
Behavior Research Methods
https://doi.org/10.3758/s13428-024-02420-5

ORIG INAL MANUSCRIPT

Automatic object detection for behavioural research using YOLOv8

Frouke Hermens1

Accepted: 2 April 2024
© The Author(s) 2024

Abstract
Observational studies of human behaviour often require the annotation of objects in video recordings. Automatic object
detection has been facilitated strongly by the development of YOLO (‘you only look once’) and particularly by YOLOv8
from Ultralytics, which is easy to use. The present study examines the conditions required for accurate object detection with
YOLOv8. The results show almost perfect object detection even when the model was trained on a small dataset (100 to 350
images). The detector, however, does not extrapolate well to the same object in other backgrounds. By training the detector
on images from a variety of backgrounds, excellent object detection can be restored. YOLOv8 could be a game changer for
behavioural research that requires object annotation in video recordings.

Keywords Surgical tool tracking · Automatic object detection · YOLO · Behavioural analysis

Introduction

In behavioural research, a common part of the analysis
process is the annotation of videos. For example, to deter-
mine where people look when watching videos or engage
in day-to-day activities, a regions of interest analysis can
be performed on eye-tracking data to determine how long
participants look at particular objects or people in a scene
(e.g. Hermens, 2017; Gregory et al., 2015; Kuhn et al., 2016;
Land et al.; 1999). This requires detecting when the point of
gaze of the participant enters a bounding box or a polygon
region around a target object or person, which will need to be
defined for each video frame. Likewise, studies that exam-
ine how participants handle day-to-day objects require the
annotation of particular objects in videos of participants, for
example, to determine where on a plunger (Cohen & Rosen-
baum, 2004), a bowl (Hermens et al., 2014), a glass or a bar
(Knudsen et al., 2012) participants place their hand when
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grasping these objects. A third situation involves surgical
tool tracking in the context of studies of eye–hand coordina-
tion in surgeons performing key-hole surgery (for reviews,
see Hermens et al., 2013; Tien et al., 2014; Gil et al., 2022).
To obtain a measure of the skill of a surgeon, the position of
the instrument in the video images can be analysed on their
own or in relation to the direction of gaze (Ahmidi et al.,
2010, 2012).

The task of drawing a bounding box around an object of
interest is known as object detection within the computer
vision literature. It is one of several methods that computer
algorithms can now perform with high accuracy. Other tasks
include image classification (Himabindu&Kumar, 2021, e.g.
deciding whether an image contains a White or a Black per-
son), image segmentation (Minaee et al., 2021, e.g. drawing a
contour around a person), pose estimation (Chen et al., 2020,
e.g. localising the position of feet, knees, hips, and shoul-
ders of a person in an image), and object tracking (Chen
et al., 2022, i.e. object detection while also tracking the iden-
tity of a person or object in the image). The accuracy of these
techniques has improved substantially over the past years
(Feng et al., 2019) due to improved algorithms, improved
technology (particularly the introduction of graphical pro-
cessing units, GPUs), and larger annotated datasets (e.g.
Deng et al., 2009; Yang et al., 2015).

Until recently some level of programming skills was
required to apply these computer vision methods, which
can be an issue for behavioural researchers. This changed
recentlywith theUltralytics (Jocher et al., 2023) package that
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is easy to install and use for all of the above computer vision
tasks. Applying computer vision methods with the Ultralyt-
ics packages means installing the package, sorting files into
the appropriate folder structures, providing commands from
the command line (Jocher et al., 2023) and saving the results.

Some object detection tasks can be performed with pre-
trained models. This object detection can be performed on
a standard personal computer (e.g. with an i5 processor and
8Gb of RAM). Pre-trained models tend to be based on the
COCO dataset (Lin et al., 2014) that contains 80 types of
objects.When the aim is to detect an object that is not in these
pre-trained models (e.g. a plunger, a surgical instrument), a
newmodel needs to be trained. For such training, a computer
with a graphical processing unit is recommended (Google
currently offers free processing time on their Colab servers,
Bisong and Bisong, 2019).

To train a new object detector, a set of examples is needed.
This involves finding images of the object and drawing
bounding boxes around the object in each of these images, for
example using the labelMe software (Wada, 2018). Training
a new object detector often starts with a pre-trained net-
work (often based on the COCO dataset, Lin et al., 2014)
that takes advantage of pre-trained weights for the feature
recognition stages of object recognition, a process known as
transfer learning.

Typical object detection often involves highly variable
contexts (e.g. various outdoor scenes, different weather and
lighting conditions) and highly variable objects (e.g. vari-
ous shapes, sizes and colours of cars and trucks). A common
strategy is to use an already-existing dataset of annotated
images (e.g. Yang et al., 2015; Krizhevsky et al., 2009; Deng
et al., 2009). Using such an existing dataset may not always
be a feasible strategy for objects used in the lab, as exist-
ing datasets may not contain the class of object that you may
wish to detect (e.g. a plunger, Cohen and Rosenbaum, 2004).
The question therefore arises what is required to train a new
object detector for the object(s) under study.

Behavioural research may have an important advantage
in this context. Experiments are often done in a much more
controlled setting than found in typical object detection.
Participants are all tested in the same lab, under the same
lighting conditions, with the same camera viewpoint, manip-
ulating the same object. Guidelines on, for example, how
many images to annotate for training from typical object
detection contexts may therefore not automatically apply to
object detection in behavioural research (particularly when
conducted in the lab).

A recent study examined the effects of the number of
annotated images used to train an object-detector for playing
cards. For object detection, the authors used the You Only
Look Once (YOLO) algorithm and two of the older versions
of this algorithm (YOLOv1 and YOLOv2, i.e. versions 1
and 2). They found that precision and recall (measures of the

accuracy of detection) improved until 300 images and with
at least 300 training epochs (Li et al., 2018). This suggests
that a relatively small number of annotated images may suf-
fice for reliable object detection, but it is unclear how these
results extend to more recent object detectors (e.g. Jocher
et al., 2023, 2023), which reports substantially improved
object detection over the earlier versions (for an overview,
see Jiang et al., 2022).

The present studywill therefore examine the required con-
ditions to train object detectors for behavioural research. It
will focus on YOLOv8 because this version is particularly
easy to use compared to other object detectors. The main set
of experiments in the present study will focus on surgical
tool detection, as this type of object detection has substantial
interest in the medical community and studies have demon-
strated that accurate detection can be achieve with earlier
YOLO versions (e.g. Choi et al., 2017; Choi et al., 2021;
Wang et al., 2021). The present studywillmake use of images
of a surgical tool inside a simulator box to mimic the low
variability contexts typically found in lab-based studies (the
experiment from which these images were sampled will be
described in the Methods section below).

