
Journal of the Korean Physical Society, Vol. 68, No. 4, February 2016, pp. 505∼512

Quantization of Time-dependent Non-central Singular Potential Systems in
Three Dimensions by Using the Nikiforov-Uvarov Method

Salah Menouar

Laboratory of Optoelectronics and Compounds (LOC), Departement of Physics,
Faculty of Science, University of Ferhat Abbas Setif 1, Setif 19000, Algeria

Jeong Ryeol Choi∗

Department of Radiologic Technology, Daegu Health College, Daegu 41453, Korea

(Received 19 October 2015, in final form 6 January 2016)

Quantum solutions of a time-dependent Hamiltonian for the motion of a time-varying mass sub-
jected to time-dependent singular potentials in three dimensions are investigated. A time-dependent
inverse quadratic potential and a Coulomb-like potential are considered as the components of the
singular potential of the system. Because the Hamiltonian is a function of time, special techniques
for deriving quantum solutions of the system are necessary. A quadratic invariant operator is intro-
duced, and its eigenstates are derived using the Nikiforov-Uvarov method together with a unitary
transformation method. The Nikiforov-Uvarov method enables us to solve the eigenvalue equa-
tions of the invariant operator, which are second-order linear diffierential equations, by reducing
the original equation to a hypergeometric type. According to the invariant operator theory, the
wave functions of the system are represented in terms of the eigenstates obtained in such a way.
The difference of the wave functions from the eigenstates of the invariant operator is that the wave
functions have time-dependent phases while the eigenstates do not. By determining the phases of
the wave functions via the help of the Schrödinger equation, we identify the full wave functions of
the system and address their physical implications.
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I. INTRODUCTION

If the Hamiltonian of a system involves time functions
such as a time-dependent mass and/or frequency, we
call the system a time-dependent Hamiltonian system
(TDHS). To derive analytical quantum solutions of such
a system, a rigorous mathematical procedure is neces-
sary. The quantum problem of time-dependent harmonic
oscillators that belong to TDHSs has attracted great con-
cern in the physics community after a seminal report by
Lewis [1], which revealed the possibility that the ana-
lytical quantum solutions were derivable if we knew a
classical solution of the given system.

The thermal states of time-dependent harmonic oscil-
lators with and without a singularity are investigated
in the literature [2–4]. Quantum properties of a time-
dependent Morse oscillator that is useful for analyzing
specific growth patterns in crystallization processes and
biological growth are studied with emphasis on their co-
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herent states [5]. A Lie algebraic formulation of time-
dependent harmonic oscillators is fulfilled, and its conse-
quences are applied to particular cases such as quantizing
charged particles in time-varying magnetic fields and in-
vestigating the evolution of the cosmological constant in
cosmology [6–8].

On the other hand, other types of TDHSs beyond
time-dependent harmonic oscillators have not been ac-
tively studied yet. In a previous work [9], we investi-
gated quantum solutions of the one-dimensional problem
of a linearly increasing mass system subjected to a time-
dependent inverse quadratic potential and the Coulomb
potential. Three-dimensional problems of quantum so-
lutions for a non-central potential system with a time-
dependent mass will be studied in this work. As singular
potentials, we will take a time-varying inverse quadratic
potential and the Coulomb potential. Our study for a
time-dependent non-central potential will be extended
to a complicated system that involves time-dependent
ring-shaped potentials.

Recently, active research has been executed for both
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the classical and the quantum characteristics of non-
central potential systems. They are the properties of
short-range interactions between distorted nuclei [10,11],
ring-shaped molecular potential systems [12], and elec-
trons that are bound in a Coulomb-like potential under
the influence of the Aharonov-Bohm effect [13,14]. How-
ever, most of them belong to stationary systems that do
not involve time-dependent parameters in their descrip-
tion.

