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Abstract
Remote photoplethysmography (rPPG) is a low-cost technique to measure physiological parameters such as heart rate by 
analyzing videos of a person. There has been growing attention to this technique due to the increased possibilities and demand 
for running psychological experiments on online platforms. Technological advancements in commercially available cameras 
and video processing algorithms have led to significant progress in this field. However, despite these advancements, past 
research indicates that suboptimal video recording conditions can severely compromise the accuracy of rPPG. In this study, 
we aimed to develop an open-source rPPG methodology and test its performance on videos collected via an online platform, 
without control of the hardware of the participants and the contextual variables, such as illumination, distance, and motion. 
Across two experiments, we compared the results of the rPPG extraction methodology to a validated dataset used for rPPG 
testing. Furthermore, we then collected 231 online video recordings and compared the results of the rPPG extraction to 
finger pulse oximeter data acquired with a validated mobile heart rate application. Results indicated that the rPPG algorithm 
was highly accurate, showing a significant degree of convergence with both datasets thus providing an improved tool for 
recording and analyzing heart rate in online experiments.
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Introduction

Remote photoplethysmography (rPPG) is a method that 
utilizes video recordings to collect physiological parameters 
– such as heart rate, respiration rate, and oxygenation 
– remotely through light variations on the skin surface (van 
der Kooij and Naber 2019). rPPG is based on the concept 
that heartbeat pulsations produce changes in skin blood 
perfusion and that such changes can be measured through 
variations in luminosity (Hertzman,  1937). Using this 
principle, Verkruysse, Svaasand et al. (2008) demonstrated 
that heart rate measurements could also be achieved 
through the remote detection of normal light variations 
on the skin with consumer cameras. In this case, rPPG 
works via a process called photo-amplification, or Eulerian 
video magnification, able to remotely detect and enhance 
variations in the reflected colors of the skin that are caused 
by changes in capillary tissue movement (Wu et al., 2012, 
Kamshilin, Nippolainen et al. 2015).

Several open-source implementations of this technology 
exist and are freely available in code repositories (McDuff 
and Blackford 2019; van der Kooij and Naber 2019; 
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Boccignone et  al., 2020). However, rPPG’s accuracy 
depends on specific setup requirements, including camera 
specifications, illumination, video encoding, facial 
movements, and the general setting (e.g., a constant neutral 
background). Suboptimal conditions may severely impair 
the possibility of using rPPG techniques in out-of-lab 
environments, such as during online data collection, where 
researchers cannot control the setting beforehand, the 
illumination, or the hardware used by the participants. While 
several video databases for rPPG benchmarking are openly 
available (Soleymani, Lichtenauer et al. 2012, Stricker et al., 
2014, Heusch et al., 2017, Bobbia, Macwan et al. 2019), 
finding a way to include rPPG in online experiments could 
provide researchers with a tool that can be deployed to 
collect physiological parameters remotely, fostering large-
scale psychophysiological data collections outside the lab.

Since several initial studies, subsequent research has con-
centrated on increasing rPPG resilience to various types of 
interference, such as video noise, participant movement, and 
lighting conditions (for reviews, see (McDuff, Estepp et al. 
2015, Sun and Thakor 2016, Rouast, Adam et al. 2018, Sinhal 
et al., 2020). Nonetheless, thus far, no extant literature has 
empirically validated the efficacy of rPPG algorithms under 
arguably one of the most challenging data acquisition condi-
tions – namely, video recordings self-generated by participants 
via web browsers in environments devoid of experimental 
control. While a recent study utilized the rPPG methodology 
described in this paper to analyze webcam videos collected 
online, identifying a relationship between interoceptive heart 
rate detection abilities and political preferences (Ruisch, Mohr 
et al. 2023), it remains unclear whether rPPG has the sensi-
tivity to accurately detect heart rate from low-quality videos 
recorded using pre-set JavaScript-based browser software.