To examine how well the results generalise to other
objects, the YOLOv8 detector will also be applied to a sec-
ond dataset in which participants moved a transparent bowl
between rings (Hermens et al., 2014). This particular appli-
cation could pose an additional challenge to the algorithm
due to the transparency of the bowl, additional occlusion,
and the low image quality of this older dataset.

In the experiments, the following research questions will
be addressed: (1) How many annotated images are needed to
train an object detector in a low variability setting? (2) How
well does the object detector perform on unseen videos of the
object? (3)Does theYOLOversion and the pre-trainedmodel
size affect performance of the detector? (4) Does an object
detector trained for one background perform adequately
when used for the same object but a different background?
(5) If performance drops with a change of background, does
it suffice to train a new detector in a new context? (6) How
well does an object detector perform when trained on differ-
ent contexts and how many images are needed per context?
(7) How do results depend on the random selection of images
for training? (8) Are similar image set sizes needed for other
types of objects?

The present study will be unable to address all possible
questions regarding the training of object detectors as it only
focuses on YOLOv8 from the Ultralytics package and a lim-
ited set of research questions. It will also focus on object
detection and not on other computer vision tasks, such as
image segmentation and pose estimation. An important aim
of the present article will therefore also be to illustrate how to
conduct ‘experiments’ with computer vision software, very
much like a behavioural study. The computer vision software
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(a) General setup

(b) View of the inside of the box

(c) Surgical instrument that was used

(d) Video frame

Fig. 1 Participants stood in front of a surgical simulator box with their
chin in a chin rest (a). Inside the surgical box were two dishes contain-
ing beads and a webcam (b). Participants entered a surgical instrument

(c) into one of the holes in the top of the box and moved as many beads
fromone dish to the other in the three allottedminuteswhile thewebcam
recorded the view inside the box (d)

is treated as a black box receiving stimuli and producing
responses and the aim is to uncover the relationship between
these inputs and responses and build a mental model of the
black box. This general approach can be used for other types
of computer vision tasks, other algorithms for the same task,
or other objects of interest for detection.

Methods

The first set of experiments with YOLOv8 (Jocher et al.,
2023) will make use of videos recorded during an eye–hand
coordination study with complete novices using a surgical
simulator (unpublished data). The aim of this study was to
reveal possible signals in the instrument and eye movements
that may predict performance in the task. The present study
will focus on detecting the position of the instrument in the
videos (the tooltip of a surgical grasper1).

1 The terms ‘grasper’, ‘tool’ and ‘instrument’ all refer to the sameobject
in the present context. In the surgical community, the term ‘instrument’
is more commonly used.

Data collection Eye-tracking data and video recordings were
collected from a total of 38 participants (tenmales), recruited
by word of mouth among students or staff at the University
of Aberdeen (UK) with no experience in the use of surgical
instruments. All provided written consent for their partic-
ipation in the study that was approved by the local ethics
committee (School of Psychology, University of Aberdeen,
UK).

The experimental setup for data collection is shown in
Fig. 1. Participants were standing with their head rest-
ing in a chin rest (UHCOT Tech Headspot, mounted on a
wooden frame) and performed a task with a simulator box
(Ethicon endo-surgery inc.) while an EyeLink 1000 system
(SR Research, Ontario, Canada) recorded their eye move-
ments and a webcam recorded the inside of the simulator box
and projected the image on a Dell 19-inch flatscreen mon-
itor. The task involved a single-use surgical grasper, shown
in Fig. 1c, and required participants to move coloured beads
from one dish inside the box to another dish (see Fig. 1d)
for a total of 3 min. In the present context, only the video
recordings are used, not the eye-tracking data.
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Image annotation A total of 436 imageswere extracted from
a large portion of the videos taking one frame every 10 s.
This sampling frequency was chosen such that around 450
imageswere obtained from the various videoswhile avoiding
images that looked too similar. Using the labelImg software,
bounding boxeswere drawn around the tooltip in each image,
as illustrated in Fig. 2a. Bounding boxes were drawn so that
they included all of themetal region of the tool tip. This could
sometimes lead to part of the (black) shaft of the instrument
to be included in the bounding box. The target object for
this analysis is therefore the tooltip, as this is the part of the
instrument that participants are expected to fixate during the
task. Most images contained the tooltip (386 images), but
some images without the tool were also kept to determine
whether the model did not detect an instrument when there
was none.

LabelImg has the option to automatically save the labels in
YOLO-format. If other software is used, it may be required to
convert the format of the labels. The YOLO-format require-
ment for the image in Fig. 2a is shown in Listing 1. The first
number (‘0’) indicates the class (which starts counting at
zero). The next two numbers indicate the bounding box mid-

point (as a proportion of the width and height of the image)
and the final two numbers indicate the bounding box width
and height (also as a proportion of the width and height of
the image). One label file is stored for each image.

Listing 1 Example of a label file in YOLO format.

0 0.839063 0.463379 0.085938 0.118164

Model training During model training, the weights of the
pre-trained model are adjusted to better detect the new target
object. This training is performed in epochs. In each epoch,
the model sees the entire set of images, e.g. 80 images for an
annotated set of 100 images. The remaining 20 images (the
validation set) are used for determine whether performance
was improved during the training step. The model has many
parameters (called ‘hyperparameters’), such as the learning
rate, the batch size, and the optimiser type. All these param-
eters were set to their default values.

To perform the training, the set of training images and
their annotations were moved into image and label folders
and subdivided into training and validation sets, as illustrated
in Fig. 2b. A file with instructions (‘yaml’ format) was then

(a) Labelling (b) Tree structure

(c) Training output

Fig. 2 a Labelling images with LabelImg. By using the single object
and autosave options, labelling can be performed efficiently. To label
around 450 images eachwith a single object, around 45minwas needed.

b Example tree structure (with a total of 12 images) required for train-
ing with YOLOv8 from Ultralytics. cOutput from the algorithm during
training
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created which indicated the label for the single class (‘tool’)
and the location of the folders with training and validation
images (see Listing 2). The folders and yaml file were then
transferred to Google Drive for training on Google Colab.

Listing 2 Example contents of the yaml file when used for training on
Google Colab using Google Drive.

path : ’/ content / drive /MyDrive/Data/ToolTracking/
50images/ ’

train : ’images/ train ’
val : ’images/ val ’

#Classes
names:

0: Tool

A notebook was created that first installed the Ultralyt-
ics package (version 8.0.168), then downloaded the ‘nano’
pre-trained model, and then trained the model for 50 epochs
(see Listing 3). In each epoch, the model goes through the
entire set of training images, allowing the model to update
the weights in the artificial neural network. The results were
then transferred to Google Drive using the Shutil package
(see Listing 3) and downloaded onto the local computer for
inference (prediction) on the entire set of annotated images
and two videos not used thus far (See Listing 4 for a minimal
example).

Listing 3 Code to install Ultralytics / access Google Drive from Google
Colab / load the YOLO model / train the model on new images / copy
the best model to Google Drive.