We will use the invariant operator method which is
a good technique when we derive quantum solutions of
TDHSs. A quadratic invariant operator of the system
will be introduced, and it will be transformed to a sim-
ple form by means of the unitary transformation method.
Quantum solutions in the transformed system will be
derived using the Nikiforov-Uvarov (NU) method [9,15–
17]. This method is a mathematical manipulation for
solving second-order linear diffierential equations by re-
ducing the original equation to a hypergeometric type.
Many classes of second-order linear differential equations
associated with non-relativistic Schrödinger equations or
the eigenvalue equations of an invariant operator can be
solved exactly by using the NU method. The quantum
solutions evaluated in such a way in the transformed sys-
tem will be inversely transformed to those of the original
system. Based on this procedure, full wave functions in
the original system will be obtained.

The organizing of this paper is as follows: The Hamil-
tonian of the variable mass system subjected to singu-
lar potentials will be introduced and the corresponding
quadratic invariant operator will be constructed in sec-
tion II. The eigenvalue equation of the invariant operator
is divided into two parts. One is the radial equation of
motion and the other is the polar angle equation. Eigen-
states of the radial part will be derived in section III. The
eigenvalue equation of the angular part for a double ring-
shaped non-central potential will be evaluated in section
IV, and the corresponding full wave functions will be de-
rived in section V. Concluding remarks are given in the
last section.

II. HAMILTONIAN AND INVARIANT
OPERATOR

Some dynamical phenomena, such as transport phe-
nomena in crystals [18], motion of electrons in a plasma
[19], chirped tidal gravitational waves [20], and so on, are
described in terms of a time-dependent effective mass.
In this case, the effective mass can be represented as
μ(t) = μ0/g(t), where μ0 is a constant and g(t) is a time
function [20]. The case of time-decaying mass systems
that correspond to increasing g(t) has attracted special
interest in the literature [21–27]. We consider a simple
solvable case of a decaying particle where g(t) = 1 + kt,
which is confined in a time-dependent Coulomb-like po-
tential coupled to an inverse quadratic potential in three

dimensions. More precisely speaking, the Hamiltonian
of the system we consider is given by

H(t) =
1 + kt

2μ0

(
p2 +

f(θ)
r2

)
− Z0 (1 + kt)

1 − kt − 1
2k2t2

1
r
,

r ≥ 0, (1)

where μ0, k, and Z0 are constants. The time-varying fac-
tor in front of 1/r is somewhat complicated as you can
see, and you can refer to Appendix A in order to know
why we selected this factor. Notice that the bound so-
lutions of the Schrödinger equation for this Hamiltonian
exist only when the coefficient of 1/r is negative; Hence,
let us assume that Z0(1+kt)

1−kt−k2t2/2 > 0. According to the
choice of f(θ), the system becomes various kinds of θ-
dependent systems that are subjected to particular non-
central potentials, such as a simple ring-shaped potential
[28], a Makarov potential [29], and a Berkdemir poten-
tial [30], which are necessary in particular for managing
quantum theories of molecular systems. We also assume
that f(θ) is a slowly varying function of the angle θ; this
assumption enables us to derive the invariant operator
that plays a crucial role for developing the quantum the-
ory of the system [see Eq. (3)].

We are interested in deriving solutions of Schrödinger
equation of the form

i�
∂

∂t
ψn(t) = H(t)ψn(t). (2)

Because the Hamiltonian depends on time, obtaining
such solutions by using only a naive separation of vari-
ables method may be not an easy task. Hence, we should
seek another method useful for this case. The invariant
operator method is known to be very useful for solving
the Schrödinger equation of a TDHS in a case like this.

