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Four attenuated waves propagate in a pre-stressed anisotropic generalized thermoelastic medium. The prop-
agation phenomenon in this medium is explained through two systems. One of them, relating the temperature
variation in the medium to the particle displacement, is free from the explicit effect of pre-stress. The other system
defines Christoffel equations for the medium. These equations are modified with a matrix, which involves phase
direction and pre-stress components. A propagation-attenuation plane is defined for given directions of propa-
gation and attenuation of plane harmonic waves. A finite non-dimensional parameter defines the inhomogeneity
strength of an attenuated wave. A complex vector is defined to calculate complex velocities of the four waves
from the complex roots of a quartic equation. The complex slowness vector of the attenuated wave in the medium
is resolved to calculate its propagation (phase) velocity, quality factor and angle of attenuation. Numerical exam-
ple is considered to study the propagation characteristics of each of the four attenuated waves in the pre-stressed
medium. The presence of anisotropic symmetries and anelasticity are also considered in the medium. Effect of
pre-stress is analyzed on the propagation characteristics of each of the four attenuated waves.
Key words: Initial stress, thermoelastic, inhomogeneous waves, attenuation.

1. Introduction
The crustal rocks are always subjected to stresses. The

slow process of creep inside the earth creates a differen-
tial stress environment (Hanks and Raleigh, 1980; McGarr,
1980) in the crust, which is responsible for the preferen-
tial alignments in the Earth, ranging from mineral orien-
tations, grains, or microcracks to sedimentary folds or re-
gional fractures. The difference between confined tectonic
stress and pore-fluid pressure conducts the flow of fluid to
a reservoir through the connected cracks. For the presence
of pre-stress or aligned cracks, an elastic medium behaves
anisotropic to wave propagation. Hence, the almost uni-
versal presence of anisotropy is observed in many types
of rocks at many depths and in many geological and tec-
tonic environments. Two recent studies (Prikazchikov and
Rogerson, 2003; Sharma, 2005) contribute to the under-
standing of wave propagation characteristics of anisotropic
materials under initial stress. A latest book by Carcione
(2007) explains the importance of anisotropy for wave prop-
agation studies in real materials.

Temperature variations play a significant role in the mod-
ification of cracks and the flow of fluid (Paulsson et al.,
1994). These modifications in microcracks are responsi-
ble for the dynamism around geothermal reservoirs and
the sedimentary basins. Stixrude and Lithgow-Bertelloni
(2005) have argued the merit of fundamental thermody-
namic relations as the basis for the description of thermoe-
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lastic behaviour of in-situ minerals. Theory of thermoe-
lasticity is used to understand such dynamical systems that
involve interactions between mechanical work and thermal
changes. Few generalised theories of thermoelasticity have
been defined with the introduction of relaxation in temper-
ature field. The theory with one relaxation time (Lord and
Shulman, 1967) is termed as LS theory and another with
two relaxation times (Green and Lindsay, 1972) is termed as
GL theory. Using these modified theories, a large number
of problems have been studied on the propagation of plane
waves in generalized thermoelastic media (El-Karamany et
al., 2002; Sharma et al., 2003). Sharma et al. (2000) studied
plane harmonic waves in orthotropic thermoelastic materi-
als. In a recent study (Sharma, 2006), the author considered
the general anisotropy in thermoelastic medium and derived
a mathematical model to calculate the complex velocities of
four waves in the medium. Correspondence was, also, es-
tablished between the generalised theory of thermoelastic-
ity and the homogenization based (u, p) theory of poroe-
lasticity.

The attenuation of waves in thermoelastic medium comes
from the memory effects allowed to heat conduction. How-
ever, a more realistic scheme is defined with memory ef-
fects allowed for all the constitutive properties of thermoe-
lastic coupling. Giorgi et al. (2001) studied a linear theory
for thermoviscoelastic materials but with thermal behaviour
represented through the heat conduction equation. Gener-
alizations of El-Karamany et al. (2002) and El-Karamany
and Ezzat (2002) described and established relaxation ef-
fects in mechanical properties as well as thermo-mechanical
coupling in thermoviscoelastic media. Analogous to the
correspondence principle in classical elasticity, the com-
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plex values of appropriate constitutive quantities may define
the time-harmonic material dissipation in thermoviscoelas-
tic medium (Caviglia and Morro, 2005).

