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Explicitly computing geodetic coordinates from Cartesian coordinates
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This paper presents a new form of quartic equation based on Lagrange’s extremum law and a Groebner basis
under the constraint that the geodetic height is the shortest distance between a given point and the reference
ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari’s line is found, which avoids
the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute
geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the
corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.
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1. Introduction
The transformation between Cartesian coordinates and

geodetic coordinates is a basic problem frequently encoun-
tered in geodesy and astronomy, e.g., in GPS position-
ing. Computing Cartesian coordinates from geodetic co-
ordinates is a very easy task, but the inverse transforma-
tion poses a difficulty. For the latter, numerous solutions
have been proposed, which can be classified into two cat-
egories. One category is an iterative solution. Bowring
(1976) derived a trigonometric equation which was solved
by the Newton algorithm with a single iteration. Fukushima
(1999) solved a modified Borkowski’s quartic equation by
the Newton method, and, later, Fukushima (2006) devel-
oped a new and faster iterative procedure using Halley’s
method. Jones (2002) found a new solution with the New-
ton method in the reduced latitude. Pollard (2002) pre-
sented two vector methods which do not involve quartic
equations, and Feltens (2009) has also presented a vec-
tor method. The other category are closed form solutions,
which maybe more straightforward and efficient; however,
they are relatively rare until recently. Paul (1973) proposed
a closed form solution based on the well-known theory for
solutions of biquadratic equations (Burnside and Panton,
1904). Borkowski (1989) proposed two accurate closed so-
lutions, of which one is approximate and the other is ex-
act. Vermeille (2002) proposed a closed-form algebraic
method, which is well known and is used the most. Ver-
meille (2004) improved the formulae of Vermeille (2002)
to extend the validity domain. Zhang et al. (2005), using
the method of extrema with constraints and generalized La-
grange’s multipliers obtained a four new equations, and pre-
sented an alternative algebraic algorithm. Gonzalez-Vega
and Polo-Blanco (2009) have used symbolic tools to char-
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acterize the Vermeille and Borkowski approaches. Feath-
erstone and Claessens (2008) have reviewed the state of the
art of closed-form transformations between geodetic and el-
lipsoidal coordinates.

This paper presents a new form of quartic equation with
Lagrange’s extremum law and a Groebner basis technique,
and seeks a very explicit and concise formulae of the quar-
tic equation by Ferrari’s line. A new algorithm to compute
geodetic coordinates from Cartesian coordinates is then pre-
sented, and the convergence region of the algorithm is in-
vestigated. Lastly, the algorithm is validated through nu-
merical experiments.

2. Description of the Presented Algorithm
2.1 Brief review of a Groebner basis

A Groebner basis for ideals in a polynomial ring was de-
veloped by B. Buchberger in 1965. It is a method of estab-
lishing the standard basis of a nonlinear polynomial system
as follows. In the polynomial ring formed by the original
nonlinear polynomial system, after the proper sort of the
polynomial variables, seek the S-polynomial (subtraction
polynomial) of the polynomial pairs from the polynomial
ring, and then carry out polynomial reduction and elimina-
tion. Finally, a standard basis is generated which is com-
pletely equal with the original system, and which neither
increases, nor decreases, the roots.

If the Groebner basis of the polynomial system F is
G B, for all of the polynomial pairs ( fi , f j ) ∈ F , their
S-polynomial S( fi , f j ) is divisible by G B. Based on the
above nature of a Groebner basis, the Buchberger algorithm
is put forward to construct the Groebner basis of the poly-
nomial system efficiently as follows:

Step 1: Let G := F .
Step 2: Construct set B of polynomial pairs from G.

B = {( fi , f j ) | fi , f j ∈ G, i �= j}.
Step 3: If B is a null set, go to Step 10.
Step 4: Select an element of B, ( fi , f j ), and exclude it

from B, i.e., let B = B − {( fi , f j )}.
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Fig. 1. The relationship between geodetic and Cartesian coordinates, and
the ellipsoid evolute.

Step 5: Compute the S-polynomial s = S( fi , f j ).
Step 6: Compute the remainder following the division of

s by the G, denoted by sG .
Step 7: If sG = 0, go to Step 3.
Step 8: Add sG into set G. G := G ∪ {sG}.
Step 9: Update B. B := B ∪ {(g, sG) | g ∈ G, g �= sG}.

