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Imaging of subsurface lineaments in the southwestern part
of the Thrace Basin from gravity data
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Linear anomalies, as an indicator of the structural features of some geological bodies, are very important for
the interpretation of gravity and magnetic data. In this study, an image processing technique known as the Hough
transform (HT) algorithm is described for determining invisible boundaries and extensions in gravity anomaly
maps. The Hough function implements the Hough transform used to extract straight lines or circles within two-
dimensional potential field images. It is defined as image and Hough space. In the Hough domain, this function
transforms each nonzero point in the parameter domain to a sinusoid. In the image space, each point in the
Hough space is transformed to a straight line or circle. Lineaments are depicted from these straight lines which
are transformed in the image domain. An application of the Hough transform to the Bouguer anomaly map
of the southwestern part of the Thrace Basin, NW Turkey, shows the effectiveness of the proposed approach.
Based on geological data and gravity data, the structural features in the southwestern part of the Thrace Basin are
investigated by applying the proposed approach and the Blakely and Simpson method. Lineaments identified by
these approaches are generally in good accordance with previously-mapped surface faults.
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1. Introduction

The Thrace Basin in northwestern Turkey (Fig. 1(a)), is a
triangular-shaped Cenozoic depression (Doust and Arikan,
1974; Keskin, 1974; Turgut et al., 1983) whose sedimen-
tary fill in the centre of the basin reaches up to 9000 meters
in thickness (Kopp et al., 1969; Turgut et al., 1991; Siyako
and Huvaz, 2007). The Thrace Basin, between the Strandja
Massif to the north and the Biga Peninsula to the south, con-
stitutes one of the most important hydrocarbon provinces of
Turkey, favorable particularly for natural-gas exploration.
The regional geology of SW Turkish Thrace has been stud-
ied by various workers (e.g. Ternek, 1949; Boer, 1954; An-
drews, 1960; Beer and Wright, 1960; Kopp et al., 1969;
Goriir and Okay, 1996; Tiiysiiz et al., 1998; Saking et al.,
1999; Kaymakei et al., 2007; Elmas, 2012 and references
therein). In most of the published studies, particular at-
tention was concentrated on paleontology, stratigraphy and
reservoir features. Several studies encompassing geophys-
ical methods have been carried out in NW Turkey and are
available in the literature (e.g. Peringek, 1991; Turgut et al.,
1991; Ilkisik, 1995; Ates et al., 2003, 2008, 2009). How-
ever, no detailed geological map, or knowledge of the struc-
tural elements of the southwestern part of the Thrace Basin
is available, and also the subsurface geometry of the geolog-
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ical units remains unsolved. In the southwestern part of the
Thrace Basin, the first detailed geological map (Fig. 1(b)),
including structural elements, was produced by Elmas et al.
(2008). Furthermore, the area has not received a system-
atic regional geophysical interpretation and little is known
about the subsurface geometry of the contact between the
Paleogene and Neogene units at depth.

Geophysicists usually deal with lineaments as an indi-
cator of a fault, boundary or any tectonic feature beneath
the surface for the interpretation of gravity and magnetic
anomaly maps. The basic features used to interpret the fault
structures in those maps are the locations of gradient zones
(Li et al., 1986; Illingworth and Kittler, 1988; Princen et
al., 1990; Wang and Howarth, 1990; Mirmehdi et al., 1991;
Karnieli et al., 1996; Lyngsie et al., 2006).

The linear variation fields and their parameters play an
important role in map assessments. An experienced in-
terpreter can easily recognize the zones of smooth linear
changes. Due to certain geological conditions, however, it
is not always easy to notice them in gravity and magnetic
anomaly maps. In such cases, one may need an approach
to enhance the lineaments. To obviate such problems, di-
rectional derivative and anomaly separation are the classi-
cal approaches. The first stage in lineament identification
is usually the image enhancement and boundary detection
processes applied to the digitized input images.