The present study considers the propagation and attenua-
tion of inhomogeneous waves, in a pre-stressed anisotropic
generalized thermoelastic (hereafter, referred as SAGT)
medium. In a similar study (Sharma, 2005), the author stud-
ied the propagation of homogeneous waves in anisotropic
poroelastic medium in the presence of initial stress. But,
for the use of Biot’s theory of poroelasticity (Biot, 1956)
in this paper, the present work can not be obtained through
the poroelastic-thermoelastic correspondence (Sharma,
2006). Moreover, the inhomogeneous propagation of
attenuated waves is considered in the present work. The
complex slowness vector of an inhomogeneous wave is
constructed with its propagation direction and inhomogene-
ity strength. Numerical examples are computed to analyze
the propagation characteristics of the attenuated waves
in the elastic/viscoelastic media of different anisotropies.
Anisotropic variations in propagation characteristics are
also analysed for an isotropic medium pre-stressed with
hydrostatic pressure.

2. Definition of the Problem
The problem is to study the wave propagation in SAGT

medium. The attenuated waves of four types can propagate
in the medium. The polarisations of these waves may not be
along the dynamical axes. The problem may be explained
through the following steps.

i) The propagation of plane harmonic waves may be
explained through two systems of equations. One
of them relates the wave-induced temperature in the
medium to the displacement of its particles. The other
system provides modified Christoffel equation for the
medium. The Christoffel equations are solved into a
quartic equation. The four roots of this equation define
the complex velocities of the four attenuated waves in
SAGT medium.

ii) The inhomogeneity of an attenuated wave in the
medium is represented through an inhomogeneity pa-
rameter (δ). For a wave, of given inhomogeneity
(value of δ), propagating along a given direction (n̂),
bisection method is used to calculate a parameter (β)
to represent homogeneous attenuation. The parame-
ter β is used, further, to calculate the phase velocity,
quality factor and attenuation angle of the wave con-
sidered.

iii) The numerical examples are considered to compute
the propagation characteristics (velocity, attenuation)
of each of the four inhomogeneous waves in SAGT
medium. The presence of anisotropic symmetries and
anelasticity in the medium is considered in the numer-
ical models.

3. SAGT (pre-stressed anisotropic generalized
thermoelastic) Medium

3.1 Basic equations
A homogeneous anisotropic thermally conducting elas-

tic solid is considered at a uniform temperature To, in the
undisturbed state. In-situ equilibrium is obtained in the
presence of homogeneous initial stresses defined by a sym-
metric tensor Si j . Following Biot (1965) the equations for
wave motion in this medium, in the absence of body forces
and thermal sources, are given by

σi j, j +Sjkωik, j +Sikω jk, j −αi j
(
T + τ1 + δ2m Ṫ

)
, j = ρüi ,

Ki j T,i j − ρCe
(
Ṫ + τoT̈

) = Toαi j
(
τoδ1müi, j + u̇i, j

)
,

(1)

where, Ki j is (positive-definite) thermal conductivity ten-
sor. The thermoelastic coupling is represented by (non-
singular) tensor αi j . ρ and Ce are density and specific
heat at constant strain, respectively. The 1 and 2 values
of the index m in Kronecker delta δ jm , represent, respec-
tively, the Lord-Shulman (LS) and Green-Lindsay (GL) the-
ories of thermoelasticity. Two thermal relaxation times are
given by τo ≥ τ1 ≥ 0. ui are the components of average
displacements of the material particles. T denotes varia-
tions in the temperature of the medium in disturbed state.
ωi j = (ui, j − u j,i )/2 are components of rotation. The in-
cremental stresses σi j in the medium are expressed as

σi j = ci jkl uk,l , (2)

where, the fourth rank asymmetric tensor ci jkl (= c jikl =
ci jlk) represents isothermic elastic constants of the medium.
Another property, given by

ci jkl − ckli j = Sklδi j − Si jδkl , (3)

ensures the existence of strain energy density function for
the medium (Biot, 1965). All the indices (except m) can
take values of 1, 2, 3. Repeated index implies summation.
The dot and comma notations denote (partial) differentia-
tion with respect to time and space, respectively.
3.2 Plane harmonic waves