For these reasons, we set out to test a modified rPPG 
algorithm along with a collection and pre-processing pipe-
line able to extract rPPG data from noisy videos recorded 
via an online platform. The solution presented tests subop-
timal conditions that usually impair common rPPG algo-
rithms’ ability to extract reliable data when illumination, 
framing, background, and movements are not controlled 
for. Moreover, the presented solution can work with basic 
software requirements, needing only a web browser, with-
out the necessity to control participants’ hardware (e.g., PC 
and webcam), and with very short video recordings (starting 
from 25 s) if minimum frames per seconds parameters are 
met. Taken together, these improvements constitute a very 
flexible and powerful tool that can easily be deployed in 
online data collections, allowing researchers to record and 
utilize physiological measures in large-scale online experi-
ments and psychophysiological paradigms.

In two studies, we will demonstrate rPPG extraction 
merged with an online experimental platform that allows 
the recording of participants’ heart rate despite the limited 

control over the context and the setup. In study 1, we first 
compared the results of a modified open-source rPPG extrac-
tion algorithm (van der Kooij and Naber 2019) to a vali-
dated dataset (CohFace) used for rPPG testing, assessing 
the convergence of the rPPG algorithm results versus blood-
volume pulse (BVP) data collected directly with a sensor 
from Thought Technologies (for further details see Heusch 
et al. (2017)). In the second study, we collected 231 online 
video recordings of 18 participants and we compared the 
results of the rPPG extraction against finger pulse oximeter 
data, collected with a validated mobile heart rate applica-
tion (Losa-Iglesias, Becerro-de-Bengoa-Vallejo et al. 2016).

Methods

Study 1: CohFace dataset

Stimuli

We tested the rPPG algorithm on the CohFace video data-
set (Heusch, Anjos et al. 2017) because the video proper-
ties and light conditions most closely match those of the 
videos recorded in Study 2. The CohFace dataset includes 
164 videos from 40 individuals. The average subject age is 
35.6 years old, with a standard deviation of 11.47 years. The 
gender of the participants was 12 women (30%) and 28 men 
(70%). Each face is recorded with a Logitech HD Webcam 
C525, at a resolution of 640 × 480 and a frame rate of 20 
FPS, for a duration of 60 s. At the same time, blood-volume 
pulse (BVP) and respiration were also recorded, with a sen-
sor from Thought Technologies (BBVP model SA 9308M); 
for more information, see (Heusch, Anjos et al. 2017). More-
over, each participant was recorded in two different lighting 
conditions: (1) studio quality (that is, closed blinds, mini-
mizing natural light, with extra light from a spot to keep the 
face of the subject well illuminated); (2) with natural light 
(artificial lights were turned off and the blinds were opened).

Analysis

As a first step, we extracted the real number of heartbeats 
from the BVP trace. To this aim, Heusch and Marcel report 
using a simple peak-detector available as free software. 
However, visual inspection showed that several BVP traces 
presented slow-frequency and/or high-frequency noise. 
For this reason, first, we normalized the data by applying 
the MATLAB normalize function. BVP signals were then 
detrended and filtered with the smoothdata function using a 
moving window (set at 50). Only then did we use the find-
peaks function, with a minimum peak distance of 450 ms. 
Visual inspection showed that this procedure was effec-
tive in reliably detecting BVP peaks in most cases with the 
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exception of 12 BVP traces. These, and the relative videos, 
were excluded from further analysis resulting in a final sam-
ple of N = 152 videos.

Data cleaning

All the videos were processed with our rPPG algorithm. As 
a first step, we removed videos for which the rPPG HR could 
not be computed because the computer vision toolbox could 
not recognize a face (ten videos removed), possibly due to a 
horizontal luminance gradient caused by light coming from 
the side. All videos had a frame rate higher than 19.9, which, 
as a rule of thumb, and based on previous experiences, is 
the absolute minimum for rPPG. Therefore, no video had 
to be removed due to a low frame rate. We removed all 
videos for which the real HR (0 videos) or the rPPG HR 
(one video) was lower than 50 or higher than 120 beats per 
minute (BPM). Finally, we used the r boxplot function to 
detect and remove outliers, defined as the values outside the 
interquartile range, both for the Real HR and the rPPG HR. 
No outliers were found with this method. This process left 
us with a total of 141 videos from 39 different participants 
for the final analysis.