Turn to Step 4.
Step 10: Output the reduced Groebner basis G B accord-

ing to G.
2.2 Problem formulation based on Lagrange’s con-

straint and a Groebner basis
The relationship between Cartesian and geodetic coordi-

nates (B, L , h) (B, L are the latitude and longitude, respec-
tively) at any point P can be constructed according to the
following formulae (see Fig. 1):⎧⎨

⎩
X = (h + N ) cos B cos L
Y = (h + N ) cos B sin L
Z = (h + N − e2 N ) sin B

, (1)

where N = a/
√

1 − e2 sin2 B, and a, b, e denote the semi-
major axis, the semi-minor axis, and the eccentricity of the
reference ellipsoid, respectively. As we know, the geodetic
height h is the distance from the reference ellipsoid to P in
a direction normal to the ellipsoid, so it denotes the shortest
distance from P to the surface of the ellipsoid. Suppose
that p with Cartesian coordinates (x, y, z) is a point at the
surface of the ellipsoid, thus

h2 = min{(X − x)2 + (Y − y)2 + (Z − z)2}, (2)

with a constraint

x2/a2 + y2/a2 + z2/b2 = 1. (3)

According to Lagrange’s extremum law, we obtain the La-
grange equation as

h2 = min{(X − x)2 + (Y − y)2 + (Z − z)2

+ λ(x2/a2 + y2/a2 + z2/b2 − 1)}, (4)

where λ is the Lagrange multiplier. By taking the partial
derivative of Eq. (4) to x , y, z, and λ, respectively, we

further obtain⎧⎪⎪⎨
⎪⎪⎩

(λ/a2 + 1)x − X = 0
(λ/a2 + 1)y − Y = 0
(λ/b2 + 1)z − Z = 0
x2/a2 + y2/a2 + z2/b2 − 1 = 0

. (5)

In order to solve the nonlinear polynomial equation, the
Buchberger algorithm to obtain the Groebner basis of the
nonlinear polynomial system of Eq. (5), which has the iden-
tical solution to Eq. (5). The obtained Groebner basis in-
cludes 16 polynomial elements. If the lexicographic order
(x > y > z > λ) is chosen, the corresponding 16 ele-
ments are as listed in the Appendix. We note that the first
polynomial in the Appendix is a univariate polynomial of
degree four in λ, thus we can solve the polynomial equation
as follows to obtain λ.

λ4 + αλ3 + βλ2 + γ λ + η = 0, (6)

where⎧⎪⎪⎨
⎪⎪⎩

α = 2a2 + 2b2

β = a4 + 4a2b2 + b4 − a2(X2 + Y 2) − b2 Z2

γ = 2a4b2 + 2a2b4 − 2a2b2(X2 + Y 2 + Z2)

η = a4b4 − a2b4(X2 + Y 2) − a4b2 Z2

. (7)

2.3 The presented algorithm
According to Ferrari’s lines (see Shmakov, 2011, and a

little revision is made), the four roots of Eq. (6) can be
obtained as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = −α

4
+ 1

2

(√
−l + ρ0

+
√

−l − ρ0 − 2m/
√−l + ρ0

)

λ2 = −α

4
+ 1

2

(√
−l + ρ0

−
√

−l − ρ0 − 2m/
√−l + ρ0

)

λ3 = −α

4
+ 1

2

(
−

√
−l + ρ0

−
√

−l − ρ0 + 2m/
√−l + ρ0

)

λ4 = −α

4
+ 1

2

(
−

√
−l + ρ0

+
√

−l − ρ0 + 2m/
√−l + ρ0

)

(8)

where

ρ0 = ξ + ψ + l/3,

ξ = 3

√
−v/2 ±

√
v2/4 + u3/27,

ψ =
{−u/(3ξ) if ξ �= 0, and

− 3
√

v if ξ = 0 ,

u = −4n − l2/3, v = −2l3/27 + 8ln/3 − m2,

l = −3α2/8 + β, m = α3/8 − αβ/2 + γ,

n = −3α4/256 + α2β/16 − αγ /4 + η.

Note that either sign of the square root will do for the
expression of ξ .

Substituting λi (i = 1, 2, 3, 4) into Eq. (5), we obtain
four solutions pi (xi , yi , zi ) of point p (x, y, z) as⎧⎨

⎩
xi = X/(λi/a2 + 1),

yi = Y/(λi/a2 + 1),

zi = Z/(λi/b2 + 1).

(9)
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Fig. 2. The real number solutions of p in the region of the polar axis. Fig. 3. The real number solutions of p in the region of the equatorial plane.
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Fig. 4. The real number solutions of p in the region except near the center,
the polar axis, and the equatorial plane of the Earth.