For propagation of plane harmonic waves, the unknowns
(u j and T ) is written as

u j = Sj exp {ıω(pk xk − t)}; ( j = 1, 2, 3),

T =� exp {ıω(pk xk − t)}, (4)

where, the components (S1, S2, S3) define the polarization
vector S for the displacement of the particles in the medium.
The vector p = (p1, p2, p3) defines slowness of the waves.
Analogous to Sharma (2006), the propagation phenomenon
of plane harmonic waves in the SAGT medium is explained
through two systems. One of them, given by

T = ıω
To(τ0δ1m + ı/ω)

Krs pr ps − ρCe(τ0 + ı/ω)
α jk pku j , (5)

relates the displacement (u) of particles to the temperature
change (T ) in the medium.
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The other system represents the modified Christoffel
equations and is given by

Wik Sk = 0;
Wik =−ρδik+ci jkl p j pl+0.5	ik−Toτ

′ αi j p jαkl pl

Krs pr ps − ρCeτ
,

(6)

where, τ = τ0 + ı/ω and τ ′ = τ0δ1m + τ1δ2m + ı/ω are the
complex relaxation times. The matrix 	, given by

	ik = p j pk Si j − pi p j S jk + p j pl S jlδik − p j p j Sik, (7)

represents the effect of pre-stress on the wave propagation
in SAGT medium. The absence of pre-stress components
Si j in relation (6), implies that the pre-stress has no direct
effect on wave-induced temperature T . However, the effect
of pre-stress on the displacement (ui ) results in a change
in T . A non-trivial solution of the Christoffel equations
is ensured by a determinantal equation. Writing slowness
p = N/V , such that row matrix N satisfies NNT = 1, this
equation is given by

det

[
−ρhI + (ZN + 0.5			N + Y)+ 1

χh − 1
Y

]
= 0;

h = V 2,

(8)

where, 			N = NSNT I − S + SNT N − NT NS and matrix
ZN = Z(N, N), as defined in Appendix. For thermal
conductivity K = KoKa with anisotropy defined by matrix
Ka, and coupling tensor α = αoαa with anisotropy defined
by matrix αa, we have
χ = χo(1+ ıη)/NKaNT , χo = ρCeτo/Ko, η = (ωτo)

−1

and
Y = σ

(
δ1m + τ1

τo
δ2m + ıη

)
(1 + ıη)−1 αaNT Nαa,

σ = Toα
2
o/(ρCe).

In Eq. (8), the matrices Y and 			N represent the effects
of thermoelastic coupling and pre-stress, respectively, on
the propagation of elastic waves. With the substitution of
			N = 0, this equation governs the anisotropic propagation
of thermoelastic wave (Sharma, 2006).
3.3 Four attenuated waves

Following the procedure explained in Sharma (2006), the
determinantal Eq. (8) is solved into a quartic equation in
h (= V 2). This equation may be written as

h4 + C1h3 + C2h2 + C3h + C4 = 0. (9)

The complex coefficients C j , for a numerical model of
SAGT medium, are functions of phase vector N. Four
complex roots (say, h j ; j = 1, 2, 3, 4) of this equation
explain the existence and propagation of four attenuated
waves in SAGT medium. The four waves are identified
with the algebraic expressions of these roots. The atten-
uated waves corresponding to h1, h2, h3, h4 are called
the q P, q S1, q S2, qT waves, respectively. For any of
these four waves, the complex velocity (V ) correspond-
ing to the complex vector N is calculated from the corre-
sponding value of h. Thus obtained, slowness vector (i.e.,
p = N/V ) for the wave may be used to calculate its polar-
ization from the system of Eqs. (6).

3.4 Inhomogeneous plane waves
In a dissipative medium, an attenuated wave may be ho-

mogeneous or inhomogeneous. An angle between propa-
gation vector and attenuation vector, in general, represents
the inhomogeneous character of a plane wave. The phase
vector N, in real space, yields same direction for propaga-
tion vector and attenuation vector and, hence, represents the
homogeneous waves. So, an inhomogeneous wave may be
represented, only, with N as a complex (dual) vector.