rPPG extraction

Analyses of the videos were conducted in MATLAB. Most 
analysis steps are described in detail by van der Kooij 
and Naber (2019) but some modifications were made to 
improve the accuracy of the rPPG algorithm or to speed up 
the analysis process. Figure 1 highlights the most relevant 
analysis steps of the rPPG algorithm. The first step con-
sists of the detection of the face in the first frame using the 
computer vision toolbox cascade object detector that uses a 

Viola–Jones algorithm trained on the FrontalFaceLBP data-
set (Lienhart, Kuranov et al. 2003). As face detection is a 
computationally demanding procedure, we decided to effi-
ciently track features within the face rather than redetecting 
the face in each frame. As such, we detected unique feature 
points in the face that consisted of corner points as detected 
with a minimum eigenvalue algorithm (Jianbo Shi and 
Tomasi 1994). These features were tracked in the following 
frames using the computer vision toolbox point tracker that 
uses the Kanade–Lucas–Tomasi algorithm (KLT; (Lucas and 
Kanade 1981; Tomasi and Kanade 1991). In contrast to the 
relatively slow color-based skin detection method described 
in van der Kooij and Naber (2019), we used a rough template 
of a face to more swiftly localize skin areas above and below 
the eyes. The template was adjusted in size and rotated in 
2D space depending on the spatial orientation of the tracked 
features per frame. The average RGB values across all skin 
pixels was stored per frame, resulting in a 3 (RGB color 
channels) by n (number of frames) matrix as input for the 
rPPG analysis. To roughly equalize data power and ease 
comparison across subjects, which depends on the frame 
rate and differed across videos, this array was resampled to 
60 Hz (maximum possible frame rate in the online videos 
and CohFace dataset) using MATLAB’s pchip interpolation 
method for all videos. Next, each color channel was band-
pass filtered using a Butterworth filter (0.75–2.75 Hz; 6th 
order). We then dimension-reduced the RGB array, initially 
representing changes in average 3D RGB color space, to a 
single array, eventually representing only heart-beat-related 
fluctuations, using the plane-orthogonal-to-skin algorithm 
(POS; Wang, Li et al. 2022)) with a sliding window size of 
1.6 s. This final array was converted to the frequency domain 
using a time–frequency analysis based on Lomb–Scargle 
periodogram calculations per sliding window of 10 s with 

Fig. 1  On the left, a snapshot of the RPPG algorithm’s detection of the face location (yellow square), unique features to track head rotations 
(white crosses), and a skin mask placed on top of the face depending on head rotations. It shows, on the right, the results of a time–frequency 
analysis with time in seconds on the x-axis and heart rate in beats per minute on the y-axis. Brighter colors indicate higher signal power. The 
overlain time traces indicate functions representing heart rate based on maximum power values of a raw (green, dotted) or smoothed (blue, 
dashed) function, or based on SNR-weighted power values (white, solid). All results presented in this work are based on the heart rate estimated 
by the smoothed function
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a temporal resolution of 240 points and frequency resolu-
tion of 120 points. The resulting power density functions, 
represented in a 2D (240 by 120) data array, were converted 
to signal-to-noise ratios (i.e., SNR; also termed coherence) 
per time point by dividing each power value by the sum 
of all absolute power values. Only the frequencies with the 
5th percentile largest SNR values were selected to calculate 
heart rate. The final rPPG HR measure was based on the 
SNR-weighted average of frequencies. In noisy videos, the 
frequency with the strongest power in the time-frequency 
analysis could vary suddenly from frame to frame. As such, 
we applied a smoothed fit to the peak powers across time to 
reduce distortions by spurious changes in frequencies with 
high powers.

Accuracy

First, we checked whether our variables of interest were 
normally distributed by visual inspection of Quantile-
Quantile Plots (Q-Q plots, which compare two probability 
distributions by plotting their quantiles against each other), 
Skewness (that is, the symmetry of the data) and Kurtosis 
(that is, whether the data are heavy-tailed, or light-tailed). 
Furthermore, we performed two separate Shapiro–Wilk 
tests of normality, one for True HR and one for rPPG HR. 
Because data were not normally distributed, we used non-
parametric tests.

To test the convergence of the HR as measured with the 
rPPG, we compared the rPPG HR to the ground truth (i.e., 
BVP-based HR), from now on referred to as True HR. To 
this end, first, we performed a Spearman correlation between 
True HR and rPPG HR.