Gravity and magnetic survey methods are effectively
used in basic geological studies, geothermal investigations,
and engineering applications. Ilkisik (1980) explored the
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Fig. 1. (a) Map indicating the location of the study area (from Elmas, 2012). (b) Geology and tectonics map of the southwestern part of the Thrace

Basin (from Elmas et al., 2008). Coordinates are in degrees.

crustal structure of the Thrace Basin using electromagnetic
methods. Caglar (1999), assessing an E-W trending mag-
netotelluric profile data crossing the center of the basin, and
heat flow data acquired from nearby wells, obtained low

heat flow values beneath the basin and a crustal thickness
varying between 28-32 km. Coskun (2000) and Siyako and
Huvaz (2007) investigated the tectonic structures of the re-
gion using seismic methods and well-logging data. Bayrak
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et al. (2004, 2006) explored the crust and upper mantle,
highlighting the high-resistivity values of the Istranca Mas-
sif lying in the depth range 2.5 to 35 km. Senel (2005)
obtained two distinctive depths of the basin by inverting
the gravity anomaly data. Bayrak et al. (2006), evaluating
the electromagnetic data measured at Thrace Basin, lay em-
phasis on the point that the northeast part of the basin has
more complicated structures than the southeast part. They
also drew attention to the normal faults parallel to the basin
occurring at the boundary of the Istranca Massive, and the
structural uplift toward Saros Bay in the southwest part of
the Thrace Basin. Huvaz et al. (2007) comparing the geo-
logical and thermal features of the basin concluded that the
thermal anomalies are the results of a basin evolution pro-
cess.

Image processing tools in geology and geophysics are
frequently used to identify tectonic structures as faults,
widely-distributed fractures, etc. Generally, the lineaments
are visually inspected by experienced interpreters, or can be
automatically inferred using formulae incorporating criteria
for lineament identification (Wiladis, 1999).

Image enhancement techniques are broadly applied to
geophysical images that make them convenient for visual
inspection and to understanding their geological signifi-
cance. The frequently-used enhancement techniques are
contrast healing, border fixing, and filtering (Zhang et al.,
2005). Examples of border fixing related studies are Ay-
dogan (2007, 2008, 2011), Blakely and Simpson (1986),
Dolmaz et al. (2008), Elitok and Dolmaz (2008), McGrath
(1991), Mallat and Zhong (1992), Moreau et al. (1997),
Oru¢ and Keskinsezer (2008), Oru¢ and Selim (2011),
Trompat et al. (2003). The most classical methods in geo-
physics are the approaches based on derivative calculations.
The upward continuation methods are used to separate long
and short wavelength anomalies (Fedi et al., 2012). A tilt
filter introduced by Miller and Singh (1994) was used by
Verduzco et al. (2004) to improve weak and strong anoma-
lies. Yunxuan (1992) used the Radon transform method
along with the continuation techniques to remove undesir-
able lineaments located in the synthetic gravity anomaly
maps. The Radon transform was employed by Pawlowski
(1997) and Zhang et al. (2005, 2006) to improve the poten-
tial field anomalies and position the lineaments. Kudo et
al. (2004) developed a statistical method to investigate the
spatial distribution of topographic lineaments by employ-
ing the Bouguer anomaly standard deviation as an index of
gravity anomaly roughness. Their study focuses on the re-
lationship between the complexity of gravity anomalies and
the distribution pattern of topographic lineaments.

The initial application of the Hough transform method
has been limited to binary border images. Then, in addi-
tion to the straight lines, it was used to establish analytical
shapes such as circles and ellipses in the 2D images. The
basic principle employed to detect such analytical shapes is
similar to the one used to determine straight lines, and is
based on the directional structuring between the parameter
definition in the Hough space and the border points in the
image space. Later, the method was generalized to draw
points located on a line at distances which depend on a 6
(in degrees) parameter, instead of drawing a point at a fixed
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distance in a parameter plane.

In this study, we use the Hough transform algorithm
based on the upward continuation method to detect linea-
ments in gravity anomaly maps in order to better under-
stand the tectonic evolution of the southwestern part of the
Thrace Basin. Firstly, the borders of buried bodies, and the
associated lineaments, are automatically depicted applying
the methods described above to the gravity data. Secondly,
taking into consideration the geological studies carried out
in the region, the lineaments belonging to a common fault
are merged for a possible tectonic interpretation of the thus
determined structural features.