Consider a plane that contains propagation vector (along,
say, n̂) and attenuation vector of inhomogeneous plane
wave. Let, this plane be formed with two orthogonal unit
vectors n̂ and m̂. The complex slowness vector (p) is, then,
expressed as

p = 1

v

[
n̂ + ıβn̂ + ıδm̂

]
, (10)

where, the non-dimensional parameter δ measures the in-
homogeneity strength of the attenuated wave. A non-zero
value of δ, in (−1, 1), represents the deviation of inhomo-
geneous wave from its homogeneous version (i.e., δ = 0).
The coefficient of homogeneous attenuation (β) and propa-
gation velocity (v) are the real unknowns, to be determined
for given propagation direction n̂, orthogonal direction m̂
and inhomogeneity parameter δ. The expression p = N/V ,
such that N.N = 1, of complex slowness vector is used in
(10) to yield

N = [
n̂(1 + ıβ)+ ıδm̂

] /√[
(1 + ıβ)2 − δ2

];
v2

V 2
= (1 + ıβ)2 − δ2.

(11)

Note that, the phase vector N is a vector function of only
one (real) unknown, i.e., β. This implies that the complex
velocity V = V (N), also, becomes a function of β, such
that V 2 = h(β) = h R + ıh I . The complex value h = h(N),
for each of the four waves, is available as one of the roots
of quartic equation (9). The second equation in (11), then,
written as

v2 = (
1 − δ2 − β2 + 2ıβ

)
(h R + ıh I ) , (12)

yields

0 = (
1 − δ2 − β2

)
hI + 2βh R; (13)

an equation to be solved for β using a bisection method, and

v2 = (
1 − δ2 − β2

)
h R − 2βhI , (14)

to calculate v2 for β obtained from (13). A positive h R and
β2 < 1 − δ2 ensure a positive value for v2. Equation (13)
has a root in (0,

√
1 − δ2), when hI < 0. If hI > 0, then,

this root lies in (−√
1 − δ2, 0). This implies that opposite

signs of β and hI ensures a positive value for v2.
The coefficient of homogeneous attenuation β is cal-

culated for each of the inhomogeneous waves in SAGT
medium. It is used, further, to define quality factor (Q) and
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angle (γ ) of attenuation, as follows.

Q−1 = − hI

h R
= 2β

1 − β2 − δ2
, γ = cos−1

(
β√

β2 + δ2

)
.

(15)

4. Numerical Examples
Propagation of an attenuated wave is characterised by its

phase velocity (v) and quality factor of attenuation (Q). In
general, the inhomogeneity of an attenuating wave is repre-
sented through the difference in the directions of its propa-
gation vector and attenuation vector. In other words, an an-
gle (γ ) between equi-amplitude plane and equi-phase plane
of an attenuating plane wave represent its inhomogeneous
character. To avoid forbidden directions (Krebes and Le,
1994) for γ , an inhomogeneity of an attenuated wave is
defined with the non-dimensional inhomogeneity parame-
ter (δ). The relation (15) relates the angle γ to the param-
eter δ. Hence, phase velocity (v), quality factor (Q) and
attenuation angle (γ ) are the main propagation characteris-
tics of an inhomogeneous wave. These characteristics are
the functions of δ and, in anisotropic media, these are the
functions of propagation direction (n̂) also. Variations of
these characteristics with propagation direction explain the
anisotropic behaviour of inhomogeneous waves. The value
of δ defines a general attenuated wave varying from ho-
mogenous propagation (δ = 0) to evanescent wave (β = 0).
The arbitrary anisotropy always provides a liberty to con-
sider any realistic anisotropy with symmetries.

The procedures discussed in this study constitute a gen-
eral mathematical model for propagation of plane harmonic
waves in SAGT medium. The use of the derived model in
analyzing the propagation characteristics of a realistic ther-
moelastic medium may be explained through numerical ex-
amples. Dolomite rock (Rasolofosaon and Zinszner, 2002)
of density 2727 kg/m3 is considered as SAGT medium and,
in two-suffixed notations, its anisotropic elastic constants
(in GPa) are given by

c11 = 106.8 c12 = 27.1 c13 = 9.68 c14 = −0.03Z1

c15 = 0.28Z1 c16 = 0.12Z2;
c22 = 99.0 c23 = 18.22 c24 = 1.49Z1 c25 = 0.13Z1

c26 = −0.58Z2;
c33 = 54.57 c34 = 2.44Z1 c35 = −1.69Z1

c36 = −0.75Z2;
c44 = 25.97 c45 = 1.98Z2 c46 = 0.43Z1 c55 = 26.05

c56 = 1.44Z1 c66 = 37.82.