As a second step, we tested whether the rPPG HR dif-
fered from the True HR using estimation statistics (based 
on the median difference (Mediff), given that the data were 
non-normally distributed) to estimate differences across 
measures analysis (bootstrapped Spearman correlation and 
estimation statistics) on the averaged HR scores.

Study 2: Online validation

Participants

Eighteen participants took part in the study. One participant 
was removed from further analysis due to the extremely poor 
quality of the video recordings, leaving a total of 17 partici-
pants and 204 videos in the final dataset (11 females, six 
males,  Mage = 33.11, SD = 14.34). Given that in Study 1 we 
applied rPPG extraction to all videos in the CohFace data-
base, in Study 2 we aimed to obtain a dataset of a size com-
parable to the CohFace database. All participants provided 
written informed consent before participation. The study was 

approved by the Department of Psychology Ethics Commit-
tee at Royal Holloway University of London.

Procedure, video collection, and conversion

Participants were invited to perform an online experiment 
hosted on Gorilla Platform (https:// goril la. sc/). After sign-
ing the online consent forms, participants were instructed to 
download a validated (Losa-Iglesias, Becerro-de-Bengoa-
Vallejo et al. 2016) mobile application to record their finger 
pulse heart rate (Heart Rate Plus App, version downloaded 
07/2020 – https:// play. google. com/ store/ apps/ detai ls? id= 
com. dunge lin. heart rate). This application is used as a bench-
mark for the actual number of heartbeats (i.e., App HR). 
Participants were also instructed to activate the webcam and 
to i) sit in a well-illuminated room with natural light, ii) sit 
as still as possible during the recordings, iii) face the camera 
and sit close to the camera, iv) avoid any shadows on the 
face, v) avoid covering any part of the face (e.g., by wearing 
a mask, by hair or touching the face).

After the instruction, we used Gorilla’s beta video record-
ing zone functionality to activate the webcam of the partici-
pants and to record videos of their faces. We recorded three 
videos with different durations (25, 35, and 45 s long) for 
each participant’s session. Participants were informed when 
the video recording started with an audio cue (i.e., a 200-ms 
beep). During the recording, they were instructed to look at a 
fixation cross displayed on a screen. Immediately after each 
recording interval, participants were instructed to measure 
their heart rate via the mobile phone application and to man-
ually write in a text field the actual heart rate, which served 
as a control measure for the rPPG HR estimate. Participants 
were asked to repeat the experiment approximately seven 
times on separate days with at least a day in between, result-
ing in multiple video recordings for each participant. A total 
of 213 online video recordings were collected. The number 
of videos varied per participant as some did not complete 
the total of eight requested sessions. As such, some par-
ticipated once (thus contributing with three videos), while 
others participated up to eight times (thus contributing with 
24 videos). A total of 71 sessions were concluded and each 
participant finished 3.9 times (SD = 2.6) on average.

Heart rate measured via mobile application (App HR) 
immediately after each video recording provided a control 
measure for the rPPG HR estimate. We selected a mobile 
application with cross-platform availability, high reliability, 
high concurrent validity, and high consistency compared to 
a finger pulse oximeter (intraclass correlation (ICC), used to 
determine reliability between trials when using each system, 
pulse oximeter and App; ICC > 0.93; coefficients of varia-
tion of method errors (CVME), calculated for the absolute 
comparison of parameters; CVME = 1.66−4.06% (Losa-
Iglesias, Becerro-de-Bengoa-Vallejo et al. 2016).

https://gorilla.sc/
https://play.google.com/store/apps/details?id=com.dungelin.heartrate
https://play.google.com/store/apps/details?id=com.dungelin.heartrate
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We converted the videos (resolution: 640 by 480 pixels) 
from Gorilla native video settings VP80 or VP90 codec and 
webm format to .mp4. For the conversion, we used Hand-
Brake (https:// handb rake. fr/) with the following parameters: 
Production Max, Quality Lossless (Placebo). All other pre-
set parameters were left as they were. These conversion 
parameters created best-quality videos that allowed accu-
rate frame-by-frame processing in MATLAB for the rPPG 
extraction.

