y).
A6. If max |u(�+1)(x, y) − u(�)(x, y)| > ε, where ε is a

given small positive number, then set � ← � + 1
and go to step A3; otherwise, take νu(�+1)(x, y) as the
background rate and also output ρi j , ρi and ϕi .

3.3 Simulation method and forecasting procedure
Given the observation up to time t , to forecast whether

there is one earthquake or more in the next time interval
[t, t + �t] in a region S, Helmstetter et al. (2006) and
Werner et al. (2011) used a direct and quick approach to
compute the expectation of the number of events occurring
in [t, t + �t] × S by

�([t, t + �t] × S) =
∫∫

S

∫ t+�t

t
λ(t, x, y) dt dx dy (13)

and the probability that at least one event occur by

P{N ([t, t + �t] × S) ≥ 0}
= 1 − exp

{
−

∫∫
S

∫ t+�t

t
λ(t, x, y) dt dx dy

}
(14)

where λ(t, x, y) in [t, t + �t] × S is calculated by assum-
ing no event occurring from t . There is no problem with
Eq. (14). However, Eq. (13) underestimates because, earth-
quakes occurring [t, t + �t], inside or outside S, increase
λ(t, x, y). This underestimation becomes worse during the
periods of active triggering. In this study, we estimate the
expectations and probabilities associated with future earth-
quakes by simulation in order to avoid such a bias. Com-
paring using Eq. (13), simulation gives a better estimation
of the future seismicity, but at a more expensive computa-
tion cost.

Suppose that observation data are available up to time
t , but not including t . The following algorithm (modified
from Zhuang et al., 2004) can then be used to simulate the
seismicity in the interval [t, t + �t].
Algorithm B: Simulation of the space-time ETAS model

B1. Generate the background catalog with the estimated
background intensity μ̂(x, y) in Eq. (11). For each
event in the background catalog, generate a random
variable Ui uniformly distributed in [0, 1], accept it if
Ui < νϕi �t/(t − t0), where ν is as defined in (12), t0
is the starting time of the catalog and thus t − t0 is the
length of period of data fitted to the model. Randomly
assign each selected event a new time uniformly dis-
tributed in [t, t +�t], and relocate each selected event
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Fig. 1. Illustration of the “off-line optimization and online forecasting” scheme for the implementation of the ETAS model in CSEP.

by adding a 2D Gaussian random variable with a den-
sity Zdi , where Z is the kernel function used in estimat-
ing the background seismicity and di is the bandwidth
corresponding to the selected event. Recorded these
new events as Generation 0, namely G ′(0).

B2. Let the initial catalog G(0) be the collection of all the
events in G ′(0) and all the observed events before t .

B3. Set � ← 0.
B4. For each event i , namely (ti , xi , yi , mi ), in the cata-

log G(�), simulate its N (i) offspring, namely, O (�)
i ←

{(t (i)
k , x (i)

k , y(i)
k , m(i)

k ) : k = 1, · · · , N (i)}, where N (i)

is a Poisson random variable with a mean of κ(mi ),
and t (i)

k , (x (i)
k , y(i)

k ) and m(i)
k are generated from the

probability densities g(· − ti ), f (· − xi , · − yi ; mi )

and s(·) respectively. Let O ′(�)
i ← {(tk, xk, yk, mk) :

tk ∈ [t, t + �t] and (tk, xk, yk, mk) ∈ O(�
i )}.

B5. Set G(�+1) ← ⋃
i∈G(�) O ′(�)

i .
B6. If G(�) is not empty, let � ← � + 1 and go to Step B4;

else return G(0)
⋃(

∪�
j=1G( j)

)
.

To forecast seismicity in [t, t + �t], we first do many
simulations using Algorithm B, say, the number of simula-
tions, K = 10,000. The expected number of events in a cell
[t, t + �t] × S can be estimated through

Ê{N ([t, t + �t] × S) | obs. before t}
= total number of events in [t,t +�t]×S in all simulations

number of simulations
(15)

and

P̂{N ([t, t + �t] × S) > 0 | obs. before t}
= number of simulations with N ([t, t + �t] × S) > 0

number of simulations
.