The remaining elements of non-symmetric elastic ten-
sor ci j are obtained through the relation defined in
Appendix. The amount (in GPa) of initial stress
in the medium is assumed through the matrix S =
{1,0.11Z2,0.09Z1;0.11Z2,1.1, 0.1Z1; 0.09Z2, 0.1Z1, 0.9}.
A symmetric matrix {1, .1Z2, .2Z1; .1Z2, 1.1, .15Z1; .2Z1,

.15Z1, .9} defines the anisotropies of thermal conductivity
(Ka) as well as of thermoelastic coupling (αa). It may
be noted that the values (1, 1), (0, 1) and (0, 0) of
(Z1, Z2) represent, respectively, the triclinic, monoclinic
and orthotropic anisotropy in the model. Keeping in mind

the values for metals, the assumed values for thermal
coefficients of SAGT medium are given by To = 300◦K,
αo = (2.)10−5c11/

◦K, Ce = 400 J kg−1/◦K, Ko = 400 W
m−1/◦K. The relaxation times are assumed as τo = 10−9

sec, τ1 = 0.95τo.
For general direction (θ, φ), in three-dimensional

space, the propagation direction n̂ is defined by
(sin θ cosφ, sin θ sinφ, cos θ). The vertical plane
φ = 0.34π is the fixed propagation-attenuation plane for
numerical computation. In this plane, the propagation
direction is considered with θ , varying from 0 to 90◦ and
the orthogonal vector m̂ is considered along θ + π/2. The
three values of δ (= 0.01, 0.1, 0.4) are used to represent
the variations in inhomogeneity strength of a wave. The
smallest value (0.01) of δ represents a nearly homogeneous
(or weakly inhomogeneous) wave. It was noted that the
thermoelasticity theory (LS or GL) has only a negligible
effect on the propagation characteristics of inhomogeneous
waves. Hence, the numerical results are exhibited, only, for
GL theory (i.e., m = 2). Three main anisotropies (triclinic,
monoclinic, orthotropic) are considered in thermoelasticity
as well as initial-stress.

Figure 1 exhibits the anisotropic variations of phase ve-
locity (v), quality factor (Q−1) and attenuation angle (γ ) for
the inhomogeneous thermoelastic q P-waves. The velocity
plots show that the velocity of q P-wave decreases with the
increase of inhomogeneity (δ). This decrease is largest at
θ = 0 but reduces on shifting away from this direction.
The near similarity of velocity plots in three columns of the
figure implies that the presence of a reflection symmetry
in SAGT medium has a very little effect on the velocity of
q P-waves. The second row of plots in this figure shows
the anisotropic variations of attenuation with the inhomo-
geneity of wave. It is quite clear from these plots that the
attenuation is increasing with the increase of δ. Moreover,
the attenuations represented by nearly homogeneous waves
(i.e., δ = 0.01) are negligible as compared to the attenua-
tions from inhomogeneous waves. The effect of monoclinic
symmetry is observed only for propagation near θ = 0.
Q−1 is maximum for a value of θ near 40◦. For propagation
along θ = 90◦, the effect of wave inhomogeneity is smallest
(almost, negligible) on attenuation. The third row of plots
in this figure shows the anisotropic variations of angle be-
tween directions of propagation and maximum attenuation.
The inhomogeneity parameter has a very little effect on this
angle. The q P-waves are nearly evanescent (i.e., γ = π/2)
when propagate along θ = 0 and θ = 90◦. The evanes-
cent character of these waves, even when they are nearly
homogeneous (i.e., δ = 0.01), implies that the value of β is
very small and, hence, a very small contribution of homo-
geneous waves to the total attenuation. The inhomogeneity
angle increases on shifting the propagation away from these
directions and gets its maximum around θ = 40◦. The pres-
ence of monoclinic symmetry has a significant effect on γ

but only when θ is around 0.
Figure 2 shows the anisotropic variations of the propa-

gation characteristics of q S1-wave in SAGT medium. The
velocity (v) decreases with the increase of δ, mainly, near
θ = 0. The anisotropic symmetries may not affect the mag-
nitude of velocity much but do affect its variations with
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Fig. 1. Variations of propagation velocity (v), quality factor (Q−1) and attenuation angle (γ ) of q P-wave with propagation direction (θ ) and
inhomogeneity parameter (δ).