Analysis

Data cleaning As a first step, we removed videos for which 
the App HR control measure was missing. This could hap-
pen either because participants did not correctly input the 
App HR values (seven videos removed), or because of a sys-
tem failure which resulted in the behavioral data not being 
uploaded to the Gorilla platform (three videos removed).

Some videos could not be processed because the com-
puter vision toolbox could not detect a face. As a result, 
for these videos, we could not compute the rPPG HR and 
they were removed from further analysis (five videos were 
removed). We then removed all videos with a frame rate 
lower than 20 frames per second (FPS; 24 videos removed). 
Thirdly, we removed all videos for which the HR as meas-
ured either with the mobile app or with the rPPG was lower 
than 50 or higher than 120 beats per minute (BPM), assum-
ing that the parameters extraction failed (six videos were 
removed because the App HR was not in this range). Finally, 
we used the r boxplot function to detect and remove outliers, 
defined as the values outside the interquartile range, both for 
the App HR (two videos removed) and rPPG HR (six videos 
removed). This process left us with a total of 151 videos 
from 15 different participants (nine females, six males) for 
the final analysis (see Fig. 2).

rPPG extraction Analyses of the videos were conducted in 
the same way as for Study 1.

Accuracy First, we checked whether our variables of interest 
were normally distributed in the same fashion as for Study 1 
by performing two separate Shapiro–Wilk tests of normality, 
one for App HR and one for rPPG HR. The analysis showed 
that data were normally distributed (see results), therefore 
we used parametric tests.

In order to test the accuracy of rPPG on our wild video 
dataset, we compared the rPPG HR to the App HR by per-
forming a Pearson correlation.

Second, we calculated to what degree the rPPG HR dif-
fered from the App HR. To this end, we used estimation 
statistics based on confidence intervals (CIs) and repre-
sented with Cumming estimation plots (Cumming 2014, Ho, 
Tumkaya et al. 2019). We used the mean difference for two 

comparisons, shown with Cumming estimation plots. These 
plots show the raw data for each condition and the paired 
difference with 95% bias-corrected accelerated confidence 
interval based on 5000 bootstrap samples. Paired differences 
across measures were estimated based on mean difference 
 (Mdiff), given that the data were normally distributed. Infer-
ence was based on the inspection of the estimated difference 
across conditions and the precision of such estimate (i.e., 
length of the CI): in accordance with previous works using 
this approach (Benassi, Frattini et al. 2021). CIs fully over-
lapping with 0 were interpreted as indicative of no evidence 
of difference between measures; CIs not overlapping with 0 
were interpreted as indicative of weak, moderate, or strong 
evidence of difference between measures based on the size 
of the estimated difference and its precision, as the longer 
the CI, the weaker evidence there is (Cumming 2014, Calin-
Jageman and Cumming 2019).

These statistics were computed using the web applica-
tion available at: https:// www. estim ation stats. com/. Previ-
ous studies showed that the accuracy of the HR as recorded 
via rPPG also depends on the duration of the video ana-
lyzed (van der Kooij and Naber 2019). In that work, as more 
frames were added to the rPPG analysis, the more the corre-
lation between the rPPG HR and the ground truth increased. 
In the present work, each experimental session comprised 
three video recordings: 25s, 35s, and 45s, hence, each video 
is composed of a different number of frames (the shorter the 
duration, the smaller number of frames). Thus, one could 
speculate that longer videos would provide more reliable 
estimates. Therefore, to compensate for possible fluctua-
tion in the shorter videos collected, we averaged the HR 
calculated from the three videos aiming at increasing the 

Fig. 2   On the x-axis, the percentage of videos per participant, on the 
y-axis, the total number of videos in the dataset after the data clean-
ing procedure. The labels inside the bars show the total number of 
videos per participant (these were collected in different sessions span-
ning several days), and also the sum of all videos

https://handbrake.fr/
https://www.estimationstats.com/
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correlation between the App HR and the rPPG HR. To test 
whether this is the case, we averaged the HR per each exper-
imental session. Then, we repeated the previous analysis 
(bootstrapped Spearman correlation and estimation statis-
tics) on the averaged HR scores.