From the equation for the invariant operator I, which
is represented in the form dI/dt = ∂I/∂t+[I,H] /(i�) =
0, an invariant operator may be derived. Hence, through
a little algebra under the assumption that f(θ) varies
sufficiently slowly with θ after substituting Eq. (1) in
this equation, we have

I(t) =
1

2μ0

(
1 − kt − 1

2
k2t2

)2(
p2 +

f(θ)
r2

)

+
1
2
μ0k

2r2 +
k

2

(
1 − kt − 1

2
k2t2

)
(rp + pr)

−Z0

(
1 − kt − 1

2
k2t2

)
1
r
. (3)

If we put the eigenvalue equation of I in the form

Iφn(r, t) = Enφn(r, t), (4)

the wave functions of the system are represented in terms
of the eigenstates φn(r, t). This is the reason why the
invariant operator method is useful for deriving quantum
solutions of a TDHS.
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Because I is a function of time, the derivation of its
eigenstates may be somewhat difficult. To overcome this,
we perform a unitary transformation by introducing a
unitary operator U of the form

U(t) = exp
[
iμ0k

2�

(
1 − kt − 1

2
k2t2

)
r2

]

× exp
[

i

2�
ln
(

1 − kt − 1
2
k2t2

)
(rp + pr)

]
. (5)

Then, the eigenstates φn(r, t) can be transformed by U
as

Φn(r) = U(t)φn(r, t), (6)

and, as a consequence, the eigenvalue equation may be
written as

UIU−1Φn(r, θ) = EnΦn(r, θ). (7)

Through a little algebra, Eq. (7) becomes

(
1

2μ0

[
p2 +

f(θ)
r2

]
− Z0

r

)
Φn(r, θ) = EnΦn(r, θ). (8)

As one can see, this is independent of time. In 3-
dimensional space, this can be rewritten as

−�
2

2μ0

[
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂ϕ2

]
Φnml(r, θ, ϕ) +

(
f(θ)
2μ0r2

− Z0

r

)
Φnml(r, θ, ϕ)

= EnmlΦnml(r, θ, ϕ), (9)

where the eigenfunctions are given in the form

Φnml(r, θ, ϕ) = Rnl(r)Θnml(θ)eimϕ,
(m = 0,±1,±2 · · · ). (10)

By the method of separation of variables, we are able to
divide Eq. (9) into two parts. One is the radial part
R(r) that is represented as

∂2R(r)
∂r2

+
2
r

∂R(r)
∂r

+
(

2μ0En

�2
− c

r2
+

2μ0Z0

�2r

)
R(r) = 0,

(11)

and the other is the polar angle equation of Θ(θ) which
is of the form

∂2Θ(θ)
∂θ2

+cot θ
∂Θ(θ)

∂θ
+
(

c − m2

sin2 θ
− f(θ)

�2

)
Θ(θ) = 0.

(12)

After we first solve the radial equation in the next sec-
tion, the equation of the polar angle will also be solved.

III. EIGENVALUES AND EIGENFUNCTIONS
OF THE RADIAL EQUATION

The NU method, which is a powerful tool for eval-
uating generalized second-order linear differential equa-
tions in terms of special orthogonal functions, is useful
for solving either Eq. (11) or Eq. (12). Let us first find
the bound-state solutions of Eq. (11) which is the radial

equation. After a minor re-arrangement, Eq. (11) can
be written as

R′′(r)+
2
r
R′(r)+

[−κ2
nr2 − ε2r − l(l + 1)

r2

]
R(r) = 0,

(13)

where

2μ0En

�2
= −κ2

n,
2μ0Z0

�2
= −ε2, c = l(l+1). (14)

Here, En < 0, which means that the system is bounded.
By applying the same method of Ref. [9] when solving

Eq. (13), which is based on the NU method, we easily
derive the radial wave function such that

Rnl(r) =
(

Γ (n + 1)
2 (n + l + 1) Γ (n + 2l + 2)

)1/2

×
(

2μ0Z0

�2 (n + l + 1)

)3/2( 2μ0Z0r

�2 (n + l + 1)

)l

(15)

× exp
( −μ0Z0

�2 (n + l + 1)
r

)
L2l+1

n

(
2μ0Z0

�2 (n + l + 1)
r

)
.

These are the bound-state solutions [31], and one can
easily check that these equations vanish at r = 0.

