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Abstract
In behavioral research, it is very common to have manage multiple datasets containing information about the same set of
individuals, in such away that one dataset attempts to explain the others. To address this need, in this paper the Tucker3-PCovR
model is proposed. This model is a particular case of PCovR models which focuses on the analysis of a three-way data array
and a two-way data matrix where the latter plays the explanatory role. The Tucker3-PCovR model reduces the predictors to
a few components and predicts the criterion by using these components and, at the same time, the three-way data is fitted
by the Tucker3 model. Both the reduction of the predictors and the prediction of the criterion are done simultaneously. An
alternating least squares algorithm is proposed to estimate the Tucker3-PCovR model. A biplot representation is presented to
facilitate the interpretation of the results. Some applications are made to empirical datasets from the field of psychology.

Keywords Multiway covariates regression · PCovR · Three-way · Tucker3 analysis · Biplot

Introduction

In our information-driven society, researchers are often faced
with an ever-increasing influx of data. For example, it is not
uncommon to find datasets that contain different types of
information about the samegroup of individuals. This is com-
monly referred to as coupled data, defined as a collection of
N-way N-mode data blocks, where each block shares at least
onemodewith another data block, as described inWilderjans
et al. (2009). To illustrate, consider the European Social Sur-
vey, where researchers can use different variables measured
over time for a set of countries (such as media consump-
tion, social trust, political engagement, etc.) together with
additional non-temporal information about these countries.
In this scenario, the coupled dataset consists of a three-way
data array and a two-way data matrix that share one mode,
namely the countries.

Multiblock data analysis presents two distinct categories
of challenges. The first one is known as the multiblock com-
ponent problem. Its primary objective is to identify sets of
components that effectively capture the information present
in all matrices simultaneously, essentially trying to uncover
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common information across multiple matrices. The second
is referred to as the multiblock regression problem, which
involves the use of multiple matrices either for prediction or
as predictors. In this scenario, thematrices are used to predict
each other or to predict a common outcome.

In the context of a multiblock component problem, the
goal is to merge all available information to uncover the
underlying structure within the interconnected data blocks.
This is done by employing a global model that simultane-
ously analyzes the different data blocks, where each data
block is summarized using anN-wayN-mode decomposition
model (such asPCA,PARAFAC,Tucker3 orTucker2). In this
N-way N-mode decomposition model, the data is decom-
posed into N component matrices, one for each of the N
modes of the data, andpotentially a linking array that captures
the relationships among the components across the Nmodes,
as described by Van Mechelen & Schepers (2007). In addi-
tion, constraints are introduced on the component matrices
associated with the shared modes to account for the inter-
connections between data blocks. Several constraints can be
considered, with the simplest being the identity constraint,
where the component matrices are constrained to be identical
for all data blocks sharing the same mode, as explained in
Van Mechelen & Smilde (2010).

Somemodels have been proposed such as the PARAFAC-
PCA (LMPCA) (Wilderjans et al., 2009). This model uses
a simultaneous strategy to analyze a coupled dataset con-
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sisting of a real-valued three-way data array sharing a
single mode with a real-valued two-way data matrix. In
the PARAFAC-PCAmodel, a PARAFACmodel (Hitchcock,
1927;Harshman, 1970;Carroll&Chang, 1970) is fitted to the
three-way data and a PCA model (Pearson, 1901; Hotelling,
1933; Jolliffe, 2002) is fitted to the two-way data, so that the
component matrix for the common mode is the same in both
models. In this case, the two blocks of information play the
same role.

In the domain of multiblock regression problems, the goal
is to reduce the predictor variables to a limited number of
components capable of predicting the dependent variables.
Multiwaymultiblock covariates regressionmodels (PCovR),
as detailed in Smilde et al. (2000), represent a specific subset
of multiblock regression models that simultaneously han-
dle component reduction and prediction. In essence, these
components are extracted in a way that simultaneously sum-
marizes the predictor variables and optimally predicts the
criterion scores. To elaborate, the predictor variables are
transformed into a set of components that are linear combina-
tions of the original variables, and then the criterion variables
are regressed against these components, as explained in
Gavaladze et al. (2021). This process involves minimizing
a global criterion that depends on a weight parameter. This
weight serves to signify the relative importance of reduction
and prediction within the analysis, and ranges between 0 and
1. When the weight is set to 0, PCovR aligns with reduced
rank regression (RRR, as discussed in Izenman (1975)),
while a weight of 1 transforms it into principal component
regression (PCR, as introduced in Jolliffe (1982)). Notably,
in the latter case, the component matrix containing obser-
vation scores on the components remains identical in both
decomposition methods.

