Skip to main content
Log in

Classification of Space-Charge Resonances and Instabilities in High-intensity Linear Accelerators

  • Overview Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

As the beam intensity increases in modern high-power accelerators, self-field effects of the beam become significant and it is the utmost goal to minimize the beam loss of halo particles by avoiding or minimizing contributions of various halo mechanisms. There are two distinct families of space-charge halo mechanisms in high-intensity linear accelerators, and yet they need to be differentiated: resonances (single particle resonances or incoherent resonances) and instabilities (parametric resonances or coherent resonances). What we call resonances are resonances of the beam particle excited through the space-charge nonlinear multipoles. What we call instabilities (or envelope instabilities) are instabilities of the beam envelope. Instabilities are also called parametric resonances because they are parametric resonances of the envelope equation. They would better be called envelope parametric resonances to distinguish them from particle parametric resonances. Resonances and instabilities may look alike in the phase space, and yet they have distinct differences. Instabilities (or envelope parametric resonances) do not have the resonant frequency component. Various orders of resonances and instabilities are presented along with the beam distributions with which the particular mechanism is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Henderson et al., Nucl. Instr. Meth. A 763, 610 (2014)

    Article  ADS  Google Scholar 

  2. J. Stovall, J. H. Billen, S. Nath, H. Takeda, L. M. Young and D. Jeon, in Proceedings of 2001 Part. Accl. Conf. (Chicago, USA, 2001), p. 446.

    Google Scholar 

  3. Y. Yamazaki, in Proceedings of 2003 Part. Accl. Conf. (Portland, USA, 2003), p. 576.

    Google Scholar 

  4. B-H. Choi, in Proceedings of 2004 Asian Part. Accl. Conf. (Gyeongju, Korea, 2004), p. 231.

    Google Scholar 

  5. A. Mosnier, in Proceedings of 2009 Part. Accl. Conf.(Vancouver, BC, Canada, 2009), p. 663

    Google Scholar 

  6. A. Mosnier et al., in Proceedings of 2010 Int’l. Part. Accl. Conf. (Kyoto, Japan, 2010), p. 588.

    Google Scholar 

  7. D. Jeon et al., J. Korean Phys. Soc. 65, 1010 (2014), DOI: 10.3938/jkps.65.1010

    Article  ADS  Google Scholar 

  8. J-G. Hwang, E-S. Kim, H-J. Kim, H. Jang, H-J. Kim and D. Jeon, IEEE Trans. Nucl. Sci. 63, 992 (2016).

    Article  ADS  Google Scholar 

  9. J. Wei et al., in Proceedings of 2012 Linear Accl. Conf. (Tel-Aviv, Israel, 2012), p. 417.

    Google Scholar 

  10. F. J. Sacherer, IEEE Trans. Nucl. Sci. 18, 1105 (1971)

    Article  ADS  Google Scholar 

  11. P. M. Lapostolle, ibid. 18, 1101 (1971).

    ADS  Google Scholar 

  12. I. Hofmann, L. J. Laslett, L. Smith and I. Haber, Part. Accel. 13, 145 (1983).

    Google Scholar 

  13. J. Struckmeier and M. Reiser, Part. Accel. 14, 227 (1984).

    Google Scholar 

  14. J. S. O’Connell, T. P. Wangler, R. S. Mills and K. R. Crandall, in Proceedings of 1993 Part. Accl. Conf. (Washington D. C., USA, 1993), p. 3657.

    Google Scholar 

  15. J-M. Lagniel, Nucl. Instr. and Meth. A 345, 46 (1994)

    Article  ADS  Google Scholar 

  16. R. L. Gluckstern, Phys. Rev. Lett. 73, 1247 (1994).

    Article  ADS  Google Scholar 

  17. J-M. Lagniel and D. Libault, in Proceedings of 1995 Part. Accl. Conf. (Dallas, USA, 1995), p. 446.

    Google Scholar 

  18. T. P. Wangler, K. R. Crandall, R. Ryne and T. S. Wang, Phys. Rev. ST Accel. Beams 1, 084201 (1998).

    Article  ADS  Google Scholar 

  19. J. Qiang, Phys. Rev. Accel. Beams 21, 034201 (2018).

    Article  ADS  Google Scholar 

  20. D. Jeon, L. Groening and G. Franchetti, Phys. Rev. ST Accel. Beams 12, 054204 (2009).

    Article  ADS  Google Scholar 

  21. L. Groening, W. Barth, W. Bayer, G. Clemente, L. Dahl, P. Forck, P. Gerhard, I. Hofmann, M. S. Kaiser, M. Maier, S. Mickat, T. Milosic, D. Jeon and D. Uriot, Phys. Rev. Lett. 102, 234801 (2009).

    Article  ADS  Google Scholar 

  22. D. Jeon, Phys. Rev. Accel. Beams 19, 010101 (2016).

    Article  ADS  Google Scholar 

  23. D. Jeon, K. R. Hwang, J-H. Jang, H. Jin and H. Jang, Phys. Rev. Lett. 114, 184802 (2015).

    Article  ADS  Google Scholar 

  24. D. Jeon and K. R. Hwang, Phys. Plasmas 24, 063108 (2017).

    Article  ADS  Google Scholar 

  25. D. Jeon, J-H. Jang and H. Jin, Nucl. Instr. Meth. A 832, 43 (2016).

    Article  ADS  Google Scholar 

  26. I. Hofmann and O. Boine-Frankenheim, Phys. Rev. Accel. Beams 20, 014202 (2017).

    Article  ADS  Google Scholar 

  27. I. Hofmann, in Proceedings of HB2016 (Malmö, Sweden, 2016), p. 486.

    Google Scholar 

  28. D. Jeon et al., Phys. Rev. Lett. 80, 2314 (1998)

    Article  ADS  Google Scholar 

  29. A. Riabko et al., Phys. Rev. E 54, 815 (1996)

    Article  ADS  Google Scholar 

  30. D. Jeon, M. Bai, C. M. Chu, X. Kang, S. Y. Lee, A. Riabko and X. Zhao, Phys. Rev. E 54, 4192 (1996)

    Article  ADS  Google Scholar 

  31. M. Bai, D. Jeon, S. Y. Lee, K. Y. Ng, A. Riabko and X. Zhao, Phys. Rev. E 55, 3493 (1996).

    Article  ADS  Google Scholar 

  32. I. Hofmann and O. Boine-Frankenheim, Phys. Rev. Lett. 115, 204802 (2015).

    Article  ADS  Google Scholar 

  33. I. Haber and A. W. Maschke, Phys. Rev. Lett. 42, 1479 (1979).

    Article  ADS  Google Scholar 

  34. C. Li and R. A. Jameson, Phys. Rev. Accel. Beams 21, 024204 (2018).

    Article  ADS  Google Scholar 

  35. I. M. Kapchinskij and V. V. Vladmirskij, in Proceedings Int. Conf. on High-Energy Accelerators and Instrumentation (CERN, Switzerland, 1959), p. 274.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-O Jeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, DO. Classification of Space-Charge Resonances and Instabilities in High-intensity Linear Accelerators. J. Korean Phys. Soc. 72, 1523–1530 (2018). https://doi.org/10.3938/jkps.72.1523

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.1523

Keywords

Navigation