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Introduction
Type 1 diabetes mellitus (T1DM) is an autoimmune 
disease, which is a diverse group of chronic illnesses, 
characterized by an immune response directed against 
islets β-cell mass. Moreover, autoinflammatory 
infiltrate appears to characterize the insulitis associated 
with type 2 DM. Furthermore, islet-reactive T cells 
responding to multiple islet proteins have been found 
in both T1DM patients and phenotypic type 2 DM 
patients with or without islet autoantibodies [1–3], 
emphasizing the need to implicate early immune-
based therapeutic interventions in the treatment of 
prehyperglycemic stage of diabetic patients that is 
ideally effective and long-lasting, with minimal side 
effects and better cure rates.

The ability to predict the development of autoimmune 
diabetes has been improved markedly with the 
combined use of genetics, metabolic testing, islet 
autoantibodies, and assessment of β-cell mass [3]. 
Other parameters such as circulating microvesicles and 
exosomes appear to have a good predictive value in the 
near future.

However, T1DM has a strong genetic component, 
reflected by the observation that first-degree relatives 
have a higher risk compared with the general population. 
Three classes of class II HLA genes (DP, DQ, and DR) 
have the strongest association with T1DM. Certain 

genes such as HLA-DR3 and HLA-DR4 (DQ3.1 
in particular) are highly susceptible antigens most 
associated with diabetes, and polymorphic variants 
of class II HLA genes determine 40–60% of genetic 
susceptibility [4].

Metabolic dysregulation precedes overt autoimmunity 
in T1DM [5]. The Finnish DIPP cohort study [6] 
showed that changes in serum metabolites were found 
only in the children who later developed T1DM. 
These changes included reduced serum succinate, 
lysophosphatidyl-choline (lysoPC), phospholipids, 
and ketoleucine, as well as elevated glutamic acid. These 
reactive lipid by-products are capable of activating 
proinflammatory molecules [7] that function as a 
natural adjuvant for the immune system [8].

Four biochemically characterized islet autoantibodies 
have been recognized – namely insulin autoantibodies 
(IAA), glutamic acid decarboxylase 65 (GAD65) 
antibody or (GADA), tyrosine phosphatases 
insulinoma antigen (IA)-2 and IA-2b (also known as 
ICA512), and the zinc transporter 8 (ZnT8) [9,10]. 
The presence of a single islet autoantibody is associated 
with relatively low risk on long-term follow-up 
(<5%), whereas the presence of two autoantibodies 
have a 68% risk and that of three autoantibodies 
have an estimate of more than 90% of developing 
T1DM within 5 years [9]. For T1DM prediction, 
a combination of GAD65 and IA-2 for primary 
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screening, followed by ICA and IAA testing, has been 
proposed [11]. However, autoantibodies can fluctuate 
or even completely disappear. In contrast, the American 
Diabetes Autoimmunity Study in the Young (DAISY) 
showed that about 95% of prediabetic children express 
anti-IAA, but only 50% express IAA at the time of 
diagnosis of T1DM [12]. This obviates the need for an 
adjuvant marker (e.g. biopsy) to facilitate the decision-
making to start immunomodulatory therapy.

Currently, the monoclonal IgM antibody IC2, which 
specifically binds to the surface of β cells, might be 
the only reliable marker for noninvasive imaging 
and quantification of native β cells [13]. With 
sufficient amount of -β-cell mass at diagnosis, β-cell 
proliferating agents could be prescribed, whereas 
with significantly low amount of β-cell mass, other 
therapeutic options such as islets transplantation and 
stem cells transdifferentiation are more likely to be 
prescribed.

Histology of the pancreas
The pancreas is the main exocrine and endocrine 
gland of the digestive system. The exocrine part of the 
pancreas has closely packed serous acini. The secretions 
of the acini empty into ducts lined with a cuboidal 
epithelium, which are further transferred to stratified 
cuboidal in the larger ducts. The endocrine parts, islets 
of Langerhans, are clumps of secretory cells that contain 
its hormone-producing cells. Discovered in 1869 by 
German pathological anatomist Paul Langerhans at 
the age of 22 [14], the islets of Langerhans constitute 
∼1–2% of the mass of the pancreas. About one 
million islets are distributed throughout the pancreas 
of a healthy adult human, each of which measures 
about 0.2 mm in diameter; each islet is composed of 
2000–4000 β cells [15]. The islets are supplied by up 
to three arterioles, which form a branching network 
of fenestrated capillaries, into which the hormones are 
secreted. The islet is drained by about six venules, which 
pass between the exocrine acini to the interlobular 
veins [16].