Next, we compute the geodetic coordinates (B, L , h), as
follows:

(1) Computation of B

D = (1 − e2)
√

x2 + y2, (10)

B = arctan(z/D); (11)

however, for the case D = 0, i.e. B = ±90◦, the Eq.
(11) is undefined. It can be computed as follows by the
tangent of the half value.

tan
B

2
= sin B

1 + cos B
= sin B

cos B +
√

sin2 B + cos2 B

= z

D + √
z2 + D2

, (12)

thus

B = 2 arctan
(

z/
(

D +
√

D2 + z2
))

. (13)

Note this formula is fit for the case that B = ±90◦;
namely, the region of the poles.

(2) Computation of L
By means of Eq. (1), the following expression is ob-
tained,

L = arctan(Y/X); (14)

however when X = 0, i.e. L = ±90◦, Eq. (14) has no
meaning. In the same manner as the computation of
B, we can compute L as follows.

tan
L

2
= sin L

1 + cos L
= sin L

cos L +
√

sin2 L + cos2 L

= Y

X + √
X2 + Y 2

, (15)

considering its applicability of Eq. (15), we obtain

L = 2 arctan
Y

X + √
X2 + Y 2

except Y = 0, X ≤ 0. (16)

Note it is suitable for any case except Y = 0, X ≤ 0,
i.e. L = ±180◦.

(3) Computation of h

h = sign(λ)
√

(X − x)2 + (Y − y)2 + (Z − z)2.

(17)

2.4 Convergence region of the presented algorithm
Obviously, there are some regions in which a point can

have many geodetic coordinates. If P is the center of Earth,
i.e. X = 0, Y = 0, Z = 0, the presented algorithm is
invalid, and the geodetic coordinates of P may be B =
0◦, L ∈ [−180◦, 180◦], h = −a, or B = ±90◦, L ∈
[−180◦, 180◦], h = −b. If P is in the region of the polar
axis, i.e. X = 0, Y = 0, Z > 0 or X = 0, Y = 0, Z < 0,
its geodetic coordinates are B = 90◦, L ∈ [−180◦, 180◦],
h = −b, or B = −90◦, L ∈ [−180◦, 180◦], h = −b. It is
proved below that the formula of B and h of the presented
algorithm is suitable in the region of the polar axis.
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Table 1. Solution of p in the region of the polar axis.

Region Real number solutions Complex number solutions Right real number solution

Outside the evolute P1, P2, P3, P4 none P1

On the evolute P1, P2, P3, P4 (P2 = P4) none P1

Inside the evolute∗ P1, P2 P3, P4 P1

Note: ∗ denotes that it does not include the region near the center of the Earth.

Table 2. Solution of p in the region of the equatorial plane.

Region Real number solutions Complex number solutions Right real number solution

Outside the evolute P1, P2, P3, P4 none P1

On the evolute P1, P2, P3, P4 (P2 = P4) none P1

Inside the evolute∗ P3, P4 P1, P2 P4

Note: ∗ denotes that it does not include the region near the center of the Earth.

Table 3. Solution of p in the region except near the center, the polar axis, and the equatorial plane of the Earth.

Region Real number solutions Complex number solutions Right real number solution

Outside the evolute P1, P3 P3, P4 P1

On the evolute P1, P2, P3, P4 (P2 = P4) none P1

Inside the evolute∗ P1, P2, P3, P4 none P1

Note: ∗ denotes that it does not include the region near the center of the Earth.

Table 4. Statistics of the errors computed with the algorithms presented by Vermeille and this paper.

log10 |
B|, 
B in second log10 |
h|, 
h in meter

Algorithms Min Second Max Average1 RMSE1 Min Second Max Average2 RMSE2

least value least value

Presented by −∞ −11.9 −10.0 −11.3 0.44 −∞ −10.9 −7.5 −9.3 0.52

Vermeille

Presented in −∞ −12.1 −10.3 −11.3 0.44 −∞ −10.9 −7.9 −9.1 0.55

this paper

Note: (1) in order to compute the average and RMSE of log10 |
B|, log10 |
B| is set to −12.1 if it is less than −12.1; (2) in order to
compute the average and RMSE of log10 |
h|, log10 |
h| is set to −10.9 if it is less than −10.9.