In this paper, we will consider a specific scenario involv-
ing a coupled dataset. This dataset consists of a two-way data
matrix that shares a common mode with a three-way data
array, where the two-way block serves as an explanatory
component for the three-way block. We present a multi-
way multiblock covariates regression model in which we
decompose the three-way array based on the Tucker3 model.
Additionally, we provide a comprehensive explanation of the
algorithm used to conduct this analysis. Given the inher-
ent complexity in interpreting the results generated by the
Tucker3 model, we suggest the use of biplot representations
to facilitate the understanding of the results.

The following sections of this paper are structured as fol-
lows. In Section 2, we first discuss the data structure and
outline the preprocessing steps.Within this section, we intro-
duce the Tucker3-PCovRmodel and explore its relationships
with other models. In Section 3, we discuss the ALS algo-
rithm used to estimate themodel parameters.We also discuss
various rank selection heuristics and address post-processing
issues. Section 4 is dedicated to a comprehensive review of

biplot representations tailored for three-way data, and also
suggests the use of a useful representation called triplot to
assess the relationship between the two matrices and make
predictions. In Section 5, we put the Tucker3-PCovR model
to practical use by applying it to empirical data sourced
from the field of personality psychology. In this context, we
also present a biplot representation of the results. Finally,
Section 6 concludes the paper with some final remarks.

Model

Data and pre-processing

The Tucker3-PCovR analysis requires a I × L block of pre-
dictors X (object by covariate) and a I × J × K block of
criteria Y (object by attribute by source), both measured for
the same I objects. In psychology, for example, the data array
Y can contain the reactions of a group of individuals to cer-
tain situations, while X may contain the scores of the same
group of individuals on a list of dispositions.

Before we can analyze our data, we need to prepare it so
that it is in a format that is suitable for the analysis method
we are using. This process is called data pre-processing. For
two-way data matrices, we typically center and standardize
the data. This means that we subtract the mean from each
value and then divide by the standard deviation. This helps
to make the data more comparable and easier to analyze. For
three-way data arrays, we typically set the mean across the
objects to 0 and the variance of each attribute to 1. This is
similar to centering and standardizing two-waydatamatrices,
but it takes into account the additional dimension of the data.

Data pre-processing is an important step in any data anal-
ysis project. By properly pre-processing our data, we can
improve the quality of our results and make it easier to inter-
pret our findings.

Formulation of themodel

The Tucker3-PCovRmodel decomposes the predictormatrix
X as follows:

X = XWXPT
X + EX = APT

X + EX (1)

where

A = XWX (2)

is the (I × R1) component score matrix, containing the
scores of the I observations on the R1 components and PX is
the (L × R1) loading matrix, which contains the loadings of
the predictor variables on the components. Obviously, R1 is
(much) smaller than L . EX is a residuals matrix forX andW
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is the (L × R1) matrix of weights. Regarding the data array
Y, its matricization YA (I × J K ) (Kiers, 2000) is regressed
on the R1 components:

YA = APT
Y + EA (3)

where PY (J K × R1) is the matrix containing the regression
weights and EA is a residuals matrix for YA. Furthermore,
PT
Y is decomposed using Tucker3 decomposition (Tucker,

1966):

PT
Y = GA (C ⊗ B)T (4)

where⊗ denotes the Kronecker product,GA is the (R1 × R2

R3) matricization of the core array G, B is the (J × R2)

component score matrix for the second mode and C is the
(K × R3) component score matrix for the third mode. Note
that (R1, R2, R3) is the complexity of the Tucker3 model.

So, YA could be written as:

YA = AGA (C ⊗ B)T + EA (5)

Since both the PCovR solution and Tucker3 decompo-
sition have rotational freedom, also the Tucker3-PCovR
solution is not unique.

Relation to other models

The Tucker3-PCovR model is related to other multiway
multiblock models, both within and outside the family of
multiway multiblock regression models (Smilde & Kiers,
1999). Within the family of multiway multiblock regression
models, this model is a special case where the three-way data
block is decomposed according to a Tucker3 decomposition.
In turn, multiway multiblock regression models are a gener-
alization of the PCovR model (de Jong & Kiers, 1992).

