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The technique for quantizing simple static systems can be extended to more generalized systems
that involve time-dependent parameters. In this work, a particle with linearly increasing mass that
is bound by a time-dependent singular potential, which is composed of an inverse quadratic potential
and a Coulomb-like potential, is quantized by using the Nikiforov-Uvarov method together with the
invariant operator method and the unitary transformation method. The Nikiforov-Uvarov method is
an alternative method for solving the Schrödinger equation on the basis of a particular mathematical
technique that reduces second-order differential equations to generalized hypergeometric ones. The
exact wave functions of the system are identified, and their properties are addressed in detail.
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I. INTRODUCTION

The procedure of quantization is necessary for inves-
tigating the intrinsic nonclassical behavior of molecular
systems. The mathematical manipulation for quantizing
a simple static system can be extended to more gen-
eralized systems that involve time-dependent parame-
ters. For several decades, active attention has been paid
to the study of the quantum mechanical properties of
time-dependent Hamiltonian systems (TDHSs). Time-
dependent harmonic oscillators that are characterized
by a time-dependent frequency and/or mass and har-
monic oscillators driven by time-dependent forces may
be the most typical types of TDHS. In most cases for
finding quantum solutions of TDHSs, the conventional
method of separation of variables may not hold because
of the complexity of the given Hamiltonian. Thus, spe-
cial mathematical techniques are necessary for investi-
gating the quantum mechanical properties of such sys-
tems.

Theoretical investigations for various kinds of TDHS
have been carried out up to now. The quantum prop-
erties of time-dependent coupled oscillators were stud-
ied on the basis of wave functions [1–4]. The research
has been performed for the inverse quadratic potential

∗E-mail: choiardor@hanmail.net

system coupled to a time-dependent harmonic oscilla-
tor by using the space-time transformation approach [5].
A TDHS whose Hamiltonian involves a (1/q)p + p(1/q)
term, which gives the radial equation for a system obey-
ing a Hydrogen-like force, was investigated [6,7]. Quan-
tum solutions for other types of TDHSs have also become
topics of active research in this context [8–12].

Stimulated by this trend of research, in this work,
we investigate the exact wave functions for a system
subjected to time-dependent singular potentials. The
Coulomb potential, together with the inverse quadratic
potential, will be considered as singular potentials. The
singular potential systems can be applied to study many
actual physical systems. The interaction of an elec-
tron with a polar molecule is described by using an
inverse quadratic potential [13]. Indeed, the govern-
ing potential in polar molecules such as water can be
successfully approximated by using 1/q2 [14]. Another
example of this type of potential is the interaction of
a cold neutral atom with a charged wire, which fol-
lows a pure attractive potential with a 1/q2 singularity
[15]. A more generalized molecular potential of the form
V (t) = a(t) + b(t)/q + c(t)/q2 is also a topic of great
interest for studying the radial equations of molecular
interactions [14,16,17].

Due to the time-dependence of parameters, the math-
ematical procedure for unfolding the quantum theory of
the system may not be an easy task. In order to overcome
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such a difficulty, we will introduce an invariant operator
of the system [18,19]. In fact, the eigenstates of an invari-
ant operator of a TDHS are the same as the Schrödinger
solutions (wave functions) of the given system provided
that we neglect the phases of the wave functions. This is
the reason we use the invariant operator method. From
fundamental mechanics, we can derive the invariant op-
erator of the system.

The original invariant operator may be somewhat com-
plicated because it is a function of time. The unitary
transformation is useful when treating such a compli-
cated invariant operator. We perform a unitary transfor-
mation with an invariant operator so that it takes a sim-
ple form. Then, we can easily identify the eigenstates of
the transformed invariant operator by using a particular
mathematical procedure. We use the Nikiforov-Uvarov
(NU) method [20–22] for that purpose. This method
is an alternative method for solving Schrödinger equa-
tion on the basis of a particular mathematical technique
that reduces the eigenvalue equations of the invariant
operator, which are second-order differential equations,
to generalized hypergeometric ones [20]. For the given
system that involves a singular potential, the eigenvalue
equation of the transformed invariant operator will be
solved systematically by using the NU method. The
eigenstates obtained in this way will be inversely trans-
formed in order to obtain the eigenstates in the origi-
nal system. Then, the full wave functions of the system
can eventually be obtained. This is the strategy of our
mathematical manipulation for finding the Schrödinger
solutions of the system.