2. Theory and Method
2.1 Extraction of lineaments based on image enhance-
ment techniques

Although quantitative modeling and inversion processes
are quite recent and up-to-date techniques, qualitative geo-
logical interpretation of gravity and magnetic data are also
carried out by visual inspection and image enhancement al-
gorithms. The images derived from gravity and magnetic
data through automatic image enhancement methods con-
tribute to mapping the tectonic units. These maps depict the
homogenous zones of high, or low, density/susceptibility
separated from each other by discontinuities. The most
important problem that we face in geophysical studies is
the detection of the geometry of the bodies or faults fit-
ting at different depths reflecting different geological con-
ditions. Gravity and magnetic methods are the classical
tools to identify such structures. Large faults, with huge
vertical displacements, can be determined from the gradi-
ent zones in the gravity and magnetic maps. These are, in
a regional scale, denoted as primary faults and can easily
be noticed in the maps. Whereas, it is important to identify
the faults which are difficult to notice in the anomaly maps,
and which generate local gradient zones that are masked by
large mass anomalies. Enhancement processes are applied
to maps to determine the anomalies of such faults (Zeng
et al., 1994; Aydogan, 2011). Several image enhancement
techniques applied to potential field data have been devel-
oped for a qualitative and quantitative interpretation of fault
model anomalies hidden by regional fields. Image process-
ing is an operation to improve the quality of a digital image.

Here, the relation between tectonic and geologic ele-
ments is investigated through the identification of the linea-
ment direction using gravity and magnetic anomaly maps.
The lineaments are fixed using the image enhancement
techniques such as HT, upward continuation and border
analysis.

In addition to the faults detected in previous studies, we
have determined new overburden faults from the potential
field data. The Hough transform algorithm is a method that
is mostly used for automatic border detection in a model-
based numerical image processing. In model-based meth-
ods, an image pixel alone is meaningless; but, assessing
them by including nearby ones ascribe them significance.
In general, the Hough method is based on a selection of the
likely geometrical shapes in an image where the borders are
fixed. Although it was first introduced by Hough (1962)
to depict lineaments from black and white images, it was
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Fig. 2. Parameters of the Hough transform in (a) the image plane, and (b) the Hough transform plane.

later improved by Duda and Hart (1972) to detect different
shapes in the images. The transformation allows all the line
sets in an image plane to be represented in a dual Hough
parameter plane by the intersection points of sinusoid curve
sets.

The pixel sets located on the same line in the image plane
are fixed to appear as peaks in the parameter plane and, by
mapping those pixels, the method enables the detection of
the edge pixel sets in the image. The main advantage of
the Hough transform is that it is relatively unaffected by
gaps in lines and by noise. The problem becomes one of
finding the local maxima in the accumulator matrix. These
local maxima must be higher than a certain threshold to ex-
tract long lines only, and short segments are removed. The
threshold can be selected according to visual judgment. It
is adopted to apply the upward continuation technique as a
tool of regional/residual separation in order to investigate
the orientation of subsurface structures. The Hough func-
tion converts each non-zero point in an image to a sinusoid
in the parameter space (Fig. 2(b)). In the reverse case, each
point in a parameter space corresponds to a straight line in
the image space (Fig. 2(a)). The classical transformation is
the determination of the lines from the input images. The
definition of a line in the parameter space is given by Duda
and Hart (1972) as:

[ el e )
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where the f (x, y) function is the binary input image and § is
the impulse response function. Here, if the dimension of the
f(x, y) input image in the image plane is m X n, assuming
the sampling rate of the points in the x and y direction in the
input image to be Ax and Ay, and the upward continuation
function as F(x, y), then the Hough equation becomes:

H(p,0) = Z ZF(m,n)(S(p—mAx cos —nAysinf).
m n (2)

The impulse response function contributes, in the conver-
sion of each point of the input image, to a sinusoid in a
parameter space using the equation:

p =mAxcosf +nAysin6. 3)

The determination of the lineaments utilizing the Hough
transformation has been employed successfully in various
fields. The principal advantage of the method is being not
so sensitive to the noise in the images and the gaps along
the lines. Details concerning the method can be found in
Wang and Howarth (1990), Capineri et al. (1998), Fitton
and Cox (1998), Zhang et al. (2005, 2006), Cooper (2006),
and Aydogan (2008, 2011).