Results

Study 1: CohFace dataset

Accuracy

Visual inspection of Q-Q plots and distribution plots showed 
that the data were not normally distributed. This was further 
confirmed by the Shapiro–Wilk tests of normality (True HR, 
p < 0.001, rPPG HR, p = 0.09). A bootstrapped Spearman 
correlation revealed a strong, positive correlation between 
True HR (IQR = 19.35, SD = 10.67) and rPPG HR (IQR = 
10.43, SD = 7.12), which was statistically significant (see 
Fig. 3;  rs = 0.752, BCa 95% CI [– 0.642, 0.829], p < 0.001, 
see Fig. 3A). The paired median difference between True 
HR and rPPG HR is – 0.412 [95.0% CI – 0.335, 0.917]. This 
indicates that there was only a small difference between the 
real heart rate and heart rate scores extracted with the rPPG 
algorithm (see Fig. 3B, C).

The bootstrapped Spearman correlation performed on the 
HR averaged across all videos per participant (N partici-
pants = 39, average videos per participant = 3.6, SD = 1.1) 
revealed a strong, positive correlation between Mean True 
HR (mean = 70.59, SD = 11.17) and mean rPPG HR (mean 
= 69.56, SD = 6.15), which was statistically significant (see 

Fig. 4A, B);  rs = 0.873, BCa 95% CI [0.713, 0.935], p < 
0.001). This indicates that recording multiple videos of the 
same participant substantially improves rPPG’s convergence.

The paired median difference between the average True 
HR (IQR = 20.63) and average rPPG HR (IQR = 8.70) is 
0.429 [95.0% CI – 1.23, 1.36] (see Fig. 4C). In this case, 
averaging the videos did not improve the convergence of 
the rPPG as compared to the paired median HR difference 
of the non-averaged videos. Nonetheless, in both cases, the 
difference between the true HR and the rPPG HR scores 
was small.

Study 2: online validation

Accuracy

Visual inspection of Q-Q plots and distribution plots showed 
that the data were normally distributed. This was further 
confirmed by the Shapiro–Wilk tests of normality (APP HR, 
p = 0.72, and rPPG HR, p = 0.15).

A bootstrapped Pearson correlation revealed a strong, 
positive correlation between App HR (across all sessions 
and conditions, 25, 35, and 45 s, mean = 72.83, SD = 8.34) 
and rPPG HR (mean = 70.27, SD = 6.22), which was sta-
tistically significant (r = 0.578, BCa 95% CI [0.386, 0.696], 
p < 0.001, see Fig. 5. For the analyses on the individual 
conditions, see Supplementary Material).

When pooling all duration conditions, the paired mean 
difference between App HR and rPPG HR was – 2.56 (mean 
absolute error (MAE) = 5.50, [95.0% CI – 3.56, – 1.41], see 
Fig. 6A, B). This indicates that there was evidence of a mod-
erate difference between heart rate scores as measured with 
the App and HR scores extracted with the rPPG algorithm. 

Fig. 3  In the figure, hearts represent the true HR; webcams represent the rPPG HR. A The relation between the True HR and the rPPG HR; B box-
plots for each condition with each paired set of observations connected by a line; C the paired median difference between the True HR and rPPG HR
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Fig. 4  A The relation between the True HR averaged per participant and the rPPG HR; B boxplots for each condition with each paired set of 
observations connected by a line; C the paired median difference between the True HR and rPPG HR averaged per participant

Fig. 5  Relationship between the HR as measured with the Phone App and the HR calculated with the rPPG across all experimental sessions and 
all conditions (25, 35, and 45 s; for the analyses on the individual conditions see Supplementary Materials). A The relation between the two vari-
ables in all different timing conditions. B, C, and D The same relationship but for each condition separately (25, 35, and 45 s, respectively)
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This difference means that rPPG underestimates HR with 
respect to the App HR, however, this difference is relatively 
small (5.56 heartbeats).