!pip ins ta l l ul tralyt ics==8.0.168 #Instal l
Ultralytics

from google . colab import drive #access Google
drive
drive .mount( ’/ content / drive ’)

from ultralyt ics import YOLO #Load Ultralytics
model = YOLO("yolov8n. pt ") #Load the nano model
model. train (data=’/content / drive /MyDrive/Data/
Surgery /
surgery .yaml’ , epochs=50) #Train the model

import shutil #copy model to Google Drive
shutil .copy("/ content / runs / detect / train /weights /
best . pt " ,
"/ content / drive /MyDrive/Data/Surgery / surgery_best
. pt ")

Listing 4 Minimal code to apply the trainedmodel to an image and print
the bounding box coordinates.

from ultralyt ics import YOLO #Load Ultralytics
model = YOLO("surgery_best . pt ") #Load the model
results = model("sugical_image .png" , conf=0.25)
#Apply the model
detections = results [0].boxes
#Extract the results
boxes = detections [0].xyxy. to l i s t ()[0]
#Convert to xyxy format
print (boxes) #Print the bounding box coordinates

Validation of the models During training, the Ultralytics
package provides two measures of the mean average pre-
cision (mAP), the mAP50 and the mAP50:95 (see Fig. 2c).
Because there is a single object class (‘tool’), mean average
precision is the same as the average precision (AP). When
there is a single target object, the mAP50 determines in how
many images the overlap between the annotated and detected
bounding box is at least 50% (defined as the intersection
over union, IoU, see Fig. 3 for examples). The mAP50:95
varies the required overlap between the detected and anno-
tated bounding boxes between 50% and 95% in steps of 5%
and computes the average precision over these required over-
laps.

The mAP values reported during training are computed
on the validation set. These are based on 20% of the anno-
tated images (e.g. 20 imageswhen using 100 images in total).
Because the validation set can be small in situations where
fewer annotated images are used, the performance on the
entire annotated set of 436 images was also compared across
image set sizes. Becausemodels trained on larger numbers of
images see more of the original 436 images during training,
models based on more images may have an advantage on the
entire annotated set. Models were therefore also compared
on two yet unseen videos. Performance for these videos was
determined by counting how often the detected bounding
included most of the tool tip, as in the examples in Fig. 6
(corresponding to an IoU over 50%) the number of times
the bounding box was clearly not around the tool tip (like
in the example in Fig. 9), the number of false positives (a
tooltip was detected where there was none) and the num-
ber of false negatives (tooltip not detected where there was
one).

Testing the effect of the number of annotated images To
determine how many annotated images are required for ade-
quate object tracking 50, 80, 100, 120, 150, 200, 250, 300,
and 350 images were randomly selected from the original
image set of images containing a tooltip (only positive exam-
ples were used for training; the negative examples were kept
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(b) Example of a smaller IoU (0.55)
(a) Example of a larger IoU (0.81)

Fig. 3 Examples of a larger (IoU = 0.81) and smaller intersection over union (IoU = 0.55). The white box shows the annotation and the green box
shows the detection

for validation after training). Sets of images were split into
80% training and 20% validation images. For example, for
the 100 images set, 80 images went into the training set and
20 images into the validation set.

Comparing nano, small and medium-sized models Training
typically starts with a pre-trained model, which has been
trained on a large dataset. YOLOv8 offers pre-trainedmodels
of various sizes: nano, small, medium, large and extra-large.
The nano, small and medium-sized models were compared
to determine whether performance is affected by the size of
the pre-trained models. Since no improvements were found
for the small and medium-sized model compared to the nano
model, the two larger models (which take substantial time to
train and use on images)were not tested. For the same reason,
the remainder of the experiments were completed with the
nano model.

Comparing YOLO versions Within the set of pre-trained mod-
els, models could also be found for YOLOv3 and YOLOv5
(besides the YOLOv8 model). To examine whether the
YOLO version affects performance, these older models were
trained on the 150 and 350 image set sizes, as these showed
good performance for the YOLOv8model. Performance was
then compared to that of the YOLOv8model on both the val-
idation set during training and the entire annotated set.

Testing the model on other backgrounds New videos were
recorded from the same instrument or a slightly different
instrument (exploring the effect of the instrument) in various
backgrounds (see Fig. 4). From these videos, images were
extracted, which were labelled with the same LabelImg soft-
ware. The model trained on 150 and 350 images from inside
the simulator was then applied to these labelled images and
detection performance compared.

Training different models for different backgrounds The
original model performed poorly on the new backgrounds.
New models were therefore trained to determine whether

retraining the model would be a feasible strategy when an
old model fails to detect an object in a new context. For the
‘empty’ background, this involved 198 images. For the gray
backgroundwith cup therewere 276; for the gray background
with yarn there were 240 images; for the green background
with nails 356 imageswere used; for the red backgroundwith
cups 176 images were available; and for the yellow back-
ground with yarn 155 images were annotated (the number of
images depended on the lengths of the original videos, as a
fixed sampling rate was used).

Training a single model on various backgrounds To deter-
mine what performance can be achieved across various
backgrounds, a new model was trained on all images of all
backgrounds (the images of the six different background and
the original set of images from inside the simulator, making
a total of 1893 images). This model was then applied to the
same set of images to assess performance.

Training a single model on a smaller number of various back-
grounds The model trained on all backgrounds achieved
better performance than specific models trained separately
for each background. The model trained on all backgrounds,
however, was trained with manymore images than the model
trained on each single background. To examine the extent to
which the large number of images affected performance of
the model, a new model was trained on a subset of images.
From each context, 60 images were selected. To examine
whether diverse contexts generalise to an unseen context,
no images of the original simulator setting were used for
this training. The total number of images was set to 360,
comparable with the largest set used for training the original
surgical simulator model. The model was then applied to all
1893 images from the various backgrounds.

Random number generator As will be shown in the results,
performance of the model broke down for image set sizes of
200 and 250 images. This may be an artefact of the random
selection of images for the training and validation sets and the
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(a) Empty background (b) Gray background + cup

(c) Yellow background + yarn (d) Red background + cups

(e) Green background + nails (f) Gray background + yarn

Fig. 4 Six different backgrounds that were tested with the original model trained on images inside the surgical simulator. Subsequently, separate
models were trained on images for each of the backgrounds, and a model across all backgrounds. Note that the yellow background used a slightly
different surgical grasper

subsequent splits into training and validation images. These
selections are controlled by the random number generator
that can be set by setting the random seed. The original seed
of ten was therefore changed to the (also arbitrarily selected)
value of 20 and the entire process of creating image set sizes
of 50 to 350 images and training and validating the models
was repeated with this new setting of the random number
generator. If the poor performance persists for 200 and 250
images, this would suggest a different cause for the poor
performance for these image set sizes.