Hormones produced within the islets of Langerhans 
are secreted directly into the blood flow by (at least) 
five types of cells: α cells produce glucagon (15–20% 
of total islet cells), β cells produce insulin and amylin 
(65–80%), δ cells produce somatostatin (3 10%), 
pancreatic polypeptide cells (γ cells) produce pancreatic 
polypeptide (3–5%), and ε cells produce ghrelin (<1%). 
Islets can influence each other through paracrine and 
autocrine communication, and β cells are coupled 
electrically to other β cells (but not to other cell 
types). Electrical activity of pancreatic islets cells in 

intact islets differs significantly from the behavior of 
dispersed cells [16].

Immunohistochemistry of the extracellular 
matrix
The extracellular matrix (ECM) of the pancreatic 
islets separates the secretory cell compartment and 
provides specific signals to control the cell function 
and survival [17]. The ECM of the islet is formed 
mainly of two types: basement membrane (BM), which 
functions as a barrier limiting the transmembrane 
cross-movement of cells and molecules, and interstitial 
matrix (IM), which offers elasticity and flexibility to 
the islet cells. The BM is formed mainly of collagens, 
laminins, nidogens, and perlican. The nidogens stabilize 
the collagens and laminins, whereas the perlicans, 
which are a heparin-sulfate proteoglycans, by their 
large size (400–470 kDa) and side-chains, are known 
to act as a physical barrier to protect against the cell 
migration or cell invasion and can express adhesion 
ligands to prevent migrating leukocytes [18]. The IM 
layer is composed of fibrillar collagens, nonfibrillar 
collagens, and noncollagenous glycol proteins, such as 
fibronectin, tenascins, vitronectin, and chondroitin, or 
dermatan sulfate proteoglycans [19,20].

There has been some confusion about the existence 
of a peri-islet BM, in particular, due to reports of 
discontinuous staining of BM components around the 
islet periphery [21,22], incomplete analyses resulting 
from a limited range of BM-specific reagents, the 
close proximity of the acinar BM, and the presence of 
subendothelial BMs of the vasculature. The islet BM 
exists and, in the absence of enzymatic destructive 
insulitis, it is a continuous structure [16,23].

The proposed scenario of autoimmune diabetes
The initial step in the development of autoimmune 
diabetes is leukocytic extravasation and aggregation 
from the peri-islet vessels in a slowly progressive 
inflammatory process (Fig. 1). At this point clinical 
diabetes does not exist. Penetration of the islet BM 
by these leukocytes is crucial to proceed to destruction 
of the β cell, and as soon as the mass destruction 
approaches 70–90% of the islets, clinical diabetes 
supervenes [24]. Although leukocytic infiltration is 
widespread in the pancreatic tissue, few islets show 
BM destruction and not others, indicating that these 
are two different processes [24]. The lack of destruction 
of BMs of nearby acini and of intraislet capillaries, 
which have the same composition as the islet BM, 
suggests that destruction is site-specific and localized 
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to the immediate islet microenvironment [25]. 
Irving-Rodgers et al. [26] proposed that perlican, in 
particular, is essential for converting nondestructive 
autoimmunity to destructive autoimmunity and for 
the demise of islet β cells and the development of 
clinical symptoms of type 1 diabetes. Lymphocytic 
migration across a BM requires localized destruction 
by degradative enzymes [26]. No changes were 
observed in the composition of the peri-islet BM at or 
after the onset of type 1 diabetes, suggesting that it was 
not a change in composition that initiated or allowed 
leukocyte infiltration [27,28], but the composition of 
the islet BM that dictates the degradative enzymes 
needed to permit the migration of mononuclear cells 
across the islet BM [29]. These enzymes may include 
heparanases, which degrade heparansulphate, and 
metalloproteinase, which breakdown collagen [23,26]. 
Korpos É et al. [24] attributed this invasion to 
cathepsin expression associated with macrophages at 
the front of leukocyte penetrating the peri-islet BM of 
type 1 diabetes [23,25] and α-cells, glucagon secretors, 
and other pancreatic cells, which are a potential source 
of peri-islet BM components because of their tight 
association with the peri-islet BM in the reconstituted 
islets. Once inflammation had subsided, the peri-islet 
BM and underlying IM were shown to be reconstituted 
in mouse and human, indicating that the cells producing 
the peri-islet BM are not lost due to inflammation [24], 
which opens a new port for therapeutic modality to 
halt progression of autoimmune diabetes (Fig. 2).