Here, we use the HT algorithm in conjunction with up-
ward continuation to establish subsurface discontinuities.
The block diagram of the algorithm is portrayed in Fig. 3.
The upward continuation is applied to the input data given
in Eq. (2) in order to image the lineaments resulting from
the effects of the bodies at different depths. Such an em-
ployment of the transformation provides an instrument for
the interpretation of the local and global data sets. We
also applied the boundary analysis algorithm (Blakely and
Simpson, 1986) to the Bouguer anomaly map to evaluate
the performance of the HT technique. The method was
firstly introduced by Cordell and Grausch (1982, 1985) for
the estimation of the borders of magnetic bodies; later, the
method was improved by Blakely and Simpson (1986) for
the fast interpretation of the intensity of horizontal gradi-
ents. The horizontal gradients of the gravity anomalies of
different masses are calculated. The maxima of the hori-
zontal gradients are estimated from the eight neighboring
points of a grid point by comparing the horizontal, vertical
and diagonal elements. Using a threshold value of 20.55,
estimated as half of the difference between the maximum
and minimum Bouger anomaly values, the 5-pixel-long lin-
eaments, and longer ones, are automatically determined in
the accumulator matrix.
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Fig. 3. Flowcharts of the procedure used in automatic lineament extraction by the Hough transform.

3. Geological Setting

The study area is located in the southwestern part of
the Thrace Basin in northwestern Turkey (Fig. 1(a)). It
is bounded to the south by the Aegean Sea, a segment of
the North Anatolian Fault, the Ganos Fault (Sengor, 1979),
and to the west by the metamorphic rocks of the Rhodope
Massif in Greece. To the north and east, the widespread
Upper Miocene-Quaternary deposits of the Thrace Basin
exist.
3.1 Pre-Neogene units of southwestern Thrace

The oldest rocks to the north of the Gulf of Saros, which
crop out in a very small area around Mecidiye, consist of
highly-altered low-grade metaclastic rocks (Elmas, 2012)
showing a great similarity to the Triassic metamorphic
rocks of the Strandja Massif (Okay et al., 2010). Further-
more, the hydrocarbon exploration wells around the Kesan
to the north of the Ganos Fault (Figs. 1(a) and (b)) pen-
etrated into similar metamorphic rocks below the Tertiary
basin fill suggesting that the Strandja-type basement is con-
tinuous from north to south (Siyako and Huvaz, 2007).

The Paleogene sequence begins with 50-m-thick coarse-
grained clastics deposited unconformably on the metamor-
phic rocks of the Strandja Massif. The clastic sequence
passes upwards into the Upper Eocene (Ozcan et al., 2010)
limestone of the Sogucak formation. To the east, the low-
ermost sedimentary unit within the Paleogene sedimentary
succession is the Gazikdy Formation (Siimengen and Ter-
lemez, 1991) consisting of shales, siltstones, sandstones,
and it also contains acidic tuff levels. The unit is bounded
by the Ganos Fault to the south. The Sogucak Formation in
the west, and the Gazikdy Formation in the east, are con-
formably overlain by the Upper Eocene (Siimengen et al.,
1987; Yildiz et al., 1997) turbiditic deposits of the Kesan
Formation. These deposits interfinger with the andesitic-
dacitic lavas and pyroclastics forming a magmatic complex
in the north of the Gulf of Saros (Fig. 1(b)) reaching up to
800-m thickness. Radiometric data indicate a 3540 : 9 Ma
(K/Ar, Siimengen et al., 1987) age for this complex. The
turbiditic deposits pass gradually upwards and northwards

into marginal marine and continental sandstones-shales (the
Mezardere, Osmancik and Danisment formations and the
Yenimucahir Group (Unal, 1967)). The ages of these sed-
iments, which form the uppermost strata of the sequence
of the Thrace Paleogene Basin, extend from Oligocene to
Early Miocene (Siyako, 2006). In all previous studies,
the contact between the Paleogene and Neogene sequences
was interpreted as an angular unconformity throughout the
basin. However, Elmas et al. (2008) suggested that the con-
tact between the Paleogene and Neogene series is tectonic
in many places in the area between the Ergene River and
Saros Bay.

3.2 Neogene deposits of southwestern Thrace

The Neogene sequences display many different facies
associations because of their environments of deposition.
The sequences have been lithostratigraphically divided as
the Enez, Ergene and Thrace formations.