Other objects To examine whether the surgical instrument
results extend to other types of objects, object detection was
performed on a different dataset. The dataset that was used
for this was collected in 2003 as part of a project examin-
ing whether participants anticipate their final postures when
grasping an object (examining the so-called ‘end-state com-
fort effect’, Hermens et al., 2014). The published data from
this project were analysed using manual annotation.

Two further experiments not included in the original pub-
lication involved participants moving a salad bowl around an
obstacle. The measure of interest in these experiments was
where on the rimof the bowl participants take hold (expressed
as an angle). To determine this measure, the midpoint of the

bowl’s rim has to be determined, as well as the position of
the hand. For the current analysis, the position of the obsta-
cle will also be annotated, because it will allow determining
which way participants moved around the obstacle, and pro-
vides a baseline object that is not transparent (bowl) and does
not change shape (hands).

The reasons for using this dataset are the following. First,
because in 2003 data storage was expensive, the videos were
compressed to an MPEG-1 format with a frame resolution
of 880 by 540 pixels. This dataset will therefore demon-
stratewhether the results extend to situationswith a relatively
low image quality. Second, the transparent bowl could pose
problems to the object detection algorithm, because its tex-
ture and brightness is expected to depend on the background.
The comparison with the obstacle with show whether trans-
parency of the object plays a role. Third, hands differ in shape
and colour, which may pose another problem for the object
detection algorithm. Finally, in many of the images there
is some form of occlusion of the objects, which may form
another challenge to object detection.

The setup and example annotations of the various objects
of interest are shown in Fig. 5. In this example, all three
objects of interest (bowl, hands, obstacle)were annotated, but
for object detection, each objectwas annotated separately and

123



Behavior Research Methods

Fig. 5 Example image of the bowl transport task in which participants
were asked to pick up a transparent salad bowl and to move it to a target
ring and gap (for more details, see Hermens et al. 2014). This image
shows the end of a movement because the pointer attached to the bowl
aligns with the wooden block with two green stripes that indicated the

target ring and gap. Participants had to take into account the obstacle
that was always placed between the start ring (in this case, ring number
2) and the end ring (in this case ring number 3). Because the position
of the hand on the rim is the measure of interest, only the bowl’s rim is
annotated, not the entire bowl

models were also trained separately2. A total of 450 images
were extracted from 14 videos at intervals of around 10 s.
Using the same seed of the random number generator as for
the original analyses for the surgical instrument (seed = 10),
these images and annotations were split into sets of sizes
50, 80, 100, 120, 150, 200, 250, 300, and 350 images, only
using images that contained the target object (bowl, hand, or
obstacle). For each set size and each object a YOLOv8model
was trained and the validation results collected.

Statistical comparisons The validation process during train-
ing yields a mAP-50 and a mAP-50:95 score, which is a
single number per epoch, computed across all images. These
values can therefore only be compared statistically when
repeated selections of images from the original dataset and
repeated splits between training and test sets are performed
and the model is retrained for each new selection and split.
This is computationally expensive. Moreover, these values
were often based on a small dataset (e.g. 20 images when
100 annotated images were used), meaning that the mAP
values may be variable.

Instead, statistical comparisons were performed on failed
detection rates and IoU values when the models were fitted
on the entire set of images. Unless specified otherwise in the
text, mixed effects models were fitted with and without the
fixed factor of interest (e.g. the image set size)with image as a
random factor,which takes into account related datapoints for
the same images. Models were compared with a likelihood

2 Annotation tends to be faster per object, because the object label does
not have to be selected for each bounding box. Moreover focusing on a
single object is cognitively less demanding.

ratio test yielding aχ2 value and a p value indicatingwhether
the nested model without the fixed effect of interest fitted
the observations significantly worse than the model with the
fixed effect. For this analysis the lme4 package inRwas used.

Results

Generally, good detection of the tooltip was obtained for
many of the image set sizes. Figure 6 shows examples of
detections for the model trained on 150 images, showing
that the tooltip was detected in every single of this random
selection of images from the validation set.

Validation scores per image set size

Figure 7 shows that mAP50 and mAP50:95 scores improved
with more training epochs, but leveled off at some point.
There were, however differences between image set sizes.
Lower numbers of images (50, 80, 100, 120, 150) all con-
verged to almost perfect mAP50 scores (i.e. the approximate
location of the tooltip is detected with high consistency).
mAP50 values were lower for image set sizes of 200 and 250,
but returned to almost 100%when the number of images was
further increased to 300 and 350. To reach the near perfect
levels of mAP50, fewer training epochs were needed with
300 and 350 images than with smaller numbers of images
(80, 100, 120, and 150).

For the more stringent mAP50:95, none of the image set
sizes yielded a performance over 80%. For this measure, a
better overlap between the detected and annotated bounding
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Fig. 6 Examples of detections for a model based on 150 annotated images, based on the validation set. The numbers shown indicate the confidence
of the model (ranging from 0 to 1, with 1 being the highest confidence)

box is required to achieve high scores. This implies that for
very accurate localisation of the tooltip, rather than just detec-
tion, more images may be needed (or a different approach
may be required, such as pose estimation, see the Discus-
sion).

Detection accuracy on the entire annotated set
of images

To validate each of the models on the entire set of annotated
images (40 images without a surgical instrument and 396
images with a surgical instrument), the model frozen at the
epoch with the best mAP50 value was used. A confidence
threshold of 0.25 was applied for detection. In instances
where multiple detections were made by the model, the over-
lap values were pooled across detections.

False positives (i.e. a detection of a tool when there was
none, across 40 images) did not occur for any of the models.
False negatives did occur. Figure 8a shows that for some
image set sizes, the model failed to detect the instrument in
a large portion of the images that contained the instrument.
Image set sizes of 80, 100, 120, 150, 300 and 350 images led
to adequate detection of a tool when there was one (almost
zero failures). A significant effect of image set size on false
negatives was found (χ2(1) = 56.2, p < 0.0001). Significant
differences in the false detection rates between subsequent
numbers of images were found between 50 and 80 (χ2(1) =
977.2, p < 0.0001), 80 and 100 (χ2(1) = 11.8, p < 0.0001),
120 and 150 (χ2(1) = 17.8, p < 0.0001), 150 and 200 (χ2(1)
= 412.5, p < 0.0001), 200 and 250 (χ2(1) = 83.3, p <

0.0001) and between 250 and 300 images (χ2(1) = 941.1,
p < 0.0001).
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Fig. 7 mAP50 and mAP50:95 as a function of the number of images (subplots) and the number of epochs (horizontal axis). The scores were
computed on the 20% validation images during training

Overlap between annotated and detected bounding
boxes

To examine how well the bounding box fitted the annotated
bounding box when a detection was made, the intersec-
tion over union (IoU) was computed. This measure ranges
from zero (no overlap) to 100% (perfect overlap between the
detected and annotated box, see Fig. 3 for examples).