IV. EIGENVALUES AND EIGENFUCTIONS
OF THE POLAR ANGLE EQUATION

Let us take f(θ) so that the relevant potential becomes
a kind of Makarov potential [32], which is a double ring-
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shaped generalized non-central potential:

f (θ)
r2

=
1
r2

(
a

sin2 θ
+

b cos θ

sin2 θ

)
, (16)

where a and b are constants that are allowed to be real
and positive. We assume that the variation of θ from the
equilibrium angle is sufficiently small in this potential.
If we consider the case that a = 1 and b = −0.5 as an
example, the equilibrium angle is θ0 = 1.2995, where
the derivative of f(θ) with respect to θ results in zero:
f ′(θ) = 0.

We solve Eq. (12) in order to obtain spherical har-
monics. If we change the variable as cos θ = h, Eq. (12)
can be rewritten as

d2Θ(h)
dh2

− 2h

1 − h2

dΘ(h)
dh

+

(
c
(
1 − h2

)− m2 − (a+bh)
�2

(1 − h2)2

)

×Θ(h) = 0. (17)

Let us use the NU method [9,15–17], which is useful for
solving the solution of this equation. Usually, the NU
method starts from the following equation [9]:

Θ
′′
(h) +

τ̃(h)
σ(h)

Θ
′
(h) +

σ̃(h)
σ2(h)

Θ(h) = 0, (18)

where various functions of h, τ̃(h), σ(h), and σ̃(h) should
be determined depending on the parameters of particular
systems. In this case, by comparing Eqs. (17) and (18),
we easily have

τ̃ = −2h, σ = 1 − h2,

σ̃ = −ch2 − (b/�
2
)
h +

(
c − m2 − a/�

2
)
. (19)

A weight function Π introduced in Ref. [9] is useful for
further discussion. This can be derived by substituting
the functions of Eq. (19) in Eq. (A8) of Ref. [9] as (see
Appendix B)

Π = ±[(c − k) h2 +
(
b/�

2
)
h − (c − m2

− (a/�
2
)− k)]1/2. (20)

Because the expression in the square root of this equation
can be represented as a square of a polynomial, we can
identify the mathematically allowed values of Π, such
that

Π = ±

⎧⎪⎨
⎪⎩

(
m2+(a/�

2)+u
2

)1/2

h +
(

m2+(a/�
2)−u

2

)1/2

, for k = 2c−m2−(a/�
2)−u

2(
m2+(a/�

2)−u
2

)1/2

h +
(

m2+(a/�
2)+u

2

)1/2

, for k = 2c−m2−(a/�
2)+u

2

⎫⎪⎬
⎪⎭ , (21)

where u is given by u = [(m2 + (a/�
2))2 − (b/�

2)2]1/2.
From the representation of the polynomial which is τ =
τ̃ + 2Π, we easily have

τ = −2h

[
1 +

(
m2 + (a/�

2) + u

2

)1/2
]

−2
(

m2 + (a/�
2) − u

2

)1/2

, (22)

where the derivative of τ is negative.
By representing Θn′(h) in the form

Θn′(h) = vn′(h)yn′(h), (23)

where vn′(h) is a function of h that is chosen adequately,
we see that Eq. (18) reduces to a hypergeometric-type
equation as [33]:

σ (h) y
′′
n′ + τ(h)y

′
n′ + λyn′ = 0, (24)

where τ(h) is a function of h, which is of the form τ(h) =
τ̃(h) + 2Π(h), and λ is a constant that is given by λ =
k + Π′. Hence, from a minor evaluation, we have

λ =
2c − (m2 + a/�

2)
2

− u

2
−
(

m2 + (a/�
2) + u

2

)1/2

.

(25)

On the other hand, a direct calculation of λ from the
method used in Ref. [9] yields λn′ = −n′τ ′ − n(n−1)

2 σ′′.
In this case, the expansion of λ becomes

λn′ = 2n′
[
1 +

(
m2 + (a/�

2) + u

2

)1/2
]

+n′ (n′ − 1) .