(16)

In order to obtain stable and smoothed forecasts, instead
of the above two equations, the events are smoothed in all

the simulations by using

Ê{N ([t, t + �t] × S) | obs. before t}

= 1

K

K∑
j=1

n j∑
i=1

∫∫
S

h
(

x − x ( j)
i , y − y( j)

i

)
dx dy (17)

and

P̂{N ([t, t + �t] × S) > 0 | obs. before t}

= 1

K

K∑
j=1

{
1−

n j∏
i=1

exp

[
−

∫∫
S
h
(

x−x ( j)
i ,y−y( j)

i

)
dx dy

]}
,

(18)

where (x ( j)
i , y( j)

i ) is the location of the i th event in the j th
simulation, n j is the number of events in the j th simulation,
K is the total number of simulations, and h is the normal
kernel function, with a bandwidth of 0.3◦ in this study. Ê
is used instead of E here because these expectations are not
obtained from the unknown “true” distribution, but from the
estimated model.
3.4 Off-line optimization and online forecasting

A drawback in the above algorithm is that the iterative
algorithm for simultaneously estimating the background
and model parameter takes quite a long time to compute.
For example, it takes usually about 5 h to fit a catalog of
20,000 events on a 48-core linux cluster with Intel CPU
X5460@3.2GHz. For this reason, we can use an off-
line optimization and online forecasting scheme to tackle
this problem, as illustrated in Fig. 1. In the off-line side,
Algorithm A is used to estimate the model parameters and
the background rate by fitting the model to the available
records of seismicity at the time when the optimization is
started. Once the parameters are estimated, the new pa-
rameters are sent to the online forecasting computer. In
the online forecasting procedure, a simplified version of
Algorithm A, say A′, is run with the newest parameters to
find the background rate and to calculate background prob-
abilities. A′ is the same as Algorithm A except that Step A3
is skipped. After Algorithm B is used many times to sim-
ulate the seismicity in the forecast space-time-magnitude
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range, Eq. (17) and Eq. (18) are applied to all simulations
to obtain smoothed forecasts.

4. A Retrospective Forecasting Experiment on the
Seismicity before and after the 2003 Tokachi-
Oki Earthquake

4.1 Data
A retrospective forecasting experiment is performed in

this section to illustrate the above methodologies. We se-
lect data from the JMA catalog in the ranges of longitude
121∼155◦E, latitude 21∼48◦N, depth 0∼100 km, time 1
January 1965 to 23 September 2003, and magnitude MJ ≥
4.0 (Fig. 2). There are 19,019 events in this dataset. The
Tokachi-Oki earthquake (MJ 8.0) occurred on 26 Septem-
ber 2003, 3 days after the end of this period. The seismic-
ity before and after this earthquake has been well studied.
For example, Ogata (2004a) found synchronous seismicity
changes in and around its epicenter, which can be explained
as the changes in the Coulomb failure stress caused by an
aseismic slip, Murase (2004) found the fractal dimension
change before its occurrence, and, the seismicity has been
shown to be quiescent at the depth of about 100 km and be
activated at the depth of about 250 km near the focal region
from 1998 onwards (Institute of Seismology and Volcanol-
ogy, Hokkaido University, 2004).

Fitting space-time ETAS to the catalog is not an easy
task. For an earthquake catalog covering records of a time
period of 38 years, completeness and homogeneity, or the
lack thereof, are always problems in a statistical analysis.
For example, when seismicity in some regions or the whole
region has an increasing trend, the fitting results do not con-
verge or they converge to some unreasonable values. In this
study, a target space-time range was chosen in which the
seismicity seems to be relatively and visually complete and
homogeneous above 4.0 (see Table 1). Figure 2(a) shows
the target region with the same depth and magnitude ranges
to fit the model. The events outside of this study space-
time range are used as complementary events for calculat-
ing the conditional occurrence rate λ in order to illuminate
the boundary effect. See Figs. 2(b) and 2(c) for assessment
of such a choice.