Figure 8b shows thatwhen the toolwas detected, therewas
a high degree of overlap between the detected bounding box
and the annotated box of around 80% to 90% with relatively
little variation between images (small standard errors of the
mean). There was a statistically significant effect of the num-
ber of images used for training on this overlap (χ2(8) = 314.5,
p < 0.0001). Comparisons between subsequent image set
sizes using Bonferroni correction for multiple comparisons
indicated a significant difference in the IoU between 80 and
100 images (χ2(1) = 11.8, p < 0.0001), between 120 and
150 images (χ2(1) = 15.1, p = 0.0001), between 150 and
200 images (χ2(1) = 12.9, p = 0.0003), between 250 and
300 images (χ2(1) = 20.0, p < 0.0001) and between 300 and
350 images (χ2(1) = 19.9, p < 0.0001).

Statistically significantly higher IoU values were found
when the model was trained on more images, but the com-
bination of Fig. 8a and b shows that the main problem of
poorly performing models was the lack of a detection of the
instrument. Interpolation techniques (i.e. inferring the tool
position from previous or subsequent video frames) may be

used to recover the instrument’s position for frames where
detection fails when there are few false negatives.

The model provides a confidence score with each bound-
ing box, which indicates how certain the model is that the
bounding box contains the target object and how large the
overlap (IoU) with the target box is. Figure 8c plots the
agreement between confidence and IoU for well-performing
models. A significant correlation was found across image set
sizes (Pearson’s r = 0.34, p < 0.0001) and within each of the
image set sizes in the plot (p < 0.0001). In most cases, high
confidence coincides with a high IoU. There were, however,
instances of a lower confidence with a fairly high IoU. The
reverse seems to be less common.

Figure 8d and e show that the IoU did not depend strongly
on the horizontal or vertical position of the tool on the screen.
There were small, but statistically significant negative corre-
lations between horizontal position and IoU (r = -0.051, p =
0.043, N = 1584) and vertical position and IoU (r = -0.068,
p = 0.0073, N = 1584) when the results for 100, 150, 300
and 350 images were combined. None of the individual cor-
relations for 100 (x: p = 0.084, y: p = 0.16), 150 (x: p = 0.12,
y: p = 0.25), 300 (x: p = 0.82, y: p = 0.099) and 350 (x: p =
0.38, y: p = 0.18) were statistically significant. There were
no clear areas for which the tool’s position was detected less
reliably (for the models that detected the tool in almost every
frame). Lower IoU values were somewhat more often found
for higher positions of the instrument in the image. Figure 8f
indicates that IoU values were somewhat lower when the

123



Behavior Research Methods

(a) Failed detections

0%

25%

50%

75%

100%

50 80 100 120 150 200 250 300 350
Number of images in training + validation

Fa
ilu

re
s 

to
 d

et
ec

t a
 g

ra
sp

er

(b) IoU for detected tools

70%

80%

90%

100%

50 80 100 120 150 200 250 300 350
Number of images in training + validation

Io
U

 o
f d

et
ec

te
d 

gr
as

pe
rs

(c) Confidence and IoU

40%

60%

80%

100%

0.4 0.6 0.8 1.0
Confidence

Io
U

 o
f d

et
ec

te
d 

gr
as

pe
rs

Images: 100 150 300 350

(d) IoU per horizontal position
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(f) IoU per tool width
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Fig. 8 a False negatives (failed detections) per image set size. b The
intersection over unions (IoU) for the detected tools per image set size.
c IoU as a function of the confidence value. d IoU as a function of hori-

zontal position of the tooltip. e IoU as a function of the vertical position
of the tooltip. f IoU as a function of the size of the tooltip. Error bars
in d show the standard error of the mean across images

instrument was viewed at a larger distance inside the box (as
reflected by a smaller size in the image). This was reflected
by statistically significant negative correlations between box
width and IoU across 100, 150, 300, and 350 images (r =
0.20, p < 0.0001, N = 1584) and significant correlations
within 100 (r = 0.20, p < 0.001), 150 (r = 0.17, p < 0.001),
300 (r = 0.19, p < 0.001) and 300 images (r = 0.30, p <

0.001).

Detection accuracy for unseen videos

As an additional validation, two of the best performing mod-
els (trained on 120 and 350 images) were applied on frames
of two complete videos. For each video frame, the detected
bounding box was superimposed on the image. The resulting
images were then sorted into folders of images with the cor-
rect and incorrect detections based upon visual inspection.
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Figure 9a shows the counts of correct and incorrect bound-
ing boxes, indicating that the models were correct in most
instances. The largest number of errors was made by the
model trained with 120 annotated images. These errors
were mostly false negatives (a failure to detect the instru-
ment). Examples of the few incorrect detections are shown
in Fig. 9b–d, illustrating an incorrect bounding box, a failed
detection, and an erroneous detection.

Figure 10 shows the detected horizontal and vertical posi-
tion of the instrument over video frames for a section of
both videos. The two models show very similar detected
instrument positions. The correlation between the horizon-
tal positions of the bounding boxes of the two models was
almost perfect (first video: r = 0.9998, p <0.001, second
video: r = 0.9995, p < 0.001). Similarly high correlations
were found for the vertical positions of the bounding boxes
(first video: r = 0.9991, p <0.001, second video: r = 0.9988,
p < 0.001).

The traces in Fig. 10 were obtained by using the detec-
tion model, which does not take into account previous or
subsequent frames. YOLOv8 also has the option to perform
tracking (using the BoT-SORT or ByteTrack algorithms).

Figure 11 compares the midpoint of the detected bound-
ing box between detection and tracking (with the default
BoT-SORT algorithm) for the same section of the video,
showing that there was little difference between the two
methods. There were two video frames for which no object
was detected with detection, while an object was found with
tracking. The absolute difference in the horizontal position
between tracking and detection was close to zero (a value
less than 0.000001) and the correlation between the tracked
and detected horizontal position was equal to 1 for both
videos (p < 0.0001). This indicates that the main differ-
ence between the tracker and the detector is that the tracker
adds an identifier for each object.