(26)

By combining the two equations, Eqs. (25) and (26), we
see that

(2n′ + 1)
(

m2 + (a/�
2) + u

2

)1/2

+
u − (m2 + a/�

2)
2

+n′ (n′ + 1) = c − (m2 + a/�
2). (27)
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Now from c = l(l + 1), we have

l = n′ +
(

m2 + (a/�
2) + (m2 + (a/�

2) − (b/�
2)2)1/2

2

)1/2

. (28)

By substituting Eq. (28) in a solution of an eigenvlaue equation of the radial part that is given in Eq. (22) of Ref. [9]
(see Appendix C), we have the eigenvalues as

Enn′m = −μ0Z
2
0

2�2

1[
n + n′ +

(
m2+(a/�2)+[(m2+a/�2)2−(b/�2)2]1/2

2

)1/2

+ 1
]2 . (29)

The wave function for the polar angle, given in Eq.
(12), is also obtained from the use of σ and Π on the
basis of the NU method. The required functions needed
for unfolding the corresponding theory of NU for this
case are as follows (see Appendix A of Ref. [9]):

v(h) = (1 − h)(m1+m2)/2 (1 + h)(m1−m2)/2
, (30)

ρ(h) =
(
1 − h2

)m1

(
1 + h

1 − h

)−m2

, (31)

yn′(h) = An′ (1 − h)−(m1+m2) (1 + h)−(m1−m2)

× dn′

dhn′

[
(1 + h)n′+m1−m2 (1 − h)n′+m1+m2

]
, (32)

where m1 and m2 are represented as m1 =

{[m2 + (a/�
2) + u]/2}1/2 and m2 = {[m2 + (a/�

2)
−u]/2}1/2. Here, ρ(h) is a weight function. For more
details on ρ(h), one can refer to Appendix D.

Now, the exact polynomial yn′(h) is expressed by using
the Jacobi polynomials P

(m1+m2,m1−m2)
n′ (h). If we insert

Eqs. (30)-(32) in Eq. (23), the wave functions for the
polar angle part can be written as

Θn′(θ) = Cn′ (1 − cos θ)(m1+m2)/2 (1 + cos θ)(m1−m2)/2

×P
(m1+m2,m1−m2)
n′ (cos θ), (33)

where Cn′ is a normalization factor. Cn′ may be deter-
mined from

∫ +1

−1
Θ∗

n(h)Θn′(h)dh = 1, and the result is

Cn′ =
(

(2n′ + 2m1 + 1) Γ(n′ + 1)Γ(n′ + 2m1 + 1)
22m1+1Γ(n′ + m1 + m2 + 1)Γ(n′ + m1 − m2 + 1)

)1/2

. (34)

Then, the eigenfunctions of the invariant operator in the transformed system become

Φnn′m(r, θ, ϕ) =
[

(2n′ + 2m1 + 1) Γ(n′ + 1)Γ(n′ + 2m1 + 1)
22m1+2πΓ(n′ + m1 + m2 + 1)Γ(n′ + m1 − m2 + 1)

]1/2

×
(

Γ (n + 1)
2 (n + l + 1) Γ (n + 2l + 2)

)1/2( 2μ0Z0

�2 (n + l + 1)

)3/2( 2μ0Z0r

�2 (n + l + 1)

)l

× exp
( −μ0Z0

�2 (n + l + 1)
r

)
L2l+1

n

(
2μ0Z0

�2 (n + l + 1)
r

)
exp(imϕ)

× (1 − cos θ)(m1+m2)/2 (1 + cos θ)(m1−m2)/2
P

(m1+m2,m1−m2)
n′ (cos θ). (35)

From the inverse unitary transformation, the eigenstates of the invariant operator in the original system are obtained
as

φnn′m(r, θ, ϕ, t) = U−1Φnn′m(r, θ, ϕ)

=
(

(2n′ + 2m1 + 1) Γ(n′ + 1)Γ(n′ + 2m1 + 1)
22m1+2πΓ(n′ + m1 + m2 + 1)Γ(n′ + m1 − m2 + 1)