This paper is organized as follows: In section II, the
Hamiltonian for time-dependent singular potentials will
be introduced, and the properties of the corresponding
invariant operator will be studied. The unitary transfor-
mation of the invariant operator will be done in section
III so that it takes a simple form. Exact quantum so-
lutions will be derived in section IV, by using the NU
method [20–22]. Concluding remarks are given in the
last section, which is section V.

II. HAMILTONIAN AND INVARIANT

We consider a generalized time-dependent singular po-
tential system whose Hamiltonian is given in the form

H(t) =
1

2m0 (1 + εt)

(
p2 +

f0
q2

)

− Z0

(1 + εt) [1 − ln (1 + εt)]
1
q
, (1)

where m0, ε, and f0 are constants. The range of q in
this system is q ≥ 0, and we impose the condition,
t ≥ 0 and Z0 > 0, for convenience. Because we can
put the time-dependence of the mass in this system as
m(t) = m0 (1 + εt), the rate of mass increase is deter-

mined by the magnitude of ε. As you can see, the cou-
pling parameter of the Coulomb potential in this Hamil-
tonian also depends on time. Note that the canonical
variables obey the conventional commutation relation
[q, p] = i�.

For the TDHS, the use of the conventional method
of separation of variables for solving Schrödinger equa-
tion is very difficult or sometimes impossible. For this
reason, we need a special mathematical technique. The
invariant operator method and the unitary transforma-
tion method are useful for this situation, and we will use
such mathematical techniques.

According to the definition of the invariant operator
I, it is obtained by solving the following equation:

dI

dt
=
∂I

∂t
+

1
i�

[I,H] = 0, (2)

which is known as the Liouville-von Neumann equation.
From a little algebra after inserting Eq. (1) into the
above equation, we have

I(q, p, t) =
[1 − ln (1 + εt)]2

2m0

(
p2 +

f0
q2

)
+

1
2
m0ε

2q2

+
ε

2
[1 − ln (1 + εt)] (qp+ pq) − Z0 [1 − ln (1 + εt)]

1
q
. (3)

The reason the invariant operator method is useful in the
quantum problem of the TDHS is that the eigenstates of
I are the same as the Schrödinger solutions (wave func-
tions) of the system, provided that we do not consider
the phase factors of the wave functions. Therefore, once
the eigenstates of the invariant operator are derived, we
can easily identify the wave functions. If we put the
eigenvalue equation of I as

Iφn = Enφn, (4)

the eigenvalues En do not depend on time. The
Nikiforov-Uvarov method will later be used to solve this
equation. In terms of the eigenstates φn, the wave func-
tions are represented in the form

ψn(t) = eiθn(t)φn(t), (5)

where θn(t) are the global phases of the wave functions.
By inserting this equation into the Schrödinger equation,
such that

i�
∂

∂t
ψn(t) = H(t)ψn(t), (6)

we have the following equation for the phases θn(t):

�
d

dt
θn(t) = 〈φn(t) | i� ∂

∂t
−H | φn(t)〉. (7)

If we obtain the phases by solving this equation, the com-
plete wave functions can be identified. This is the pri-
mary idea that will be used for investigating the quantum
system in subsequent sections. In the next section, we
will transform the invariant, Eq. (3), by using a suitable
unitary operator.
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III. UNITARY TRANSFORMATION