Detection accuracy for different pre-trainedmodel
sizes

When training a model for the detection of a specific object,
one typically starts with a pre-trained network, so that pro-
cessing of low-level features such as edges and corners does
not have to be trained from the images. Ultralytics offers
pre-trained models of various sizes: Nano, small, medium,
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Fig. 9 a Numbers of incorrect tool detections in two complete videos
that unseen during training for two of the models (based on 120 and
350 images). Because no bounding box annotations are available for

these videos, the data focuses on false positives and false negatives.
b–d Examples of the infrequent errors by the model trained on 120
images
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Fig. 10 Horizontal and vertical centre of the detected instrument across several video frames. The trace for the 120 images is shifted by one frame
to facilitate the comparison between the model trained on 120 and on 350 images

large and extra-large. So far, the nano model was used as the
pre-trained model. The advantage of the nano model is that
it trains quickly and is fast when used for processing images
and videos (inference), even when used on a PC without a
graphical processing unit.

mAP50:95 values on the validation set never reached
100%when trainedwith the nanomodel. To examinewhether
this is a limitation of the nano model, the small and medium
pre-trained models were used as the start of training, before
moving to largermodels depending onwhether improvement
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Fig. 11 Horizontal and vertical centre of the detected instrument across several video frames, comparing detection and tracking. The trace for the
detection data is shifted by one frame to facilitate the comparison between the models. Only the data for the model trained on 350 images are shown
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Fig. 12 mAP50 and mAP50:95 for models trained with the nano, small and medium pre-trained networks. The mAP scores are computed on the
corresponding validation sets for each number of overall images (i.e. 30 images for the set of 150 images and 70 images for the set of 350 images)

was found for these smaller models. A smaller (150 images)
and a larger (350 images) image set size was used during
training.

Figure 12 shows the development of the mAP scores over
the training epochs when starting with the nano, small or
medium pre-trained model. All models converged to similar
mAP scores during training.

There were no false positives for any of the models (nano,
small, medium; trained with 150 or 350 images). Figure 13a
shows that false negatives (failures to detect the instrument
when present) were infrequent (less than 1%) and occurred
less often when more images were used for training. There
was no significant interaction between the number of images
and the size of the pre-trained model on the number of false
negatives (χ2(2) < 0.0001, p > 0.99). There was a signifi-
cantmain effect of the number of images on the false negative
rate (χ2(1) = 25.7, p < 0.001). The main effect of the size of
the pre-trained model was not statistically significant (χ2(2)
= 1.74, p = 0.42).

Figure 13b shows that the overlap between the anno-
tated and the detected bounding box improved slightly when
a larger pre-trained model was used. There was a signif-
icant interaction between number of training images and
pre-trained model size on IoU (χ2(2) = 8.17, p = 0.017).
Both within 150 images (χ2(2) = 23.0, p = 0.000010) and
350 images (χ2(2) = 16.5, p = 0.00026), there was a signifi-
cant effect of the pre-trained model size on IoU. Within 150
images there was a significant difference between the nano
and the small model (χ2(1) = 19.3, p = 0.000011), but not

between the small and medium model (χ2(1) = 0.95, p =
0.33). Within the 350 images there was no significant differ-
ence between the nano and small model (χ2(1) = 0.1955, p
= 0.66), but there was a significant difference between the
small and medium model (χ2(1) = 14.4, p = 0.00014). The
differences in IoU between the various pre-trained models
were small (in the order of 1%). The extra training time and
stronger demands on computational resources for inference
for larger pre-trained models may therefore not pay off.

Earlier YOLO versions

Figure 14 shows that earlier versions of YOLO (versions 3
and 5) resulted in similar performance as the most recent ver-
sion when trained on 350 images and over sufficient epochs.
There was one false negative for YOLOv8, where there were
none for versions 3 and 5. At the same time there was
also a statistically significantly higher overlap between the
annotated and detected bounding boxes for YOLOv8 (IoU;
compared to version 3: χ2(1) = 21.7, p < 0.001, compared
to version 5: χ2(1) = 43.1, p < 0.001). YOLOv8 took less
time to train and use when trained than the other two mod-
els3 and the final model was also substantially smaller in
size.

3 The actual training time depends on the computational resources
available for training, specifically the type and number of GPUs. The
same holds for object detection with the trained model.
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Fig. 13 Comparison of the performance of the nano, small and medium models. Smaller models take less time to train and less time to use on new
images than larger models. In terms of accuracy of the detections, there is little difference between the three sizes of models

Different backgrounds

When the model trained on 350 images from inside the
surgical simulator was applied to the images from the six
other backgrounds, no false positives were observed (a tool

detected when there was none, across 190 images without a
tool, with a confidence threshold of 0.25). Figure 15a shows
that the original model failed to detect the tool in many of
the images with other backgrounds. Lower false negative
rates were found for the red, green and empty backgrounds.

(a) mAP across epochs
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Fig. 14 Comparisons of the performance of YOLOv3 (‘yolov3u’),
YOLOv5 (‘yolov5nu’) and YOLOv8 trained on 350 images. a mAP50
and mAP50:95 as a function of epoch (each training cycle in which the

model sees all images in the training set), based on the validation set
(70 images in this case). b, c False negatives and IoU values based on
396 images in which an instrument was present
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Compared to the best performing background (‘red cup’),
significantly higher false negative rates were found for the
gray cup (χ2(1) = 430.5, p < 0.001), the gray yarn (χ2(1) =
469.7, p < 0.001) and the yellow yarn (χ2(1) = 361.5, p <

0.001), but not for the green nails (χ2(1) = 1.59, p = 0.21)
or the empty background (χ2(1) = 0.23, p = 0.63).

Detections were, however, often away from the actual
position of the tool, as shown by the low IoU values in
Fig. 15b. Only the empty background showed a combina-
tion of a high IoU and a low false negative rate. Compared to
this empty background, significant differences in IoU were
found for the red cup (χ2(1) = 554.3, p < 0.001), green nails
(χ2(1) = 609.4, p < 0.001), yellow yarn (χ2(1) = 36.2, p <

0.001), gray yarn (χ2(1) = 75.4, p < 0.001) and the gray cup
(χ2(1) = 89.6, p < 0.001). For the red background the letters
on the cup often led to incorrect detections (Fig. 15c). For
the green background, the nails often caused to false posi-
tives (Fig. 15d). While the tooltip was often detected, it will
be difficult to tease these detections apart from detections of
the nails. The average IoU was computed over all detections,
which explains the relatively low average values (there were
many cases of zero overlap when a nail was detected as the
tooltip).

Training new backgrounds separately

To examine whether the problems with detections for other
backgrounds than the surgical simulator could be solved by
training specific models for each of the backgrounds, new
YOLOv8 detectors were trained on each of the subsets of
images (one model per background). All of the annotated
images were used, except the ones that did not contain the
instrument.

Figure 16 shows the results when the specificmodels were
applied to the images that it was trained on, plus the images
not containing the instrument. First of all, there were no false
positives (no instrument was detected when there was none).
Figure 16a shows that false negatives were infrequent, except
for the red background with the cup. Significantly higher
failed detection rates were found for the red cup than for the
green nails (χ2(1) = 83.2, p < 0.0001) and the yellow yarn
(χ2(1) = 49.2, p < 0.0001). Figure 16c shows that these
false negatives may be due to a low contrast between the
instrument shaft and the cup. Figure 16b shows that there
was a good, but not perfect overlap between the annotated
and detected bounding boxes for all backgrounds. Compared
to the empty background, all other contexts performed statis-
tically significantly worse (all p values< 0.001). Figure 16d
shows that after training the model specifically on the green
background images, the problem with the detections of nails
no longer occurred.