)1/2( Γ (n + 1)
2 (n + l + 1) Γ (n + 2l + 2)

)1/2

×
(

2μ0Z0

�2 (n + l + 1)

)1/2
(

2μ0Z0

�2
(
1 − kt − 1

2k2t2
)
(n + l + 1)

)l+1

rl exp

(
iμ0k

2�
(
1 − kt − 1

2k2t2
)r2

)

× exp

(
−2μ0Z0

�2
(
1 − kt − 1

2k2t2
)
(n + l + 1)

r

)
L2l+1

n

(
2μ0Z0

�2
(
1 − kt − 1

2k2t2
)
(n + l + 1)

r

)

× (1 − cos θ)(m1+m2)/2 (1 + cos θ)(m1−m2)/2
P

(m1+m2,m1−m2)
n′ (cos θ) exp(imϕ). (36)
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Now, we need to determine the phases of the wave functions. For this purpose, let us consider the equation for the
phases θnn′m(t), that is [9]

�
d

dt
θnn′m(t) = 〈φnn′m(t) |

(
i�

∂

∂t
− H

)
| φnn′m(t)〉. (37)

Through a unitary transformation for this equation, we have

�
d

dt
θnn′m(t) = 〈Φnn′m(r, θ, ϕ) | − 1 + kt(

1 − kt − 1
2k2t2

)2 I0 | Φnn′m(r, θ, ϕ)〉. (38)

Now, we easily solve this equation and find

θnn′m(t) =
μ0Z

2
0

2�3

1
k
(
1 − kt − 1

2k2t2
)
[
n + n′ + 1 +

(
m2 + (a/�

2) + [(m2 + a/�
2)2 − (b/�

2)2]1/2

2

)1/2
]−2

. (39)

According to the invariant operator theory, the wave functions of the system which is time-dependent are given by
[34] ψnn′m(t) = eiθnn′m(t)φnn′m(t). Thus, in terms of Eqs. (36) and (39), the full wave functions in the original system
can be represented as

ψnn′m(r, θ, ϕ, t) =
(

(2n′ + 2m1 + 1) Γ(n′ + 1)Γ(n′ + 2m1 + 1)
22m1+2πΓ(n′ + m1 + m2 + 1)Γ(n′ + m1 − m2 + 1)

)1/2( Γ (n + 1)
2 (n + l + 1) Γ (n + 2l + 2)

)1/2

×
(

2μ0Z0

�2 (n + l + 1)

)1/2
(

2μ0Z0

�2
(
1 − kt − 1

2k2t2
)
(n + l + 1)

)l+1

rl exp

(
iμ0k

2�
(
1 − kt − 1

2k2t2
)r2

)

× exp

(
−μ0Z0

�2
(
1 − kt − 1

2k2t2
)
(n + l + 1)

r

)
L2l+1

n

(
2μ0Z0

�2
(
1 − kt − 1

2k2t2
)
(n + l + 1)

r

)

× (1 − cos θ)(m1+m2)/2 (1 + cos θ)(m1−m2)/2
P

(m1+m2,m1−m2)
n′ (cos θ)

× exp (iθnn′m(t) + imϕ) . (40)

The wave functions given here are very useful for investi-
gating the quantum properties of the system. The expec-
tation values of the canonical variables, quantum observ-
ables, and other quantum variables can be evaluated by
means of these wave functions. Also, quantum fluctua-
tions, uncertainty relations, correlations between canon-
ical variables, and phase properties of eigenstates can be
studied through the use of the wave functions. These
analytical wave functions are better than the wave func-
tions obtained from numerical or perturbation methods.
Numerical solutions of the wave functions are somewhat
not flexible. Hence, a set of data for the wave functions
obtained at a certain time t by using a numerical method
cannot be used as the data at a different time. However,
from the analytical wave functions, we can easily identify
the whole spectrum of eigenstates and eigenvalues.