The oldest Neogene strata are the Middle-Upper Miocene
lacustrine and shallow marine deposits to the southwest-
ern part of the study area, and have been designated by
Kasar et al. (1983) as the Enez Formation. Around Ipsala
and Ibriktepe, on the Paleogene units, the sequence begins
with fresh- and brackish-water shallow marine clastics and
carbonates. They gradually pass into clays and weakly-
cemented, cross-bedded sandstones. The deposits of the
Middle—Upper Miocene (Siimengen et al., 1987; Sentiirk
and Karakose, 1987) Enez Formation, which indicate a
mixed (clastic and carbonate) marginal marine environment
for the deposition (Elmas et al., 2008), are overlain by the
cross-bedded yellow sandstones and conglomerates of the
Ergene Formation with an erosional contact.

To the southwestern part of the Thrace Basin, the Er-
gene Formation (Holmes, 1961) begins with different strati-
graphic units on the deposits of the Enez Formation and the
Paleogene basement units. South of Pehlivankdy, east of Ip-
sala and Merig (Fig. 2(b)), the Ergene Formation starts with
carbonate, carbonate-cemented sandstones and continues
with weakly-cemented and cross-bedded sandstones con-
taining lensoidal channel-fill conglomerates. Also, south
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of Copkoy and Derekoy, and around Ibriktepe (Fig. 2(b)),
the succession begins with coarse conglomerates. In many
places, the conglomerates contain blocks of metamorphic
rocks and Paleogene sandy limestone. The blocks range
in size from 5 to 70 cm and are embedded in a pebbly-
sandy matrix. The blocky deposits of the Ergene Formation,
which are located in close proximity to NE-trending faults
(Fig. 2(b)), are interpreted as fan deposits with associated
river channel fills (Elmas et al., 2008). Similar units are
also observed in the east and south of the study area to the
north of Malkara and south of Kesan (Fig. 2(b)). The blocky
deposits pass upward into a sequence of fine sandstone, silt-
stone, clayey limestone and marl. Mammal fauna, collected
from several parts of the sequence, indicates a Late Miocene
age (Unay and de Bruijn, 1984; Umut et al., 1984).

The Thrace Formation (Umut et al., 1983) uncon-
formably overlies the Upper Miocene Ergene Formation
and Paleogene units (Fig. 2(b)). The formation consists of
fluviatile clastics approximately 20-m thick. The clastics
crop out mainly to the north of the Ergene River and no
fossil remains have been found in these deposits. From the
stratigraphical point of view, the age span of the formation
should be Plio-Quaternary (Saking et al., 1999).

3.3 Structural elements in southwestern Thrace

Due to extensive Upper Miocene and younger cover
units, most of the knowledge on the structural features
of the Thrace Basin, collected by Peringek (1991), Doust
and Arikan (1974), Burke and Ugurtas (1974), Turgut et
al. (1991), Okay et al. (2000), Turgut and Eseler (2000),
Coskun (2000), are from seismic studies and borehole
data. These data indicate that there is an E-W trending
buried high area (Kuleli-Babaeski Highland, Keskin, 1974;
Coskun, 2000) under the Late Miocene cover sediments in
the central part of the Thrace Basin (Fig. 1(a)). Westwards
from the area of uplift, the crystalline rocks of the Rhodope
massif are exposed in eastern Greece. The high has been
overlain by the deposits of the Thrace Paleogene Basin
since the end of Eocene (Doust and Arikan, 1974), or Early
Oligocene (Keskin, 1974), times. To the north, the high
is bounded by branches of the WNW-ESE-trending right-
lateral strike-slip Central Thrace Fault Zone (Elmas, 2012).
To the south, in the area to the northwest of Tekirdag, the
existence of another fault is observed on the magnetotel-
luric profile of Bayrak er al. (2004). The fault, which is
overlain by the Late Neogene-Quaternary deposits of the
basin (Burke et al., 1974), and has mainly a south-verging
thrust component (Peringcek, 1991), is evaluated as a south-
ern fault system on the Central Thrace strike-slip fault zone
(Elmas, 2003, 2012, Fig. 1(a)). On the seismic profiles of
Burke et al. (1974), the Central Thrace strike-slip faults
cut through the Eocene-Miocene sedimentary succession
(Peringek, 1991; Turgut et al., 1991) of the Thrace Pale-
ogene Basin, and are overlain by the Upper Miocene (Unay
and de Bruijn, 1984) deposits of the Thrace Neogene Basin.