Next, we checked whether averaging the HR calculated 
across the three duration conditions (25, 35, 45 s), per 
session (N = 55), would increase the correlation between 
the App HR and the rPPG HR. The bootstrapped Pearson 
correlation revealed a strong, positive correlation between 
Mean App HR (mean = 72.98, SD = 7.55) and mean rPPG 

HR (mean = 70.44, SD = 5.85), which was statistically 
significant (see Fig. 7A; rs = 0.752, BCa 95% CI [– 0.610, 
0.838], p < 0.001). Notably, the correlation coefficient is 
higher than the one for the non-averaged conditions, which 
seems to support the prediction that combining the rPPG 
HR for the three conditions would increase the accuracy 
of the estimated HR. However, the paired mean difference 
between the average App HR and average rPPG HR was 
– 2.54, MAE = 4.34, [95.0% CI – 3.81, – 1.18], indicating 

Fig. 6  The paired median difference between App HR and rPPG HR with a Gardner–Altman estimation plot. The left figure shows boxplots for 
each condition and each paired set of observations is connected by a line. The right figure shows the paired mean difference between the two 
conditions: the median difference is depicted as a dot; the 95% confidence interval is indicated by the ends of the vertical error bar 

Fig. 7   A The relation between the HR averaged per condition (25, 35, 45 s) and per session, as measured with the Phone App and the rPPG HR; 
B boxplots for each condition with each paired set of observations connected by a line; C the paired mean difference between App HR and rPPG 
HR averaged per session
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no improvement as compared to the – 2.56 mean differ-
ence for the non-averaged conditions (see Fig. 7B and  C).

Discussion

The aim of this study was to demonstrate the functionality 
of a newly developed rPPG extraction algorithm to measure 
the heart rate via webcam, with a particular interest in its 
applicability to online studies.

We have conducted two experiments to demonstrate: (1) 
how the algorithm performed on an already validated data-
set (CohFace) used for rPPG testing (Heusch et al., 2017), 
and (2) how the algorithm performed on videos recorded 
via an online platform, with little control over the environ-
mental context and hardware setup of the participants being 
recorded, compared to a validated mobile heart rate applica-
tion (Losa-Iglesias, Becerro-de-Bengoa-Vallejo et al. 2016).

Results from Study (1) show a high correlation between 
the rPPG heart rate and the true heart rate (r > 0.75), and no 
evidence of a difference between the two measures. Results 
from study (2) show that the HR extracted with our rPPG 
algorithm correlates (r = 0.58) with the HR recorded via a 
validated mobile application. However, there was also evi-
dence of a difference between the two measures, with the 
rPPG underestimating the HR, but the average difference 
was relatively small (2.56 heartbeats).

The significance of our study lies in its ability to measure 
heart rate accurately through remote photoplethysmography 
(rPPG) in uncontrolled, online environments. In fact, to the 
best of our knowledge, this is the first study that tested the 
accuracy of a rPPG algorithm on videos collected in the 
wild, that is, with no control over several important vari-
ables, such as the webcam used by the participants, the 
luminosity of the room, the distance from the screen and 
participant motion, to mention a few. Despite this lack of 
control, the rPPG algorithm showed a high level of accuracy, 
making it a promising tool for remotely recording physiolog-
ical measures. Our results have immediate and far-reaching 
implications for psychological and physiological research 
conducted online, a modality that has gained particular 
importance in the past years and due to the push for more 
inclusive and diverse research samples, which can be only 
reached via online sampling methods. The application of 
our rPPG online methodology in Ruisch, Mohr et al. (2023) 
explored the connection between inner bodily perception 
(i.e., interoception) and political ideology, underscoring the 
utility of our methodology in diverse fields. By offering a 
method to accurately measure heart rate online, our study 
expands the possibilities for researching physiological cor-
relates of cognitive, social, and political phenomena in large 
and diverse samples. Among other things, this opens the 
possibility of expanding the field of interoceptive research, 

which has traditionally been confined to laboratory settings. 
By utilizing our rPPG methodology, researchers can explore 
various pertinent questions using large samples collected 
online, ranging from understanding the emotional states of 
other people (Arslanova, Galvez-Pol et al. 2022) to deploy-
ments of large online interoceptive assessments in healthy 
(Legrand, Nikolova et al. 2022)  and clinical populations (Di 
Lernia et al., 2019).