Except for the special regions above, a point in any re-
gion, including the equatorial plane, should have its unique
geodetic coordinates. However, one can note that the al-
gorithm may yield four, at most, solutions of the point p
(x, y, z), and this can be explained as follows. The evolute
of the reference ellipsoid (see Fig. 1), which is the envelope
of all the normal lines through the ellipse surface, is the
boundary of judging the number of the solutions of point p.
In the common regions expect the center, the polar axis, and
the equatorial plane of the Earth, if P is outside the evolute
(its mathematical equation is (W/ka)2/3 + (Z/kb)2/3 = 1,
where ka = (a2 − b2)/a = ae2, kb = (a2 − b2)/b = be′2,
and e′ is the second eccentricity of the reference ellipsoid),
it will have two solutions of p; if P is on the evolute, it will
have three solutions of p; if P is inside the evolute, it will
have four solutions of p. This is illustrated in Fig. 4. Only
one correct solution of p is to be selected. And it is neces-
sary to turn to numerical analysis for help.

As is known, a polynomial equation in one variable with
real coefficients has pairs of conjugate complex number
roots, suppose that it has complex number roots. And as a
real world matter, the point p (x, y, z) must have at least one
solution. So there are two, or four, real number solutions of

point p. This agrees with the above geometrical analysis.
Next, the correct solution of p will be given for different
regions.

(1) Region near the center of the Earth
It is indicated by numerous computations that in the
region near the center of the Earth (approximately hav-
ing the sphere of radius R = √

X2 + Y 2 + Z2 <

0.1 km from the center of the Earth) the solution of
the equation is singular. That is to say the algorithm is
invalid in this region.

(2) Region of the polar axis of the Earth
The real number solution of p is shown in Fig. 2, and
the solution is summarized in Table 1.

(3) Region of the equatorial plane of the Earth
The real number solution of p is shown in Fig. 3, and
the solution is summarized in Table 2.

(4) Region except near the center, the polar axis, and the
equatorial plane of the Earth
The real number solution of p is shown in Fig. 4, and
the solution is summarized in Table 3.

Whereas Figs. 2, 3, and 4, are depicted for the case that
B ∈ [0◦, 90◦], L ∈ [0◦, 180◦], the conclusion of Tables 1, 2,
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Fig. 5. Contour map of log10 |
B|, 
B in seconds, if the error is less than −12.1, it is set to −12.1.

Fig. 6. Contour map of log10 |
h|, 
h in meters, if the error is less than −10.9, it is set to −10.9.
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Table 5. The magnitude of error 
h corresponding to different values of S along the polar axis.

S (km) 1 10 20 42.8∗ 100 300 1000 3000 6300


h (m) 103 101 100 10−1 10−2 10−4 10−6 10−8 10−∞

Note: ∗ denotes that the point lies on the evolute.

Table 6. The magnitude of error 
h corresponding to different values of S in the equatorial plane.

S (km) 1 10 20 40 42 42.6∗ 43 45


h (m) 103 102 101 102 104 10∞ 104 102

S (km) 60 80 200 400 800 1600 3200 6300


h (m) 100 10−1 10−2 10−4 10−5 10−6 10−8 10−9

Note: ∗ denotes that the point lies on the evolute.

Table 7. The magnitude of error 
B corresponding to different values of S in the region except near the center, the polar axis and the equatorial plane.

S (km) 31 34 78 178 378 1000 3000 6300


B (◦) 10−2 10−4 10−6 10−8 10−10 10−12 10−15 10−15

Table 8. The magnitude of error 
h corresponding to different values of S in the region except near the center, the polar axis and the equatorial plane.

S (km) 31 34 78 178 378 1000 3000 6300


h (m) 103 102 10−1 10−2 10−4 10−6 10−8 10−9

and 3, can apply for the globe, i.e. B ∈ [−90◦, 90◦], L ∈
[−180◦, 180◦].

3. Numerical Experiments and Discussion
3.1 Experiments for the surface, and outer space, re-

gions of the Earth
The surface, and outer space, regions of the Earth are the

most common regions that geodesy considers. For thou-
sands of grid points evenly distributed throughout the entire
region with B ranging from 0◦ to 90◦ and h from 1 to 108 m,
I first compute their Cartesian coordinates, then recover the
geodetic coordinates from the Cartesian coordinates apply-
ing both the algorithm presented here and that presented by
Vermeille (2004). The computation was carried out with the
ellipsoid parameter of GRS80. The statistics of errors (
B,

h are the errors in latitude and height, respectively) are
listed in Table 4. From Table 4, we can see that the algo-
rithm presented here is slightly better than that presented by
Vermeille for 
B, but slightly worse for 
h; however, they
are comparable overall and meet the need of any precise
geodesy. Figures 5 and 6 depict the distributions of 
B and

h, through which the comparison can be made intuitively.
3.2 Experiments for the inner space region of the

Earth
In some special cases, we also need to compute the

geodetic coordinates from the Cartesian coordinates for the
region below the surface of the reference ellipsoid. The ex-
periments adopt the same reference ellipsoid and simulative
computation method as described in Subsection 3.1.