Another already-known structural element is the Ganos
Fault (Sengor, 1979) located to the southern part of the
basin, constituting a segment of the active and dextral North
Anatolian Fault Zone (Ketin, 1969; Jackson and McKenzie,
1988; Barka, 1992). The fault caused intense uplift and
deformation of the Neogene, and older, sedimentary strata
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on the southern margin of the basin (Sengor et al., 1985;
Turgut et al., 1991; Okay et al., 2004).

In addition to these structural elements, in southwestern
Thrace there are two distinct groups of faults, which are
described for the first time by Elmas et al. (2008). The ge-
ological structure of southwestern Thrace is dominated by
NE-trending faults (Fig. 1(b)). In the eastern central part
of the area, the second group faults have a NW trend. The
Neogene deposits of the Ergene Formation overlie all the
older series with a distinct erosional unconformity of basin-
wide extent. But, at some locations, the contact between the
Neogene and Paleogene deposits is defined by NE-trending
faults (Fig. 1(b)). These faults have controlled the depo-
sition of Upper Miocene alluvial fans and fluvial deposits
in the lower part of the Ergene Formation. Also the NW-
trending faults cut and deform the Neogene sedimentary
rocks of the Ergene Formation (Elmas et al., 2008).

4. Data and Results
4.1 Lineaments extraction from potential field data

The southwestern part of the Thrace Basin in Turkey is
selected as a study area to demonstrate the capabilities of
the Hough transform algorithm for lineaments extraction.
The Hough transform algorithm is a powerful tool against
noise, since the possibility of noise data points making a
contribution to a peak in the parameter space is quite low.
The noise affects the general level of the accumulator ma-
trix, but not the local maxima. Depending on the num-
ber of peaks in the parameter space, the structures with
different geometrical shapes in a data set can be identi-
fied by the Hough transform technique. The disadvantage
of the method is the need for large dimensions and time-
consuming calculations.

We obtained the high-resolution potential field data from
the Turkish Petroleum Anonymous Organization (TPAO)
and applied the method described in this study. Figure 4
illustrates the Bouguer anomaly map that has a grid spacing
of 1 x 1 km and consists of 14664 gravity measurements.
This map consists of a number of short-wavelength residual
anomalies that reflect shallow sources superposed on long-
wavelength regional anomalies that reflect deeper sources.
This map shows strong high positive anomalies which were
accompanied by the extrusion of abundant volcanic rocks in
the southern part of the study area (Figs. 1(b) and 4). Low
Bouguer anomalies in the northwestern and central parts are
associated with the Neogene deposits. GRH and GRL rep-
resent the highest, and lowest, gravity values, respectively
(Fig. 4). In the study area, the Bouguer anomaly values
range from 15 mGal in the north, to 68 mGal in the south,
with many short- and long-wavelength anomalies reflect-
ing the complicated tectonic history. The Bouguer grav-
ity anomaly is used as the input data to the proposed al-
gorithm for determining geological boundaries that are dif-
ficult to identify in the study area. Upward continuation
of the Bouguer gravity anomalies can be used to separate
the gravity field into geologically-relevant components aris-
ing from subsurface features seated at different depths and
sizes. This is the well-known regional residual separation
problem of gravity studies.

The gravity anomaly map, which presents the main geo-
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Fig. 4. Bouguer anomaly map of southwestern part of the Thrace Basin,

mGal to 68 mGal. The contour interval is 1 mGal, and the grid interval i
respectively. Coordinates are in kilometers and degrees.

physical data, is used to identify lineaments. We utilize the
upward continuation map which is applied to the Bouger
anomaly map to identify the effects of the bodies at differ-
ent depths and dimensions to constrain better the likely fault
systems. In this study, HT is used to extract lineaments after
upward continuation of the Bouguer gravity data to 5 km.
With the Hough transform, the lineaments (SL) obtained
from the surface gravity values (Bouger anomaly map) are
superimposed with the lineaments (SSL) obtained from the
5-km-upward continuation map to check whether the struc-
tures extend deeper in the crust. Also, taking into consid-
eration the previous studies, the lineaments are determined
manually (ML). In the northern part of the study area the
ML1, in the central part ML7, in the southern part MLS5,
MLS, and ML9, lineaments are found to extend from the
surface to the deeper part downward, but the rest of the lin-
eaments continue partially downward.

