Skip to main content
Log in

Structural and Optical Properties of Sm-doped BaMoO4 Phosphor Thin Films Deposited by Radio-Frequency Magnetron Sputtering

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

BaMoO4:Sm3+ phosphor thin films were prepared using radio-frequency magnetron sputtering at several growth temperatures, followed by rapid thermal annealing. All the phosphor thin films revealed tetragonal structures with preferential (112) orientation. The emission and the excitation intensities, transmittances, and band gap energies of the phosphor thin films were found to depend significantly on the growth temperature. The excitation spectrum consisted of a strong broad band centered at 261 nm in the range 210–310 nm arising from charge transfer transitions between O−2 and Sm3+ and three weak bands, one each at 370, 406, and 475 nm. The emission spectra of the phosphor thin films under excitation at 267 nm showed six emission bands located at 451, 558, 595, 640, 700, and 762 nm, respectively which were due to the typical 4f − 4f transitions of Sm3+ ions. The highest emission intensity of the BaMoO4:Sm3+ phosphor thin film was achieved at a growth temperature of 400 °C, where the optical band gap was 4.70 eV and the color chromaticity coordinate was (0.492, 0.353). These results suggest that the BaMoO4:Sm3+ phosphor thin film is a promising candidate for application in red-light-emitting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Mo et al., J. Rare Earths 33, 1064 (2015).

    Article  Google Scholar 

  2. P. Du and J. S. Yu, Mater. Res. Bull. 70, 553 (2015).

    Article  Google Scholar 

  3. Y. F. Liu et al., J. Colloid Interface Sci. 381, 24 (2012).

    Article  ADS  Google Scholar 

  4. A. P. A. Marques et al., J. Solid State Chem. 179, 671 (2006).

    Article  ADS  Google Scholar 

  5. C. Cui, J. Bi and D. Gao, Appl. Surf. Sci. 255, 3463 (2008).

    Article  ADS  Google Scholar 

  6. V. Miikkulainen, M. Leskela, M. Ritala and R. L. Puurunen, J. Appl. Phys. 113, 021301 (2013).

    Article  ADS  Google Scholar 

  7. I. B. Huang et al., Thin Solid Films 570, 451 (2014).

    Article  ADS  Google Scholar 

  8. S. T. S. Dlamini, H. C. Swart and O. M. Ntwaeaborwa, Physica B 439, 88 (2014).

    Article  ADS  Google Scholar 

  9. S. M. Ahmed et al., Appl. Surf. Sci. 359, 356 (2015).

    Article  ADS  Google Scholar 

  10. L. Wang et al., Thin Solid Films 518, 4817 (2010).

    Article  ADS  Google Scholar 

  11. M. Garcia-Hipolito et al., Opt. Mater. 22, 345 (2003).

    Article  ADS  Google Scholar 

  12. K. Miura et al., Mater. Sci. Appl. 6, 263 (2015).

    Google Scholar 

  13. X. Liu et al., Mater. Res. Bull. 48, 2370 (2013).

    Article  Google Scholar 

  14. S. W. Park et al., Curr. Appl. Phys. 12, S150 (2012).

    Article  Google Scholar 

  15. X. Yang et al., J. Alloys Compd. 479, 307 (2009).

    Article  Google Scholar 

  16. P. Jena et al., J. Lumin. 158, 203 (2015).

    Article  Google Scholar 

  17. S. Bar, H. Scheife and G. Huber, Opt. Mater. 28, 681 (2006).

    Article  ADS  Google Scholar 

  18. G. S. R. Raju et al., J. Am. Ceram. Soc. 95, 238 (2012).

    Article  Google Scholar 

  19. F. Meng, X. Zhang, H. Li and H. J. Seo, J. Rare Earths 30, 866 (2012).

    Article  Google Scholar 

  20. C. P. Reddy et al., Spectrochim. Acta A 144, 68 (2015).

    Article  ADS  Google Scholar 

  21. R. Naik et al., Spectrochim. Acta A 140, 516 (2015).

    Article  ADS  Google Scholar 

  22. A. Bouhhdjer et al., J. Semicond. 36, 082002 (2015).

    Article  ADS  Google Scholar 

  23. S. Cho, Microelectron. Eng. 89, 84 (2012).

    Article  Google Scholar 

  24. E. Kim, Z. T. Jiang and K. No, Jpn. J. Appl. Phys. 39, 4820 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B03034497). The author acknowledges the Korea Basic Science Institute, Daegu branch, for utilizing its SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinho Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S. Structural and Optical Properties of Sm-doped BaMoO4 Phosphor Thin Films Deposited by Radio-Frequency Magnetron Sputtering. J. Korean Phys. Soc. 76, 745–749 (2020). https://doi.org/10.3938/jkps.76.745

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.745

Keywords

Navigation