The final estimates of the parameters are μ̂ = 0.563
(events/day), Â = 0.371 (events), ĉ = 0.00786 day, α̂ =
0.795 (m−1), p̂ = 1.149, d̂ = 5.59×10−5 (deg2), q̂ = 1.71
and γ̂ = 1.61 (m−1), which is similar to the results of
Zhuang et al. (2004, 2008). We regard these parameters
as obtained from the off-line optimization and use them to
forecast seismicity during the period 23 September to 22
October 2003. The total seismicity estimated using Eq. (10)
and the background seismicity rate estimated using Eq. (11)
are shown in Figs. 3(a) and 3(b), respectively.
4.2 Comparison between observations and forecasts

We assume that each forecast is for seismicity starting
at 0:00 and ending at 24:00 (UTC) on each day. Figure 4
gives the forecasting map of expected intensity of events
in the unit of events/day/deg2. Prior to the Tokachi-Oki
earthquake, the density map is similar to the background
Poisson model (Fig. 3(b)). After the occurrence of the
mainshock, seismicity in the Hokkaido region is dominated
by aftershocks. If the forecast is carried out shortly after the

Fig. 2. (a) Epicenter map of the shallow earthquakes (MJ ≥ 4.0 and depth
≤ 100, 1 January 1926 to 22 September 2003) from the JMA catalog;
(b) a space-time plot of latitudes against occurrence times, and (c) a
space-time plot of occurrence times against longitudes. The polygon in
(a) represents the target region used in the likelihood computation, and
the dark dots and gray dots represent the target events and complemen-
tary events, respectively.
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Table 1. A summary of parameters used for the forecasting experiment.

Earthquake catalog JMA catalog from 1 January 1965

Historical catalog None

Polygon region for model fitting (128.93, 33.54), (130.43, 29.91), (134.75, 33.18), (140.57, 34.36), (143.39, 40.35), (147.43, 43.62),

(145.92, 45.00), (140.38, 45.00), (136.44, 43.89), (134.1, 38.17), (131.09, 35.54), (127.52, 33.91)

Magnitude threshold 4.0

Bandwidths for estimating background rates n p = 4, ε = 0.1

Bandwidths for smoothing forecast 0.3

Training period 0–10,500 days from 1 January 1965

Model fitting period 10,500 to 14,712 days from 1 January 1965

Fig. 3. Total seismicity occurrence rate (a) and background seismicity rate
estimated by using the data before the Tokachi-Oki earthquake (unit:
events/day/deg2).

mainshock, it is possible that the forecast can be improved.
In Fig. 4(b), this feature has been well captured by the ETAS
model. Ten days after the mainshock has occurred, the rate
of aftershocks decays to a low level, but is still much higher
than the average level, as shown in Fig. 3(a).

Figure 5 plots the expected forecasted numbers of earth-
quakes in the target polygon (shown in Fig. 2) and their 5%
and 95% quantiles and the corresponding observations on
each day before and after the occurrence of the mainshock.
This plot shows that the forecast also captures the temporal
evolution feature of the triggered seismicity, such as decay-
ing in time and multistage triggering.
4.3 Evaluation of forecasting performance

There are several ways to evaluate the forecast perfor-
mances. (1) the R-score or Hanssen-Kuiper skill score (see,
e.g., Shi et al., 2001; Harte and Vere-Jones, 2005; Console

et al., 2010); (2) Molchan’s error diagram (see, e.g.,
Molchan, 1990); (3) the entropy or information score (see,
e.g., Vere-Jones, 1998); (4) the gambling score (Zhuang,
2010). In this study, we use the entropy score to evaluate
the performance of the forecast.

Firstly, we divide the whole region of the polygon given
in Fig. 2(a) into 1◦ ×1◦ cells. For each cell Dk , we estimate
the probability that at least one event will occur the next day
as

p̃k =
∑

j

{
1−∏

i exp
[
−∫∫

Dk
h

(
x−x ( j)

i , y−y( j)
i

)
dx dy

]}
number of simulations

(19)

where (x ( j)
i , y( j)

i ) represents the location of the i th event
in the j th simulation, and h is the normal kernel function,
with a bandwidth of 0.3◦ in this study. The corresponding
probability estimated by the Poisson model is

p0k = 1 − exp

[
−

∫∫
Dk

λ̂0(x, y) dx dy

]
(20)

where λ̂0 is estimated according to Eq. (10) and given in
Fig. 3(a). The information gain for cell Dk is