As noted by Rouast, Adam et al. (2018), rPPG meth-
ods have evolved significantly in the last decade, provid-
ing a range of modular approaches. Our work adds to this 
by offering a novel methodology designed specifically for 
uncontrolled, online environments. This makes our experi-
mental pipeline particularly adaptable for researchers who 
need reliable rPPG data in diverse contexts. Moreover, our 
methodology addresses some of the common rPPG issues 
by delivering highly accurate heart rate measurements even 
when the recording conditions are less than ideal, partially 
tackling one of the critical barriers in achieving Sinhal's 
objective AAA (anyone, anywhere, and anytime) for vital 
sign detection (Sinhal et al., 2020), thus enabling broader 
and more inclusive research.

However, our work presents different limitations. An 
important aspect that can be observed from our data is that 
there is some degree of variation in the accuracy of the 
rPPG. Several factors may account for this variation, and 
it is reasonable to speculate that the most important is the 
overall quality of the video (e.g., frame rate, illumination, 
resolution, image background, and distance to camera). In 
this regard, as the resolution (and frame rate) cannot be opti-
mized post hoc, any artificial spatiotemporal up sampling 
would add data points that reflect average or interpolated 
values of the original data. Therefore, optimization can only 
be accomplished before data collection (e.g., see Sinhal et al. 
(2020)), for example by instructing participants to use good 
lighting conditions to maximize framerate. Current online 
platforms for webcam-based video collection further limit 
screen resolutions, although it is currently unclear whether 
and how resolution may influence the rPPG’s signal-to-noise 
ratios. Notwithstanding, it is known that uneven illumina-
tion and oversaturation from a light source orthogonal to 
the participant’s face and the fluctuating light of the moni-
tor reflection increase movement artefacts and reduce the 
performance of rPPG algorithms (e.g., Moço, Stuijk et al. 
(2016), Gudi, Bittner et al. (2020).

Another important factor is the level of physiological 
arousal when starting the experiment. It is likely that the 
algorithm’s performance is lower with high HR variability 
(van der Kooij and Naber 2019) because it is harder to accu-
rately measure an unstable HR. Therefore, if participants 
engaged in an activity that increased their HR before taking 
part in the experiment, it could potentially decrease the accu-
racy of the rPPG algorithm. This observation is supported 
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by visual inspection of the data (see Fig. 4A, B), which indi-
cates higher estimation errors for lower and higher heart 
rates (particularly below 60 and above 90). Consequently, 
experimenters should take extra care when using rPPG in 
online experiments. It is particularly important to provide 
participants with clear instructions to minimize such arte-
facts and increase the quality of the video recordings and, 
therefore, the performance of the rPPG algorithm. In this 
regard, the development of a web-based feedback procedure 
on the positioning and illumination of the participants’ faces 
would be a welcome feature in future online experiments. 
Meanwhile, this evidence suggests that caution is particu-
larly warranted when interpreting low and high estimated 
heart rates (< 60 & > 90) as our experiment suggests that 
these are more likely to be biased. For these estimated val-
ues, it is recommended to visually inspect the video record-
ings to check their quality and, also, to examine the power 
spectrum and the signal-to-noise ratio measure outputs pro-
vided by the algorithm to evaluate the plausibility of the 
estimated HR. Moreover, it must be noted that previous stud-
ies showed that rPPG performance drops significantly with 
darker skin tones (for a review, see Nowara et al. (2020)). 
As the CohFace dataset contains not enough diversity in 
the subject’s skin tone, a limitation of the present study is 
that we could not compare the accuracy of the algorithm on 
brighter versus darker skin tones. This limits the applicabil-
ity of this tool for online testing, although it is important to 
mention that recent developments may help to mitigate bias 
in rPPG (Ba et al., 2021). Future studies should particularly 
aim at testing and correcting for differences in the accuracy 
of the algorithm on different skin tones.

In conclusion, taking these limitations into account, we 
have shown that our rPPG algorithm is accurate both when 
tested on validated videos recorded in a lab and when 
tested on videos recorded via an online platform, with 
no control over the recording hardware and the environ-
mental conditions. This is beneficial, as it gives research-
ers another tool that they can use for recording and analyz-
ing physiological parameters remotely, with inexpensive 
and widely available tools.
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