Applying to the HT of the Bouguer anomaly, and to the

Turkey. The map covers 112 x 85 km, and gravity values range from 15
s 1 km. GRH and GRL denote the maximum and minimum gravity regions,

upward continued data, the surface and subsurface linea-
ments are obtained and the resulting map is shown in Fig. 5.
This map shows lineaments which are surface and subsur-
face superimposed on the Bouguer anomaly map. It is ob-
served from this map that the proposed algorithm can detect
major and minor lineaments, but some false lineaments are
also detected, especially in the northern and central parts
of the study area. Lineaments are described by an appro-
priate level of pixel values: a process known as threshold-
ing. In general, a threshold value can be designated in two
ways. One way is from a few known structures in the area,
or from an available tectonic map. It may also be deter-
mined by a professional opinion. To some extent, this latter
way introduces subjectivity into the mapping process. It is
observed that with a high threshold value, the effects with
a long wavelength in the Bouguer anomaly maps are com-
pletely lost, while erroneous lineaments are produced with
a low threshold value. In order to obtain the desired details,
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Fig. 5. Lineament map of the southwestern part of the Thrace Basin (Turkey) obtained from the Hough transform algorithm. The automatically-extracted
surface lineaments (dashed line) and subsurface lineaments (solid line) from upward continuation of the Bouguer gravity data to 5 km are superim-
posed on the Bouguer anomaly map of the study area shown in Fig. 4. GRH and GRL denote the maximum and minimum gravity regions, respectively.
SL: the lineaments retrieved from the Bouger anomaly map, SSL: the lineaments estimated from the upward continuation map, ML: the shallow and
deep lineaments that are merged manually combining the SL and SSL. Coordinates are in kilometers and degrees.
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Fig. 6. Boundary map of the study area obtained from the boundaries analysis algorithm (Blakely and Simpson, 1986). Coordinates are in kilometers

and degrees.
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the threshold value can be adjusted accordingly (Aydogan,
2011). This map clearly shows that both major lineaments
having a large vertical displacement, and minor lineaments
that are not obvious in the Bouguer anomaly map, are well
defined using the Hough transform approach. The linea-
ments identified by HT are related to subsurface sources
due to its large lateral extent over the whole southwest-
ern Thrace Basin area. We also apply one of the classi-
cal boundary detection algorithms (Blakely and Simpson,
1986) to the Bouger anomaly map (Fig. 4) and the output
map is shown in Fig. 6. This map provides auxiliary infor-
mation for the interpretation of lineaments. The proposed
algorithm, and the classical method, yield similar results
(Figs. 5 and 6). Most of the geological features can be vi-
sually shown to fit in with our results. North-south- and
east-west-trending lineaments in the study area are clearly
imaged.

In the study area, 9 main lineaments systems are identi-
fied after merging several major and minor lineaments into a
single lineament (Fig. 5). SL stands for the lineaments that
are automatically obtained by applying the Hough trans-
form to the Bouger anomaly map. SSL shows the linea-
ments that are obtained from the upward continuation map
(the regional effects). ML depicts the lineaments defined
from the residual and regional effects which are manually
merged by considering geological and geophysical knowl-
edge obtained from previous studies. According to defined
lineament systems, SL and SSL stand for surface and sub-
surface lineaments, respectively. SL-SSL;—SL-SSLg linea-
ments which appeared in the gravity anomaly map as a gra-
dient zone geologically belong to the single lineament sys-
tems (ML;—MLy). Here, ML stands for merged SL-SSL
lineaments.

We identify three characteristic types of lineaments. One
of these types is NNE-SSW-trending lineaments located at
the northern part of the study area denoted ML, ML, and
ML;. In the same way, those located at the southern part
of the area are denoted as ML,4, MLs and MLg. Others are
nearly E-W-trending lineaments located at the central part
of the study area denoted as MLg and ML5. In this region,
the lineament denoted as SLg is also seen on the boundary
map (Fig. 6). Finally, an NNW-SSE-trending lineament
located in the southwestern part of the study area is denoted
as MLg. While ML; and MLj lineaments that extend to
the west of Uzunkdprii and Hayrabolu, respectively, are not
clearly seen in Fig. 6. ML,, ML3, MLg and ML lineaments
are particularly seen in Fig. 1(b).