Gk = Xk ln
p̃k

p0 j
+ (1 − Xk) ln

1 − p̃k

1 − p0k
(21)

where Xk = 1 if one or more events occur in Dk , and
Xk = 0 otherwise. The total information gain is

G =
∑

k

Gk (22)

with k runs over all the space-time cells.
The results are shown in Fig. 6. We also learn that

the information gain (natural logarithm of probability gain)
per day is 6.88 and per event is 0.974. It is not sur-
prising that the ETAS model shows better performance in
forecasting earthquakes than the Poisson model, as shown
by Helmstetter et al. (2006), Console et al. (2007, 2010),
Murru et al. (2009), and Marzocchi and Lombardi (2009).

It can be seen from Figs. 4(b) and 6 that, on the occur-
rence day of the mainshock, the ETAS model has a lower
score than the Poisson model. This can be explained by the
fact that the ETAS model basically forecasts with its back-
ground rate, which is of course lower than the average rate
of the fitted Poisson model, for the day of the mainshock
together with a burst of many aftershocks and gives lower
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Fig. 4. Examples of forecasted images of expected numbers of earthquakes on (a) 24 September 2003, (b) 25 September 2003, (c) 26 September 2003
and (d) 13 October 2003. (unit: events/day/deg2). The green circles mark the locations of earthquakes (MJ ≥ 4.0) occurring in forecasting time
period.

Fig. 5. Temporal variation of forecasted daily numbers of earthquakes (sun crosses) in the region (N126◦∼148◦, E28◦∼45◦) during 24 September 2003
to 22 October 2003. The hexagrams mark observed daily numbers of earthquakes.

probabilities of earthquake occurrences if there is no fore-
shock has occurred nearby in the recent past. In the cases
of the Landers earthquake in California and the L’aquila
earthquake in Central Italy, some foreshocks occurred be-
fore the mainshocks, and quite high probabilities of earth-
quakes were forecasted by the ETAS model (Helmstetter et
al., 2006; Marzocchi and Lombardi, 2009; Werner et al.,
2011).

5. Discussion
5.1 Evolution of model parameters

It is instructive to study the evolution of the parame-
ters over time and with new data. In this article the pa-
rameters are estimated just once, and it is therefore ques-
tionable how strongly they vary over the forecasting pe-
riod. Firstly, these parameters do not change very much.
To see how the model parameters evolve over time and
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Fig. 6. Daily information gains against the Poisson model.

with new data, I fit the model to the observation data each
time before a forecast is made, during the forecast period
from 23 September to 22 October 2003. The ranges of
the estimates are μ ∈ [0.2691, 0.2743] (events/day/deg2),
A ∈ [0.4112, 0.4280] (events), c ∈ [0.00723, 0.00761]
(day), α ∈ [1.2349, 1.2665], p ∈ [1.0684, 1.0710], D ∈
[0.000131, 0.000136] (deg2), q ∈ [1.5875, 1.5976], and
γ ∈ [1.3076, 1.3656], showing that the variations are quite
small. Secondly, in my opinion, the ETAS model is quite
a stable model. That is to say, given the observation his-
tory, quite reasonable results can be obtained for short-term
forecasts by using the ETAS model with some typical pa-
rameters, without fitting the model to the past seismicity.
The differences between forecasts made using typical pa-
rameters and those made using the maximum likelihood es-
timates can be only distinguished through strict statistical
tests, but not visually.
5.2 Stability of simulations

Another question is whether the simulations are sufficient
to sample the possibilities. Simulations are definitely re-
quired to obtain forecasts with sufficient precision. In this
study, we simulate K = 10,000 times for each forecast.
Suppose that the probability that there are exactly k events
in a given space-time-magnitude range is pk . The estimate
of pk is

p̂k = number of simulations that exactly k events occurs

K
,

(23)