Let us consider the following unitary transformation
for the eigenstates,

Φn(q) = U(t)φn(q, t), (8)

where U(t) is a unitary operator of the form

U(t) = exp
[
i

2�
m0ε [1 − ln (1 + εt)] q2

]

× exp
[−i

2�
[1 − ln (1 + εt)] (qp+ pq)

]
. (9)

Then, by considering the transformation relations of
canonical variables, which are

q −→ U(t)qU(t)−1 = [1 − ln (1 + εt)] q, (10)

p −→ U(t)pU(t)−1 =
1

[1 − ln (1 + εt)]
p−m0εq,

(11)

the original invariant operator is transformed to

I(t) −→ I0 = UIU−1 =
1

2m0

(
p2 +

f0
q2

)
− Z0

q
. (12)

Hence, we can rewrite the eigenvalue equation given in
Eq. (4), in the transformed system, as[

1
2m0

(
p2 +

f0
q2

)
− Z0

q

]
Φn(q) = EnΦn(q). (13)

Notice that this does not depend on time while the orig-
inal eigenvalue equation, Eq. (4) explicitly depends on
it. After a little rearrangement using p = −i�∂/∂q, this
equation becomes

Φ′′
n(q)+

(−κ2
nq

2 − ε2q − ν(ν + 1)
q2

)
Φn(q) = 0, (14)

where

2m0En

�2
= −κ2

n,
2m0Z0

�2
= −ε2, f0/�2 = ν(ν+1). (15)

From the first relation of Eq. (15), obviously En < 0.
This means that the system is bound in a potential well.
The differential equation, Eq. (14), will be solved and
the eigenstates will be identified in the next section.

IV. EXACT QUANTUM SOLUTIONS

To solve the equation given in Eq. (14), we will use the
NU method [20,21], which is described in Appendix A.
A large class of second-order linear differential equations
relevant to the Schrödinger equation or the eigenvalue
equation of I0 can be solved by using this method and,

as a consequence, the solutions are represented in terms
of special orthogonal functions.

Considering the notation in Appendix A, let us change
the variable q as q → s. Then, Eq (14) can be rewritten
as

Φ′′
n(s)+

(−κ2
ns

2 − ε2s− ν(ν + 1)
s2

)
Φn(s) = 0. (16)

The comparison of this equation with Eq. (A1) in Ap-
pendix A yields

τ̃(s) = 0, σ (s) = s, σ̃(s) = −κ2
ns

2−ε2s−ν(ν+1). (17)

To develop the NU theory of the system, we also need
the function Π(s) introduced in Eq. (A8) of Appendix
A. The possible values of Π(s) are known to be [23]

Π (s) =⎧⎪⎨
⎪⎩
κns+ ν, for k1 = −ε2 + 2κn (ν + 1/2) ,
− (κns+ ν + 1) , for k1 = −ε2 + 2κn (ν + 1/2) ,
κns− ν − 1, for k2 = −ε2 − 2κn (ν + 1/2) ,
−κns+ ν, for k2 = −ε2 − 2κn (ν + 1/2) ,

(18)

where k(1,2) are parameters introduced in Eq. (A9) in
Appendix A. Regarding the polynomial τ (s) = τ̃ (s) +
2Π (s) given in Eq. (A4) in Appendix A, negative value
for Π(s), which corresponds the fourth value of Π(s) in
Eq. (18), is suitable:

k2 = −ε2−2κn (ν + 1/2) and Π (s) = −κns+ν. (19)

Then, for λ introduced in Eq. (A5) in Appendix A, we
use the relation λ = k+Π

′
(s) given in Eq. (A9). Hence,

we have

λ = −ε2 − 2κn (ν + 1) . (20)

After a little algebra, λ can be rewritten as

λn = 2nκn. (21)

Then, with the use of this formula, the eigenvalues of I
are found to be

En = −m0Z
2
0

2�2

1
(n+ ν + 1)2

, n = 0, 1, 2, · · · . (22)