Training all backgrounds together

One solution to the problem of a model failing with new
backgrounds proved to be to train a new model for that spe-
cific background. If the background is not known in advance,
this may not be a feasible strategy. It was therefore examined
whether a singlemodel, trained on all backgrounds, performs
similarly well on images from all backgrounds.

Figure 17a shows a lower false negative rate for the red
cup context (χ2(1) = 99.4, p < 0.001) with a model trained
on all backgrounds, compared to models trained on each
background separately (no significant differenceswere found
for the other contexts). No false positives were observed.
Figure 17b shows that the IoU was high for all backgrounds.
No significant improvement in the IoU was found between
the separate models for each context and the combined
model across all contexts after Bonferroni correction (all
uncorrected p values > 0.023). Figure 17c and d show two
examples of a good detection with the model trained on all
backgrounds.

Subset of diverse backgrounds

To test whether good performance was maintained when
fewer training images of various backgrounds are used during
training, a model was trained on a subset of 360 images, 60
from each background, except from inside the surgical sim-
ulator. Figure 18 shows that this model performed fairly well
on all backgrounds, except for the surgical simulator box that
was not used during training. There were significantly more
false negatives compared to when 1893 images were used for
training for all contexts (all p values < 0.0011), except the
red cups (χ2(1) = 1.05, p = 0.31), but the difference in rates
was small. IoU values for the detections were highly similar
to those of the model trained on many more images (except
for the simulator environment that was not used for training).
Significant differences in IoU were found for the green nails
(χ2(1) = 27.2, p < 0.0001) and the simulator environment
(χ2(1) = 20163, p < 0.0001). This means that when expect-
ing a diverse background all backgrounds need to be used
for training the model, but large numbers of images are not
strictly needed.

Random number generator

Figure 19 shows the mAP50 and mAP50-95 as a function of
the number of images in the combined training and validation
set and the number of epochs for the different setting of the
random number generator. The curves for the 350 images
show a dip at around five epochs but continue towards a
maximumvalue afterwards. In contrast to the previous setting
of the random number generator (Fig. 8), all curves show
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Fig. 15 a-b False negatives and IoU for detected instruments for each of the other backgrounds for a model trained on 350 images inside the
surgical simulator box. c–d Examples of incorrect detections for two of the backgrounds
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Fig. 16 a-b False negatives and IoUs for detected instruments for each of the other backgrounds, for a model trained on the specific images with
this background. c Example where the model fails to detect the instrument. d Example of a successful detection in the presence of nails
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Fig. 17 (a–b) False negatives and IoUs for detected instruments for
each of the other backgrounds, for a model trained on images from all
backgrounds (including the original simulator box). Note that the scale

for (a) is adjusted to the low rates of false negatives. c Good detection
for the red background. d Good detection for the original setting

an increasing trend, with more training epochs needed for
smaller image set sizes.

When applied to the full set of annotated images, large
numbers of false negatives are now only seen for image set
sizes of 50 and 80 (Fig. 20a). False detection rates signifi-
cantly differed between image set sizes (χ2(1) = 3262.4, p <

0.0001). A significantly higher false negative rate was found
for 100 than for 120 images (χ2(1) = 131.8, p < 0.0001), but
not between 120 and 150 images (χ2(1)< 0.001, p = 0.999).
Significantly lower false negative rates were found for the
seed equal to 10 for 50, 80, and 100 images (p < 0.0001).
Significantly higher false negative rates were found for the
seed equal to 10 for 200 and 250 images (p < 0.0001). For
120, 150, 300 and 350 images, there was no significant dif-
ference in the false negative rates between the seeds (smallest
uncorrected p value = 0.047).

When the instrument was detected, the intersection over
union (IoU)was around 85%. Therewas a statistically signif-
icant effect of number of images on the IoU (χ2(1) = 124.6,
p < 0.0001). A significant difference between subsequent
numbers of images was found between 120 and 150 images

(χ2(1) = 6.43, p = 0.011) and between 200 and 250 images
(χ2(1) = 15.8, p < 0.0001), but not between other subse-
quent numbers of images. The IoU values for the seed equal
to 20 were similar to those for the seed equal to 10, but sig-
nificantly different IoU values were found for 300 images
(χ2(1) = 7.92, p = 0.005) and 350 images (χ2(1) = 20.6 p <

0.001). Together these results indicate that the poor perfor-
mance for the image set sizes of 200 and 250 previously were
due to the random assignment of images to the training and
validation sets of various sizes.

Other objects

Figure 21 shows the mAP50:90 rates for the three objects
from the bowl grasping data. Whereas the mAP50 rates
approached 1 for all three objects (data not shown), mAP50:95
rates stayed below 0.80 in almost all cases. This means that
even for a rigid object like the obstacle, the model was strug-
gling to fit a tight bounding box. These validation rates do not
tell the full story, because example validation images suggest
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Fig. 18 a–b False negatives and IoUs for detected instruments for
each of the backgrounds, for a model trained on 60 images from each
background, except the simulator background. c For the simulator back-

ground, which was not used for training, the holes in the simulator floor
were detected, but not the instrument itself

that for smaller sets of training images, themodel often failed
to detect the object (data not shown).

Figure 22 shows that false negative rates (failed detec-
tions) drop quickly for all three objects when increasing the
image set size to 100. There was a significant interaction
between type of object and number of training images on the
false negative rate (χ2(2) = 1120, p < 0.0001). Significantly
different false negative rates were found for each of the num-
ber of images (p values all< 0.0001), except for 350 images
(uncorrected p value = 0.025).

The intersection over union (IoU) for detected objects was
around 80% for bowls and obstacles and was relatively con-
stant over the image set size (no data point is shown for 50
images for the obstacle, because no obstacles were detected
for this image set size). The IoU for detected hands increased
with the image set size to a value lower than that for the bowl
and obstacle. These observations were reflected in a signifi-
cant interaction between object and number of images (χ2(2)
= 485.1, p < 0.0001). For all numbers of images, there were
statistically significant differences in the IoU between the
three objects (all p values< 0.0001). The IoU for the obstacle

and the bowl was only significantly different for 150 images
(χ2(1) = 13.4, p = 0.0002) and 300 images (χ2(1) = 13.5, p
= 0.00024). The IoU for the hands was always significantly
lower than for the bowl or obstacle (all p values < 0.0001).
The lower IoU for the hands may have been due to the more
variable shape of the hands compared to bowl and obstacle.

Together, these results suggest that 100 to 150 images
could be enough to train a model for the various objects (and
that detection is excellent, but localisation a bit worse). To
achieve more stable results image set sizes of 300 or 350
images are recommended.