The geological map (Fig. 1(b)), the Bouguer anomaly
map (Fig. 4), The lineament map (Fig. 5) and the boundary
map (Fig. 6), are integrated to provide evidence of the deter-
mination of the likely lineament systems. Analysis of these
maps leads us to a comprehensive understanding of the sys-
tem of faults of the study area. ML1, ML2, ML3, ML7,
SL9, SL-SSLS lineaments, in the lineament and boundary
maps (Figs. 5 and 6), overlap with faults in the geological
map. Also the ML, lineament between Sarkdy and Malkara
(Fig. 6) overlaps with the Ganos segment of the North Ana-
tolian Fault.
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5. Conclusions

This study presents the results of geophysical and geo-
logical surveys carried out as a part of integrated geophys-
ical and geological studies in the southwestern part of the
Thrace Basin. We describe how image enhancement tech-
niques are applied to the potential field data, and how the
Hough transformation is applied to data obtained from up-
ward continuation. The method is convenient for the de-
tection of lines in the parameter space. In this frame, the
detection of major and minor lineaments is possible.

One of the objectives in the structural interpretation of the
geophysical data is mapping the faults and fracture zones.
These features are characterized by lines and curves and,
thus, can be determined through a lineament interpretation
of the processed potential field data. It is difficult to know
which of the methods will yield more reasonable results for
geological interpretation. In the ultimate decision regarding
the analysis and image processing selection, not only expe-
rience, but also the shape of the anomalies and the conver-
gence of the best fitting model, are important criteria.

We have applied the proposed method to the data ac-
quired from the southwestern part of the Thrace basin lo-
cated in NW, Turkey. During the geological interpretation
stage, the adaptation of the method to the gravity data char-
acteristics was examined. In this respect, the method is use-
ful regarding automatic lineament detection in the gravity
data and visual inspection of the results. Despite the traces
of faults and contacts are not obviously identifiable from the
Bouguer anomaly map, the proposed image enhancement
technique successfully depicts the location of discontinu-
ities.

In our lineament map (Fig. 5), it appears that the posi-
tion of lineaments in the southwestern part of the Thrace
Basin generally show a similarity with a previous map
(Fig. 1(b)) prepared by Elmas et al. (2008) on the ba-
sis of a field study. In Fig. 5, the approximately E-W-
trending structural line north of Ipsala and Malkara, de-
termined from seismic studies, indicates the southern bor-
der of the Kuleli-Babaeski High. In addition, the faults
around Meri¢, Uzunkoprii and Pehlivankdy can be observed
both in the geological map (Fig. 1(b)) and in our lineament
map (Fig. 5) as three NE-trending fault zones. In the area
between 1psa1a, Kesan and Saros Bay, the surface struc-
tural elements shown in Fig. 5 collide with those of the
geological map (Fig. 1(b)). In this study, we determined
ENE-WSWe-extending fault systems, besides the NE-SW-
extending faults that were previously identified by the geo-
logical studies carried out in the region (Elmas ez al., 2008).
The NE-SW-trending faults ML 1, ML2 and ML3, occurring
in the northern part of Fig. 5, were detected by the proposed
method. The surface expressions of the faults are obvious
in the Bouger anomaly map, while their depth extensions
are retrieved through the upward continuation analysis. In
addition, as shown in the central part of Fig. 5, a NW-SE
striking fault segment (ML7) is located to the north of the
city Malkara along with a ENE-WSW striking fault line ly-
ing to the NE of the city. In the southern part of Fig. 5,
we identified the well-known Ganos fault segment of the
NAF (ML4) along with the newly-discovered ENE-WSW-
extending ML6 fault line. The MLS5 fault line running par-
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allel to the Ganos fault segment was also one of the newly-
detected faults during the present work. Consequently, by
applying the proposed approach to a gravity anomaly map,
a detailed general view of surface, and subsurface, struc-
tural features can be obtained successfully. The method is
a tool that can contribute to the geophysical interpretation
in determining fault traces, but the observations of experi-
enced reviewers are needed to define the geological mean-
ing of the geophysical results. Thus, the Hough transform
algorithm can be considered to be a useful tool, among with
other geophysical techniques, in the investigation of subsur-
face boundaries over wide areas.
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