 

 

 

 

 

 

 

 

 

Fig. 2. Same as Fig. 1, but for q S1-wave.

propagation direction. The magnitude of Q−1 increases
with the increase of δ. For nearly homogeneous (or weakly
inhomogeneous) waves (i.e., δ = 0.01),the value of Q−1 is
negligible and remain unchanged with the change in propa-

gation direction. This implies that contribution of homo-
geneous waves to attenuation is negligible. Presence of
anisotropic symmetry affects the magnitude as well as di-
rectional variations of velocity of q S1-wave. The larger
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Fig. 3. Same as Fig. 1, but for q S2-wave.

Fig. 4. Same as Fig. 1, but for qT -wave.

value of δ (i.e., 0.4) shows its effect on γ . The value of
γ near 90◦ implies the near evanescent and strongly inho-
mogeneous nature of q S1-waves.

The plots in Fig. 3 explains the anisotropic variations of

v, Q−1 and γ for q S2-wave. The effect of inhomogeneity
parameter is similar to as observed for q S1-wave. How-
ever, the variations with propagation directions are quite
different, mainly in the presence of anisotropic symmetries.
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Fig. 5. Variations of propagation velocity (v), quality factor (Q−1) and attenuation angle (γ ) with propagation direction (θ ) and anelastic parameter (ε);
δ = 0.2; anisotropy: triclinic.

 

 

  

 

 

 

 

 

 

 

Fig. 6. Change (percent) in propagation velocity (v), quality factor (Q−1) and attenuation angle (γ ) due to pre-stress; variations with propagation
direction (θ ) and anelastic parameter (ε); δ = 0.2; anisotropy: triclinic.
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Fig. 7. Variations of propagation velocity (v), quality factor (Q−1) and attenuation angle (γ ) in isotropic elastic medium with propagation direction (θ )
and anelastic parameter (ε); δ = 0.2; pre-stress: hydrostatic.

The anisotropy in the medium has a significant effect on the
propagation of q S2-wave. The behavior of anisotropic vari-
ations seem to be quite sensitive to the larger (between 0.1
to 0.4) values of δ. Similar to q S1-wave, the value of γ is
around 90◦.

Figure 4 shows the propagation characteristics of slow-
est (qT ) wave in the medium, with propagation direction
(θ ) and inhomogeneity parameter (δ). These variations in
case of triclinic anisotropy are much different from those
for monoclinic and orthotropic anisotropies. The qT -wave
experience the largest (Q−1 is around 1) attenuation among
all the four waves in the medium. The angle (γ ) between
propagation and attenuation direction is much away from
90◦ and varies a lot with the value of δ. For δ = 0.01,
the zero value of γ implies that the qT -wave propagates as
a homogeneous wave. That means the homogeneous qT -
waves are contributing much to the attenuation, contrary to
the three faster waves in the medium. The attenuation (Q−1)
and inhomogeneity angle (γ ) of the weakly inhomogeneous
waves are not changing with the direction of propagation.

The attenuations exhibited in above figures are due to the
thermoelastic character of the medium. The other source of
the intrinsic attenuation may be the anelastic nature of the
medium. The complex elastic constants for a viscoelastic
medium are defined as ci j (1 − ıε). To check the effect of
anelasticity, the propagation characteristics are computed
for three values (0, 0.02, 0.05) of ε. The variations of
v, Q−1, γ of the four waves with propagation direction
are exhibited in Fig. 5. The waves are inhomogeneous (δ =
0.2) and medium is general anisotropic (i.e., triclinic). The

first row of plots in this figure implies that viscoelasticity in
the medium may not have any effect on the phase velocities
of any of the four waves. However, attenuation angles γ and
Q−1 of three faster waves are increasing with ε. The only
exception is qT -wave, which is not affected by the anelastic
nature of the medium.