These correspond to the bound-state energies [24].
Now, let us look at the wave functions starting from

the weight function ρ(q) given in Appendix A. The use of
Eq. (A7) in Appendix A, together with Eq. (19), leads
to

ρ(q) = e−2κnqq2ν+1. (23)

The substitution of this into Eq. (A6) in Appendix A
gives

yn(q) = CnL
2ν+1
n (2κnq) , (24)
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where Cn are normalization constants and L2ν+1
n are the

associated Laguerre polynomials defined in Ref. [25].
Using the condition given in Eq. (A10), we have

φn(q) = qνe−κnq. (25)

Now the bound eigenstates of the transformed invari-

ant operator I0 are obtained as

Φnν(s) = Nnq
νe−κnqL2ν+1

n (2κnq) , (26)

where Nn are normalization factors. From the condition∫ ∞
0

Φ∗
nν(q)Φnν(q) = 1, we easily identify the value of Nn;

hence, the full eigenstates become

Φnν(q) =
(

Γ (n+ 1)
2 (n+ ν + 1) Γ (n+ 2ν + 2)

)1/2 (
2m0Z0

�2 (n+ ν + 1)

)3/2

×
(

2m0Z0q

�2 (n+ ν + 1)

)ν

exp
( −m0Z0

�2 (n+ ν + 1)
q

)
L2ν+1

n

(
2m0Z0

�2 (n+ ν + 1)
q

)
. (27)

Then, from the use of the inverse transformation relation, which is φnν(q, t) = U−1Φnν(q), we obtain the eigenstates
of I as

φnν(q, t) =
(

Γ (n+ 1)
2 (n+ ν + 1) Γ (n+ 2ν + 2)

)1/2 (
2m0Z0

�2 (n+ ν + 1)

)1/2

×
(

2m0Z0

�2 [1 − ln (1 + εt)] (n+ ν + 1)

)ν+1

qν exp
(

im0ε

2� [1 − ln (1 + εt)]
q2

)

× exp
( −m0Z0

�2 [1 − ln (1 + εt)] (n+ ν + 1)
q

)
L2ν+1

n

(
2m0Z0

�2 [1 − ln (1 + εt)] (n+ ν + 1)
q

)
. (28)

To derive the phase of the wave functions, we use the
expression of Eq. (7) in the transformed system, which
is

�
d

dt
θnν(t) =

〈Φnν(q) | − 1
(1 + εt) [1 − ln (1 + εt)]2

I0 | Φnν(q)〉. (29)

Now, considering that the eigenvalue of I0 given by Eq.
(22), the global phases are found to be

θnν(t) =
m0Z

2
0

4�3ε [1 − ln (1 + εt)] (n+ ν + 1)2
. (30)

From the substitution of Eqs. (28) and (30) in Eq. (5),
we easily have

ψnν(q, t) = φnν(q, t) exp (iθnν(t)) . (31)

This equation with Eqs. (28) and (30) is the full wave
functions in the original system, which are the central
results of this research. Although these are somewhat
complicated forms, they can be usefully applied when
we investigate the quantum characteristics of the system.
The wave functions are the most basic and crucial tools
for investigating the quantum behaviors of systems. The
expectation values, fluctuations, and uncertainties of var-
ious quantum observables can be evaluated through the

use of the wave functions. In addition, the time behav-
iors of the quantized energy, probability densities, den-
sity operator, and Wigner function of the system can be
clarified by means of this wave functions.

