Skip to main content
Log in

Bend-Insensitive Simultaneous Measurement of Strain and Temperature based on Cascaded Long-Period Fiber Gratings Inscribed on a Polarization-Maintaining Photonic Crystal Fiber

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report an optical fiber sensor capable of bend-insensitive simultaneous measurements of strain and temperature by using cascaded long-period fiber gratings (LPFGs) inscribed on a polarizationmaintaining photonic crystal fiber (PMPCF). The cascaded LPFGs written on the PMPCF have two different interference spectra for orthogonal input polarization states exciting the principal axes of the PMPCF. Each fringe spectrum is created by the interference between the uncoupled core mode and the cladding mode recoupled to the core mode at the second LPFG. Due to the birefringence of the PMPCF, the order of this cladding mode can be different depending on the input polarization. The lowest dip in each interference spectrum is designated as a sensor indicator dip (SID) A or B. These SIDs originating from cladding modes with dissimilar orders can have different strain or temperature sensitivities. The strain and the temperature responses of these SIDs were investigated in an applied strain range of 0 −2244 με and an ambient temperature range of 25 −95 °C, respectively. The strain sensitivities of the SIDs A and B were measured as approximately −0.93 and −1.41 pm/με (R2 values: ~0.9984 and ~0.9949), and their temperature sensitivities as ~11.48 and ~15.14 pm/°C (R2 values: ~0.9974 and ~0.9905), respectively. In particular, their bending responses were also explored over a wide curvature range of 0 − 7.984 m−1. Themaximum bend-induced wavelength shift was ~0.06 nm. Owing to their linear and independent responses to strain and temperature and their insensitivity to bending, our LPFG device can be a strong candidate for a practical sensor head for simultaneous measurements of strain and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. M. Vengsarkar et al., J. Light. Technol. 14, 58 (1996).

    Article  ADS  Google Scholar 

  2. X. Shu et al., IEEE Photon. Technol. Lett. 13, 818 (2001).

    Article  ADS  Google Scholar 

  3. Y. P. Wang, D. N. Wang and W. Jin, Appl. Opt. 45, 7966 (2006).

    Article  ADS  Google Scholar 

  4. Q. Wang et al., Opt. Commun. 377, 89 (2016).

    Article  ADS  Google Scholar 

  5. Y. Liu, J. A. R. Williams and I. Bennion, IEEE Photon. Technol. Lett. 12, 531 (2000).

    Article  ADS  Google Scholar 

  6. Q. Zhou et al., IEEE Photon. Technol. Lett. 27, 713 (2015).

    Article  ADS  Google Scholar 

  7. L. Huang, X. Meng, Y. Zhao and Y. Liu, Opt. Commun. 447, 18 (2019).

    Article  ADS  Google Scholar 

  8. K. S. Chiang, Y. Liu, M. N. Ng and X. Dong, Electron. Lett. 36, 966 (2000).

    Article  ADS  Google Scholar 

  9. Y. E. Fan, T. Zhu, L. Shi and Y. J. Rao, Appl. Opt. 50, 4604 (2011).

    Article  ADS  Google Scholar 

  10. Q. Ling, Z. Gu, X. Jiang and K. Gao, Opt. Commun. 439, 187 (2019).

    Article  ADS  Google Scholar 

  11. Y. Jiang, J. Zhao, D. Yang and D. Tang, Opt. Commun. 283, 3945 (2010).

    Article  ADS  Google Scholar 

  12. X. Zhong et al., Opt. Lett. 40, 1791 (2015).

    Article  ADS  Google Scholar 

  13. J. Tang et al., IEEE Photon. J. 9, 1 (2017).

    Google Scholar 

  14. Y. P. Wang, L. Xiao, D. N. Wang and W. Jin, Opt. Lett. 31, 3414 (2006).

    Article  ADS  Google Scholar 

  15. T. Zhu et al., IEEE Photon. Technol. Lett. 21, 543 (2009).

    Article  ADS  Google Scholar 

  16. X. Zhong et al., Opt. Lett. 39, 5463 (2014).

    Article  ADS  Google Scholar 

  17. T. Guan, Z. Gu, Q. Ling and W. Feng, Opt. Laser Technol. 114, 20 (2019).

    Article  ADS  Google Scholar 

  18. K. J. Han et al., IEEE Photon. Technol. Lett. 16, 2114 (2004).

    Article  ADS  Google Scholar 

  19. O. Frazão et al., IEEE Photon. Technol. Lett. 18, 2407 (2006).

    Article  ADS  Google Scholar 

  20. C. L. Zhao et al., Opt. Commun. 282, 4077 (2009).

    Article  ADS  Google Scholar 

  21. J. Kang et al., Opt. Commun. 284, 2145 (2011).

    Article  ADS  Google Scholar 

  22. K. Tian et al., J. Light. Technol. 36, 4960 (2018).

    Article  ADS  Google Scholar 

  23. B. Li et al., Opt. Express. 27, 26307 (2019).

    Article  ADS  Google Scholar 

  24. Y. Li et al., IEEE Photon. J. 11, 1 (2019).

    Google Scholar 

  25. F. Esposito, A. Srivastava, A. Iadicicco and S. Campopiano, Opt. Laser Technol. 113, 198 (2019).

    Article  ADS  Google Scholar 

  26. X. Jin et al., IEEE Photon. J. 11, 1 (2019).

    Article  Google Scholar 

  27. J. Ju, W. Jin and H. L. Ho, IEEE Photon. Technol. Lett. 20, 1899 (2008).

    Article  ADS  Google Scholar 

  28. D. Zhao et al., Meas. Sci. Technol. 15, 1647 (2004).

    Article  ADS  Google Scholar 

  29. S. J. Jeong et al., J. Nanosci. Nanotechnol. 20, 285 (2020).

    Article  Google Scholar 

  30. H. Ademgil, S. Haxha and F. AbdelMalek, Engineering 2, 608 (2010).

    Article  Google Scholar 

  31. L. Rindorf et al., Opt. Express 14, 8224 (2006).

    Article  ADS  Google Scholar 

  32. B. H. Lee and J. Nishii, Appl. Opt. 38, 3450 (1999).

    Article  ADS  Google Scholar 

  33. B. H. Lee and J. Nishii, Opt. Lett. 23, 1624 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1I1A3A01046232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wook Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.K., Lee, SL., Choi, S. et al. Bend-Insensitive Simultaneous Measurement of Strain and Temperature based on Cascaded Long-Period Fiber Gratings Inscribed on a Polarization-Maintaining Photonic Crystal Fiber. J. Korean Phys. Soc. 76, 810–818 (2020). https://doi.org/10.3938/jkps.76.810

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.810

Keywords

Navigation