The plots in Fig. 6 present the percent change in ve-
locity (v), attenuation amount (Q−1) and attenuation an-
gle (γ ) due to the presence of pre-stress. Three values of
ε = 0, 0.02, 0.05 represent the variations in the anelastic
character of the medium. Numerical results show that the
slowest (qT ) wave is unaffected by the presence or absence
of pre-stress. Hence, in Fig. 6, the results are exhibited,
only, for three faster waves. From the first row of plots it
is noted that effect of pre-stress is more on slower waves.
However, the change is not more than 0.3 percent and hence
may not be significant. The plots in the second row in the
figure imply that the effect of pre-stress is quite large on the
attenuation but only for propagation along some particular
directions. The effect of pre-stress on Q may change with
the viscoelastic character of the medium. Similar to veloci-
ties, the effect of pre-stress on attenuation angle may not be
considered significant.

The anisotropy in the medium is of two types. One is in-
herent elastic anisotropy and other is due to the presence of
pre-stress. The stress-induced anisotropy may, also, be ob-
served in an isotropic elastic medium. So, the computations
are carried out to calculate the propagation characteristics
of attenuated waves in an isotropic thermoelastic medium
(with non-zero elastic constants c11 = c22 = c33 = 110
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GPa, c44 = c55 = c66 = 24 GPa, c12 = c21 = c13 = c31 =
c23 = c32 = c11 − 2c66) in the presence hydrostatic pre-
stress (S = I GPa). All the waves are inhomogeneous with
δ = 0.2. It is calculated that q P-wave and qT -wave be-
have isotropic with constant values of (v, Q−1, γ ), given
by (6.224 km/s, 0.02, 87◦) and (0.1713 km/s, 1, 26.5◦), re-
spectively. However, the effect of stress-induced anisotropy
is observed on two split-shear (q S1, q S2) waves. Figure 7
exhibits, the anisotropic variations of v, Q−1 and γ for q S1
and q S2 waves. The anisotropy induced by hydrostatic pre-
stress is affecting mainly the velocities. The presence of
anelasticity does not show much effect on this anisotropic
behavior.

5. Concluding Remarks
The numerical results in previous section are com-

puted only for some particular numerical models of SAGT
medium. Hence, the analysis of these results may not qual-
ify for generalization. However, the few noticeable points
may be explained as follows.

i) The slower is an elastic wave, more it is affected by
the presence of anisotropic symmetry. The presence
of anisotropic symmetries have a very significant ef-
fect on the variations of velocity with propagation di-
rection. The negligible effect of anisotropic symmetry
on the velocities of q P and qT waves may indicate
that the quasi-longitudinal waves are less sensitive to
the presence of anisotropic symmetry.

ii) The attenuations represented by weakly inhomoge-
neous (i.e., δ = 0.01) faster waves are negligible.
This implies that the large attenuation in a dissipative
medium may be explained only with strongly inhomo-
geneous waves. The values of γ near 90◦ imply the
near-evanescent character of inhomogeneous waves in
the dissipative medium.

iii) The qT -waves experience the largest attenuation
among all the four waves in the medium. The angle
(γ ) between propagation and attenuation direction of
qT -wave is much away from 90◦ and varies a lot with
the value of δ. For δ = 0.01, the significant value of
Q−1 and zero value of γ implies that attenuated qT -
wave propagates as a homogeneous wave. That means,
homogeneous qT -waves may be able to explain large
attenuation also, contrary to the three faster waves in
the medium.

iv) Viscoelasticity in the medium may not have any effect
on the phase velocities of any of the four waves. How-
ever, the attenuation angles (γ ) and coefficients (Q−1)
of three faster waves increase with ε. The exception is
qT -wave, which is not affected by the anelastic nature
of the medium.

v) The propagation of quasi-thermal (qT ) wave may not
be affected with the presence of pre-stress in SAGT
medium. The other three waves may not be changing
their velocities and attenuation angle with the presence
of pre-stress. However, pre-stress may affect the at-
tenuation of these waves but only for few propagation
directions. This implies that, to affect the velocities of
the waves, the pre-stress values should be much greater

than that assumed in the numerical model.
vi) The effect of anisotropy induced by hydrostatic pre-

stress in an isotropic thermoelastic medium is ob-
served only on two split-shear (q S1, q S2) waves.
The isotropic propagation behavior of other two (q P ,
qT ) waves is not affected by the presence this stress-
induced anisotropy.