V. CONCLUSION

Quantum mechanical solutions of a TDHS that con-
sists of an inverse quadratic potential and a Coulomb
potential have been investigated. Because the Hamilto-
nian is represented in terms of time-dependent parame-
ters, finding quantum solutions on the basis of conven-
tional methods is very difficult. For this reason, other
methods, which are the invariant operator method, the
unitary transformation method, and the NU method,
were used. The invariant operator that we have intro-
duced has a quadratic form and is somewhat compli-
cated. Through a unitary transformation, this invariant
operator is transformed to a simple form that does not
involve time functions. Consequently, the mathemati-
cal manipulation with the transformed invariant opera-
tor is easier than that with the original one. To solve
the eigenvalue equation of the transformed invariant op-
erator, we used a special mathematical technique, which
is the NU method. This method enabled us to identify
the solutions to the eigenvalue equation of I0 in an el-
egant and direct way. The eiegnstates of the invariant
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operator obtained in this way in the transformed system
are inversely transformed to those of the original system,
as shown in Eq. (28). Then, by determining the time-
dependent phases θnν(t) by using Eq. (29), we derived
the full wave functions of the system.

The wave functions we have obtained in this work be-
long to Fock states, which are the most basic ones in
quantum mechanics. Indeed, the derivation of the wave
functions of the system is very important for the study of
the quantum features of the system. Noticeably no ap-
proximation or perturbation methods were used during
our derivation of the analytical wave functions. Hence,
the quantum solutions given in this work are exact. In
general, the invariant operator technique in quantum me-
chanics does not require any approximation so long as a
closed form of the invariant operator of the system exists.

The complete wave functions represented in Eq. (31)
enable us to discover useful informations for the quantum
characteristics, such as fluctuations of canonical vari-
ables, the uncertainty relation, the time evolution of the
Hamiltonian, and the quantum behavior of wave packets,
of the system. The study of the propagator, the Wigner
distribution, and the geometric phase of the system may
be good topics for further research task, that can be done
on the basis of the wave functions derived in this work.
In addition, the quantum properties of the system in co-
herent states and squeezed states may also be important
research topics available to study with the results of this
research.

APPENDIX A: THE NIKIFOROV-UVAROV
METHOD

Let us consider a differential equation of the form

ϕ′′(s) +
τ̃(s)
σ(s)

ϕ′(s) +
σ̃(s)
σ2(s)

ϕ(s) = 0, (A1)

where τ̃(s), σ(s), and σ̃(s) are arbitrary polynomials of
s while τ̃(s) is allowed up to first degree and σ(s) and
σ̃(s) are allowed up to at most second degree. Let us
represent ϕn(s) in terms of appropriate functions vn(s),
which are chosen considering the type of Eq. (A1), as

ϕn(s) = vn(s)yn(s), (A2)

Then, Eq. (A1) can be rewritten in the form [22]

σ (s) y′′n + τ(s)y′n + λyn = 0, (A3)

where τ(s) and λ are given by

τ(s) = τ̃(s) + 2Π(s), (A4)

λ = λn = −nτ ′ − n(n− 1)
2

σ′′. (A5)

Notice that λ is a constant whereas τ(s) is not. Let
us consider the case in which the derivative of τ(s) is
negative. Then, we can identify λn from the particular
solutions which are given by y(s) = yn(s), i.e., given
in terms of an nth degree polynomial. Here, yn(s) are
hypergeometric functions known as Rodrigues formula
[22]:

yn(s) =
Bn

ρ(s)
dn

dsn
[σn(s)ρ(s)] , (A6)

where Bn are normalization factors and ρ(s) is a weight
function that yields [20]

[σ (s) ρ (s)]′ = τ (s) ρ (s) . (A7)

In order to obtain the exact form of ρ(s), we consider a
polynomial of the form (see Eq. (12) of Ref. [22])

Π(s) =
σ′(s) − τ̃(s)

2
±

√(
σ′(s) − τ̃(s)

2

)2

− σ̃(s) + kσ(s).

(A8)

When the discriminant of the formula given in the square
root of Eq. (A8) is zero, that formula can be represented
as a square of a polynomial. Then, we can obtain a
simple form for k, and k can be expressed as

k = λ− Π′(s). (A9)

Now, the formula for vn(s) can be found from [22]

v′n(s)/vn(s) = Π(s)/σ(s). (A10)

For a more detailed description of the NU method and
its applications, one can refer to Refs. [20–22].
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