Discussion

The present study examined the use of YOLOv8 (Jocher
et al., 2023) to detect objects in images and videos. A typ-
ical lab setting was chosen, where the same object is used
within the same context, recorded with the same camera and
under the same lighting conditions. Annotation of images
takes time and it is therefore important to know how many
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Fig. 19 mAP values for detecting the surgical instrument with a different setting of the random number generator for selecting the images for the
different image set sizes and splitting the images between training and validation

images are needed to train an object detector. The present
results suggest around 120 to 150 images suffice, but for reli-
able performance it is better to annotate 300 to 350 images.
Similar effects of the number of training images on detection
performance were also found for images of a bowl grasping
task. These results are in line with those by Li et al. (2018)
who used older versions of YOLO for playing card detec-
tion. Good detection of surgical instruments is also in line
with earlier work with older YOLO versions (Choi et al.,

2017, 2021; Wang et al., 2021) who typically used substan-
tially larger numbers of images (e.g. 1344 images of a grasper
in Wang et al., 2021).

The number of images available for training may depend
on how much video material is available to extract video
frames from. In the present study images were extracted
at intervals of around 10 s. If less video material is avail-
able a higher sampling rate may be needed, which may also
affect the similarity of the images (depending on how much
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Fig. 20 False negatives and IoUs for detected instruments per number of images in the combined training and validation sets for a different setting
of the random number generator
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Fig. 21 mAP50:95 values for the three objects from the bowl grasping data. As for the surgical tool, mAP50 rates approached 1 (data not shown),
but most mAP50:95 scores remained below 0.8

the scene changes over time). Future studies should look
closer into the role of sampling rate and image similarity, but
this may require extensive computing. As a rule of thumb,
researchers could start by annotating around 350 images and
increase this number if poor object detection is obtained.

Interestingly, for the initial simulation with the surgical
simulator box, performance dropped for intermediate num-
bers of images, contrasting the findings by Li et al. (2018)
who found a monotonically increasing relation between per-

formance and image set size. A second experiment was
therefore performed in which the setting of the random num-
ber generator was changed. This led to a different selection of
images for each image set size, and different splits between
training and validation sets. This showed that the drop for
intermediate numbers of images was an anomaly associated
with the sampling of the images. This was reinforced by the
results for the bowl study data, which also showed increasing
performance with increasing numbers of images.
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Fig. 22 False negatives and IoUs for detected objects per number of images in the combined training and validation sets
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More training epochs were needed when fewer images
were used (around 20) than for many images (fewer than
ten epochs). Li et al. (2018) suggest that a large number
of epochs could lead to overlearning (poor generalisation to
unseen images), but this did not occur until 1000 epochs in
their study. Training with YOLOv3, YOLOv5 and YOLOv8
for the present data already occurred within 30 epochs and
there were no signs of poor performance on unseen images.
The present data suggest that annotating additional images
may be the best use of time when the object detector does
not yet perform well, because it also means a reduction in
the number of epochs needed for training.

While detection of the approximate position of the tooltip
was almost perfect (the overlap between the annotated and
the detected bounding box was almost always higher than
50%), detecting the exact position of the tooltip remained a
problem for all models (the mAP50:95 score never reached
near-perfect levels and average IoU levelswere around 80%).
Some smoothing of traces of the position of the tooltip may
therefore be needed. The issuemay in part lie with annotation
of the tooltip and the variability of the shape in the image due
to rotation of the instrument and the opening and closing of
the tooltip. Pose estimation may be a better option in this
particular instance (Chen et al., 2020), in which the position
of the end of the instrument, the edge of the black shaft and
a specific point on the shaft may be used as landmarks. Pose
estimation may be better at detecting the centre and the edge
of the instrument than object detection.

The confidence provided by the model agreed fairly well
with the overlap between the annotated and the predicted
bounding box, although it must be said that the overlap
between bounding boxes tended to be high overall, and so
was confidence. Some more examples of low overlap will
be needed to establish a firm association. There were some
instances with a high overlap but low confidence and vice
versa, so it might be too early to say that confidence can be
used to predict overlap when no annotation is available.

The overlap between the annotated and predicted bound-
ing box was only weakly influenced by the position of the
instrument in the image. When the image of the object was
smaller (i.e. it was further away from the camera), there was
more variability in the overlap between the annotated and
detected bounding boxes. This observation agrees with pre-
vious studies that indicate that YOLO tends to performworse
with smaller objects in the image (e.g. Pham et al.; He et al.,
2020; 2021).

Detection performance did not depend strongly on the pre-
trained model (nano, small or medium) or the YOLO version
(v3, v5, or v8). Training was fastest for the nano YOLOv8
model, so it is recommended to start with this model. Note
that the larger two models (the large and extra-large mod-

els) were not tested, and it can therefore not be excluded
that performance would have improved for those two mod-
els compared to the smaller models. Such testing is expected
to benefit from better GPU hardware and is therefore some-
thing to consider in future research.

On unseen similar videos the model performed well. The
most frequent error was a false negative: No instrument was
detected while it was in the display. This error most fre-
quently happened when the tool tip was partially occluded
by some of the beads, which is also a known issue for YOLO
(e.g. Li et al., 2020;Yu et al., 2022).When there are few failed
detections, the position of the target object may be estimated
from the position in the frames before and after the frame(s)
with the missing values, unless large displacements of the
target object can be expected.

Themodel transfers poorly to the same toolwithin a differ-
ent background. This is also a known issue for YOLO (e.g. Li
et al., 2022; Pham et al., 2020). This implies that YOLO not
only focuses on the target object, but also on how the target
object differs in its features from the background. A straight-
forward way to deal with a change in backgrounds is to train
a new model with that new background. If multiple back-
grounds are expected, the present results show that a training
set should include the expected backgrounds. If annotation
of additional images is not possible, data augmentation can
be considered in which the original images are transformed
to create additional training images using rotation, cropping,
or applying filters to the images (e.g. Chung et al., 2020) or
by generating additional training images using GANs (e.g.
Dewi et al., 2021).

Similar effects of the number of training images and sim-
ilar performance as for the surgical tool detection was found
with low resolution images of a bowl transport task. These
results indicate that YOLOv8 handles low resolution images
well, and can deal with transparent objects (the bowl) and
objects that change shape (hands).

Conclusion

The present results indicate that excellent object detection
can be achieved with a small set of training images. The ease
of use of YOLOv8 (Jocher et al., 2023) is likely to mean
a paradigm shift in behavioural studies that require video
annotation, such as mobile eye tracking studies and studies
of object handling.When changing the object or the lab back-
ground, it is important to train a new object detector, because
performance can be strongly affected. When expecting mul-
tiple lab backgrounds, it is important to train a model with
examples of all expected backgrounds. The present results
do not automatically extend to other computer vision tasks,
such as image segmentation and pose estimation. Future
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studies should examine those tasks separately, but can use
the paradigm presented in the present study.
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