Biopsy of the pancreas
Laparoscopic pancreatic biopsy has been reported to 
be a safe procedure in recent-onset type 1 diabetic 
patients [30,31]. T-cell–predominant infiltration 
to islets (insulitis) and hyperexpression of major 
histocompatibility complex class I antigens on islet 
cells were the two major findings observed in recent-
onset type 1 diabetic patients. Anti-GAD and anti-
IA-2 autoantibodies are significantly of high predictive 

value for abnormal histology in the islets [32,33]. The 
behavior of β-cell function could be predicted from the 
analysis of biopsy specimens [34,35]. A report of the 
Expert Committee on the Diagnosis and Classification 
of Diabetes Mellitus referred to patients with insulitis 
and/or hyperexpression of major histocompatibility 
complex class I antigens in islets as those having 
(type 1A) autoimmune diabetes, and to patients 
without either of them as those having idiopathic 
(type 1B) [36,37].

Proposal and conclusion
In a genetically predisposed high-risk patient, an 
inciting factor(s) can be viral or bacterial infection 
either by itself or through an exosome from the distant 
infected cell [38], or through the B lymphocytes [39] 
reacting to the original infected cell. The β-islet cell 
introduces its antigenic epitope to the adaptive immune 
system, which in turn starts to form different types of 
anti-IAA. It is yet unclear whether the initial release 
of β-cell autoantigens is prompted by endogenous 
β-cell defects and/or an exogenous trigger, such as in 
hepatitis C viral infection [40].

Two important landmarks characterize the natural 
history of clinical diabetes: the nondestructive 
insulitis phase, which is characterized by leukocyte 
extravasation from the peri-islet blood vessels, and 
the destructive insulitis phase, which is characterized 
by leukocyte penetration of the islet BM. Between 
nondestructive and destructive phases, several years 

A flow diagram showing ‘the proposed scenario of autoimmune 
diabetes’.

Figure 1

(a) Representative transmission electron microscopic (TEM) 
micrograph showing an erythrocyte (ERY) in a capillary blood 
vessel close to endocrine cells (EC). Arrowheads show the capillary 
basement membrane (BM), which is clearly distinct from BM (arrows) 
of the insulin-secreting and glucagon-secreting cells. Original 
magnification: ×20 000. Bar, 1 μm [23]. (b) Islet of Langerhans 
(mouse) in its typical proximity to a blood vessel; insulin in red, nuclei 
in blue [15]. (c) Islets of Langerhans [15].

Figure 2
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could pass before the onset of hyperglycemia, giving 
a good window for therapeutic intervention [41]. 
Moreover, clinical diabetes will not present unless 
more than 90% of the islets have been destructed, 
which mostly takes months to occur. It sounds 
logical that only The detection of two or more of 
the islets’ autoimmune antibodies can be considered 
diagnostic for autoimmune diabetes, and the reason 
for a fraction of patients having autoantibodies but 
not progressing to autoimmune diabetes can probably 
be attributed to the integrity of their immune system 
or because or the lack of other contributing factors 
to augment the action of these autoantibodies. It 
worthwhile to mention that the β cells are in direct 
contact not only with the islet BM but also with other 
four types of cells that may play an important role in 
the mechanism of BM destruction [42]. Some trials 
targeting the immune reaction either specifically, 
as with alum-formulated GAD (GAD-alum) 
vaccination, or nonspecifically, by targeting B cells 
such as anti-CD20 or T lymphocytes such as anti-
CD3, have limited encouraging results possibly due 
to improper staging.

For lymphocytes to cross the BM, a localized 
degenerative destructive enzyme is required [23]. The 
composition of the islet BM dictates the degenerative 
enzymes needed to be produced by insulitis 
mononuclear cells to permit their migration across 
the islet BM. Leukocyte penetration of the peri-islet 
BM differs from leukocyte extravasation from blood 
vessels. This suggests that the ECM milieu influences 
the mode used by immune cells to infiltrate into 
tissues and raises novel possibilities for tissue-specific 
immunomodulatory therapies [43].

In conclusion, to date, none of the current predictive 
parameters of autoimmune diabetes are strong enough 
to start immunosuppressive drug therapy in a yet 
normal individual. Proper staging on a solid base, biopsy 
of the pancreas with immunohistochemistry assay, in a 
genetically predisposed high-risk patient with two or 
more autoantibodies will open up the gate for further 
histopathologic classification and hence allow better 
use of the already available therapeutic modalities and 
help in developing new ones and solving mysteries of 
autoimmune diabetes.
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