V. CONCLUSION

Exact wave functions for a TDHS that have a time-
variable mass subjected to time-dependent singular po-
tentials in 3 dimensions have been investigated. A time-
dependent inverse quadratic potential and a Coulomb-

like potential were considered as singular potentials.
From the Hamiltonian of the system, an invariant oper-
ator which is useful for studying the quantum properties
of the system has been constructed. Because the invari-
ant operator is somewhat complicated, as shown in Eq.
(3), we transformed it to a simple form by means of a
unitary operator. The invariant operator in the trans-
formed system does not depend on time, and we easily
obtained its eigenstates by using the NU method. Ana-
lytical solutions for both the radial equation, Eq. (13),
and the polar angle equation, Eq. (17), are exactly de-
rived by using the NU method, leading to recognition of
the complete eigenstates of I0. From the inverse transfor-
mation of the eigenstates represented in the transformed
system to those of the original system, complete eigen-
states of the invariant operator I are identified. We have
supposed, according to the theory of Lewis and Riesen-
feld [34], that the full wave functions of the system are
represented in terms of φn and that the corresponding
phases of the wave functions are derived with the aid of
the Schrödinger equation. From this procedure, the full
wave functions are identified.

We considered the double ring-shaped generalized non-
central potential in this work, which is a kind of Makarov
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potential [32]. To now, much research has been done con-
cerning the double ring-shaped generalized non-central
potential defined in Eq. (16) [14, 33, 35, 36]. However,
the quantum problem of this potential system with time-
dependent parameters has not been reported yet as far as
we know. Perhaps, this is due to the difficulty of math-
ematical procedures for the complicated system in the
time-dependent domain.

The complete wave functions obtained in this work
are useful for investigating various quantum properties
of the system. For instance, they enable us to derive en-
ergy eigenstates and to compare them with their classical
counterparts. They are also useful for studying quantum
characteristics of other quantum observables of the sys-
tem. The fluctuation of canonical variables, the uncer-
tainty products, probability densities, density operators,
and the Wigner distribution functions can be clarified by
means of the wave functions.

As a next task for research, a study of the phase prop-
erties of the system may be a worthwhile topic. The
phases θnn′m(t) are composed of the usual dynamical
phases and geometrical ones. Among them, the geomet-
rical phases have many applications in physical science.
For instance, geometrical phases can be applied to the
theory of optical spin rotations in quantum dot [37], to
the analysis of bonding states of molecules [38], in real-
izing geometric phase gates in quantum computing [39],
and so forth. Indeed, the study of geometrical phases
provides a powerful new way for understanding dynam-
ical systems because they play essential and important
roles in both non-adiabatic and adiabatic evolutions of
quantum systems.

APPENDIX A

In general, the derivation of Schrödinger solutions for
time-varying singular potential systems are very difficult,
except for the case in which the form of the singular
potential is a special inverse quadratic type coupled to
an harmonic oscillator [40]. Still, we do not know how to
derive quantum solutions if we choose arbitrary types of
time-varying functions for the Hamiltonian given in Eq.
(1). However, from our experience, we have confirmed
that we can derive quantum solutions of the system if we
choose the time-varying factor of 1/r in the Hamiltonian
to be the form shown in Eq. (1).

APPENDIX B

The exact formula of Eq. (A8) of Ref. [9] is given by

Π(h) =
σ′(h) − τ̃(h)

2

±
√(

σ′(h) − τ̃(h)
2

)2

− σ̃(h) + kσ(h). (B1)

APPENDIX C

In terms of the notations of this paper, the formula of
Eq. (22) of Ref. [9] is given by

En = −μ0Z
2
0

2�2

1
(n + l + 1)2

, n = 0, 1, 2, · · · . (C1)

APPENDIX D

The weight function ρ(h) given in Eq. (31) is necessary
for unfolding the NU theory. In general, it is determined
from [9,41]

[σ (h) ρ (h)]′ = τ (h) ρ (h) . (D1)
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