The work presented relates the geophysical properties
(anisotropy, initial-stress, thermoelasticity) of a realistic
medium to its propagation characteristics (velocities, atten-
uation, polarizations, phase shift, reflection coefficients).
For the presence of anelastic attenuation and anisotropic
symmetries, these relations may provide improved con-
straints on thermal/compositional structure and deforma-
tional processes in the interior of Earth. When supported
with a real data, these constraints may be used to understand
a variety of geophysical problems. Few relevant problems
are explained as follows.

a) Seismic waves generated in Earth’s interior pro-
vide images that help us to better understand the
pattern of mantle convection that drives plate mo-
tions. Anisotropy and dissipation, which also influ-
ence seismic-wave propagation, may be characterized
better to extract additional information on flow direc-
tions, temperature variations and the presence of par-
tial melting (Romanowicz, 2008).

b) The boundary between the core and mantle is one
of the most enigmatic regions of Earth’s interior. It
holds the key to understand a host of geophysical
phenomena—including the formation of plumes in the
mantle, interactions between core and mantle, and
the ultimate fate of subducting slabs of crust that are
driven into the interior by tectonic forces. Investiga-
tions of this region largely depend on interpreting the
behaviour of seismic waves, which have shown that it
is highly complex (Duffy, 2004)

c) The MgSiO3 perovskite, generally accepted to be the
major component of the lower mantle. It is found
to be highly anisotropic in all portions of the lower
mantle and the nature of anisotropy changes signifi-
cantly with depth. Wentzcovitch et al. (1998) calcu-
lated anisotropy of seismic wave velocities as a func-
tion of pressure (depth). Anisotropy at the topmost
lower mantle can be attributed to the preferred orienta-
tion of perovskite.

d) Knowledge of the elastic properties of the dominant
(Mg, Fe, Al)(Si, Al)O3 perovskite phase of the Earth’s
lower mantle, including the pressure and temperature
dependence of the bulk and shear moduli, is criti-
cal for analyses of its chemical composition and ther-
mal regime including the significance of the lateral
variations of seismic wave speeds (Jackson, 1998;
Deschamps and Trampert, 2004; Mattern et al., 2005).

e) The prediction of pre-drill overpressure is required for
the monitoring of hydrocarbon production in the bore-
holes (Sayers et al., 2002).

f) The extent of fracturing in a region of a borehole,
which is a vital factor in the extraction of oil and
geothermal heat. The information on fracture distribu-
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tion (from velocity inversion) is used to estimate the
anisotropic permeability of the fracture rock system
(Gibson and Toksoz, 1990).

Appendix A.
A non-symmetric square matrix of order six, {ci j }, is

used to denote the elastic properties of the medium in two-
suffix notations. In the presence of initial stress (Si j ) in
the medium, the asymmetry of the elastic tensor (ci j ) is
expressed through the relations

c12 − c21 = S22 − S11, c13 − c31 = S33 − S11,

c23 − c32 = S33 − S22;
c14 − c41 = c24 − c42 = c34 − c43 = S23,

c15 − c51 = c25 − c52 = c35 − c53 = S13,

c16 − c61 = c26 − c62 = c36 − c63 = S12, c54 = c45,

c64 = c46, c65 = c56.

Consider two row matrices U and V of three elements
each. These matrices define the elements of a square ma-
trix Z(U, V) of order three, as follows.

Z11 = UAVT , Z22 = UBVT , Z33 = UCVT ,

Z12 = UDVT , Z13 = UEVT , Z21 = UFVT ,

Z23 = UGVT , Z31 = UHVT , Z32 = UJVT ,

(A.1)

where VT is the transpose of V and

A = {c11, c16, c15; c61, c66, c65; c51, c56, c55};
B = {c66, c62, c64; c26, c22, c24; c46, c42, c44};
C = {c55, c54, c53; c45, c44, c43; c35, c34, c33};
D = {c16, c12, c14; c66, c62, c64; c56, c52, c54};
E = {c15, c14, c13; c65, c64, c63; c55, c54, c53};
F = {c61, c66, c65; c21, c26, c25; c41, c46, c45};
G = {c65, c64, c63; c25, c24, c23; c45, c44, c43};
H = {c51, c56, c55; c41, c46, c45; c31, c36, c35};
J = {c56, c52, c54; c46, c42, c44; c36, c32, c34},

(A.2)

are square matrices of order three.
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