By the central limit theorem, p̂k is approximately normally
distributed with a mean of pk and a standard deviation of
σ = √

pk(1 − pk)/K . When pk is not so small, for ex-
ample, larger than 0.01, the estimated error is less than
10%. Only when pk is small does the relative deviation
σ/pk = √

(1 − pk)/(n pk) become large. In our analy-

sis, K =10,000 indicates that σ/pk is up to 100% when
pk is less than 10−5. This should not cause a problem for
our forecasts. Once we get a small probability in practice,
its estimated value, for example, 10−5 or 10−6, does not
make a big difference in terms of decision making, both
of them being regarded as negligible. One may argue that,
in the case of many space-time-magnitude grids, each with
such low occurrence probabilities, the estimate of the over-
all probability that there are some events occurring in any
of these grids will be wrongly estimated. However, in this
case, the overall occurrence probability would not be ob-
tained by mathematical operations on these small proba-
bilities; rather, it would be estimated directly through the
number of simulations that there are some events occurring
in any of the grids. Moreover, another technique adopted in
our procedures to make the results stable is that the simula-
tions are smoothed by using kernel functions. Based on the
above, stability should not be a problem with the forecast-
ing procedures provided in this study.
5.3 Other information-based scoring methods

In the evaluation of the forecasting performance, the
probabilities that one or more events occur in each fore-
casting space-time-magnitude window are used as forecast-
ing results. In fact, through simulation, it is not difficult
to forecast the full distribution of the numbers of events
and use the Poisson information score to evaluate the fore-
cast performance (see, e.g., Vere-Jones, 1998; Werner et al.,
2011). In this study, I do not consider this format of fore-
casts and the Poisson information score because, as shown
by Vere-Jones (1998), the binary score is equivalent to the
Poisson score asymptotically. The significant superiority
of the ETAS model in forecasting seismcity to the Poisson
model in binomial information score implies that the ETAS
model also performs better than the Poisson model in the
Poisson information score.
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5.4 Influence of small events
This study does not consider the triggering effect from

smaller events that are below the magnitude threshold, 4.0.
The reason for this is that there are already have more than
19,000 events of MJ ≥ 4.0 in the catalog, and if the mag-
nitude threshold is lowered, the number of selected events
increases vastly and it takes much more computation time
to fit the model to the data, since the computation time is
approximately proportional to the square of the number of
events. However, as shown by several researchers (see,
Helmstetter and Sornette, 2003; Helmstetter et al., 2003;
Werner, 2007; Zhuang et al., 2008), small events are im-
portant in triggering large earthquakes. Also, cutting-off
the triggering effect from the events lower than magnitude
threshold is one of the biggest sources of the estimating er-
rors (Wang et al., 2010), while including the smaller events
in the observation history improves the forecasts (Werner et
al., 2011).

6. Concluding Remarks
The space-time ETAS model has been implemented as

an “off-line optimization and online forecasting” scheme in
the Japan and SCEC CSEP projects. It consists of four com-
ponents: (1) off-line optimization, which computes optimal
model parameters for future uses in forecasting; (2) a simu-
lation procedure, which simulates many copies of possibili-
ties of earthquake occurrence in a future time interval, based
on the last updated parameters and most recent records of
seismicity; (3) a smoothing procedure, which smoothes the
events generated in the simulation step to obtain stable and
smoothed spatiotemporal occurrence rate; (4) a forecast
performance evaluation procedure, which uses the CSEP
common evaluation framework.

Using the ETAS model, I have made retrospective exper-
iments on 1-day forecasts of earthquake probabilities in the
Japan region before and after the Tokachi-Oki earthquake in
September 2003, in the format of contour images. The opti-
mal parameters for the forecasts were obtained by fitting the
ETAS model to the previous observations. Once the param-
eters are obtained, the seismicity for the next forecast inter-
val was simulated many times based on the ETAS model.
The probabilities of earthquake occurrences were estimated
as the ratio of the number of simulations that one or more
earthquakes occur to the total number of simulations. These
forecasts were test against the reference model, the Poisson
process which is stationary in time but spatially inhomo-
geneous. As expected, the forecasts based on the ETAS
model catch the temporal and spatial features of the after-
shock sequence, and the ETAS model performs better than
the Poisson model.
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