(1) Region of the polar axis of the Earth
The simulated computation indicates that the error 
B
is always zero, and the errors 
h are correlated with
the distance S between the point P and the center of
the Earth, which is shown in Table 5. It is seen from

Table 5 that the error decreases dramatically with an
increase of S. If an accuracy of one centimeter (com-
mon geodetic demand) is required, S must be more
than 100 km.

(2) Region of the equatorial plane of the Earth
The simulated computation indicates that the error 
B
is always zero, and the errors 
h are correlated to
the distance between the point P and the center of the
Earth, which is shown in Table 6. It is seen from Ta-
ble 6 that with an increase of S inside the evolute, the
error decreases dramatically to the 10-meter level, and
then increases dramatically to +∞; with an increase
of S outside the evolute, the error again decreases dra-
matically. If an accuracy of one centimeter (common
geodetic demand) is required, S must be more than
200 km.

(3) Region except near the center, polar axis and equato-
rial plane of the Earth
The simulated computation indicates that the errors

B and 
h are correlated with the distance between
the point P and the center of the Earth, which are
shown in Tables 7 and 8, taking the case that B = 11◦,
L = 45◦ for example. It is seen from Tables 7 and 8
that the errors 
B and 
h decrease dramatically with
an increase of S.
Because the algorithm presented by Vermeille (2004)
is invalid when the distance between the point P and
the center of the Earth is less than 43 km, I do not
compare the two algorithms for this region, and the
result is comparable with other regions.

4. Conclusion
A new explicit algorithm for computing geodetic coor-

dinates from Cartesian coordinates is presented. Numeri-
cal experiments indicate that it is correct for any point ex-
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cept the region near the center of the Earth, and give a good
transformation accuracy for different regions, including the
surface, outer, and inner space, of the Earth. The results
show that the presented algorithm is comparable to the al-
gorithm of Vermeille (2004).
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Appendix.

g1 = λ4 + (2a2 + 2b2)λ3

+ (a4 + 4a2b2 + b4 − a2(X2 + Y 2) − b2 Z2)λ2

+ (2a4b2 + 2a2b4 − 2a2b2(X2 + Y 2 + Z2))λ

+ a4b4 − a2b4(X2 + Y 2) − a4b2 Z2

g2 = a4b2 + a4λ + 2a2b2λ + 2a2λ2 + b2λ2 + λ3

− a2b2 X2 − a2λX2 − a2b2Y 2 − a2λY 2 − a4zZ

+ 2a2b2zZ − b4zZ − 2a2b2 Z2 + b4 Z2 − b2λZ2

g3 = a3

b2
+ a3λ

b4
+ 2aλ

b2
+ 2aλ2

b4
+ λ2

ab2
+ λ3

ab4
− aX2

b2

− aλX2

b4
− aY 2

b2
− aλY 2

b4
− zZ

a
− a3zZ

b4
+ 2azZ

b2

+ Z2

a
− 2aZ2

b2
− λZ2

ab2

g4 = b2z + λz − b2 Z

g5 = a4b2 + 2a2b2λ + b2λ2 − a2b2 X2 − a2b2Y 2 − a4z2

+ 2a2b2z2 − b4z2 − 2a2b2zZ + 2b4zZ − b4 Z2

g6 = 3a3

b2
+ 2a3λ

b4
+ 6aλ

b2
+ 4aλ2

b4
+ 3λ2

ab2
+ 2λ3

ab4

− 3aX2

b2
− 2aλX2

b4
− 3aY 2

b2
− 2aλY 2

b4
− z2

a

− a3z2

b4
+ 2az2

b2
− 2a3zZ

b4
+ 2azZ

b2
+ Z2

a

− 4aZ2

b2
− 2λZ2

ab2

g7 = −X2 y + a2Y + λY − yY 2 + Y z2 − a2Y z2

b2
− Y zZ

g8 = a2 y + λy − a2Y

g9 = −a2 yz + b2 yz + a2Y z − b2 y Z

g10 = − yz

a
+ ayz

b2
− aY z

b2
+ y Z

a
g11 = X y − xY

g12 = a2 + λ − x X − yY + z2 − a2z2

b2
− zZ

g13 = a2x + λx − a2 X

g14 = −a2xz + b2xz + a2 Xz − b2x Z

g15 = − xz

a
+ axz

b2
− aXz

b2
+ x Z

a

g16 = −a2 + x2 + Y 2 + a2z2

b2
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