Furthermore, multiway multiblock regression models are
closely related to the family of multiway multiblock com-
ponent models (Smilde et al., 2000). The main difference
lies in the role that data blocks play in the analysis. In a
multiway multiblock component model, all data blocks play
the same role. In a multiway covariates regression model,
some data blocks play the role of predictor blocks, while the
other block(s) play the role of criterion block(s). An exam-
ple of a multiway multiblock component model related to
the Tucker3-PCovR model is the LMPCA (Wilderjans et al.,
2009).

Data analysis

Aim

In PCovR analysis, the reduction of the predictor variables
to components and the prediction of the criterion variables
by these components is performed simultaneously by mini-
mizing the following loss function:

L (A,B,C,GA |α,X,YA) = α
‖X − APTX ‖2

‖X‖2 + (1 − α)
‖YA − APTY ‖2

‖YA‖2 =

α
‖X − APTX ‖2

‖X‖2 + (1 − α)
‖YA − AGA (C ⊗ B)T ‖2

‖YA‖2 (6)

where α is a weighting parameter which specifies to what
degree reduction and prediction are emphasized, 0 ≤ α ≤ 1.
Matrices A, B, C are the component matrices for the first,
second, and third modes, respectively, and GA is the matri-
cization of the core array G. When α = 0, all emphasis
is on predicting Y and PCovR analysis becomes equivalent
to reduced rank regression (RRR) (Aldrin, 2006) and when
α = 1, all emphasis is on explaining X and PCovR anal-
ysis becomes equivalent to principal component regression
(PCR) (Jolliffe, 1982).When α takes high values, the focus is
on strong components (i.e., components which explain a lot
of variance in X) while low α values focus on relevant com-
ponents (i.e., components which explain a lot of variance in
Y) (Gavaladze et al., 2021).

Note that the loss function above can be rewritten in the
following way (Smilde & Kiers, 1999):

L = α

‖X‖2 ‖X − APT
X‖2 + (1 − α)

‖YA‖2 ‖YA − APT
Y ‖2 =

β‖X − APT
X‖2 + (1 − β) ‖YA − APT

Y ‖2 =
‖Q − AS‖T 2

(7)

where

Q = √
βX | √

1 − βYA (8)

ST =√
βPT

X | √
1 − βPT

Y =√
βPT

X | √
1 − βGA (C ⊗ B)T

(9)

and

β = α‖YA‖2
α‖YA‖2 + (1 − α) ‖X‖2 (10)

Algorithm

The parameters of the Tucker3-PCovR model are estimated
using an alternating least squares (ALS) algorithm (Kroonen-

123



Behavior Research Methods

berg&DeLeeuw, 1980). In this algorithm, starting values for
all model parameters are obtained, and then the component
matricesA,B,C, and PT

X and the core arrayG are alternately
re-estimated conditionally upon the other parameters until a
convergence criterion is satisfied (ten Berge, 1993).

There are two main options for initializing the component
matrices in the Tucker3-PCovR model: random initializa-
tion and rational initialization. For random initialization,
each entry of the component matrices is sampled from a
standard normal distribution. For rational initialization, the
component matrices are initialized as follows. Suppose that
(R1, R2, R3) is the complexity of the Tucker3model andYA,
YB , YC are the (I × J K ), (J × I K ), (K × I J ) matricized
versions of Y where | denotes matrix concatenation. Ratio-
nal initial estimates of B and C are obtained by taking the
eigenvectors associated with the R2, R3 largest eigenvalues
of YBYT

B and YCYT
C , respectively. Note that this proce-

dure ensures that the initial B and C are orthonormal. A is
obtained by taking the eigenvectors associated with the R1

largest eigenvalues of (X | YA) (X | YA)T . Once the initial
estimates of A, B and C are obtained, the initial estimates of
G and PT

X are obtained by regression.
Once the complete set of initial estimates of the model

parameters has been obtained, the Tucker3-PCovR algorithm
performs an iterative process until a pre-specified stopping
criterion is reached. In each iteration, the component matri-
ces A, B, and C, and the core matrix G, are recalculated
conditionally upon the other parameters. Specifically, the fol-
lowing steps are performed in each iteration:

• Fixing B, C, G, and PT
X , the matrix A is re-estimated.

• Fixing A, C, and G, the matrix B is re-estimated.
• Fixing A, B, and G, the matrix C is re-estimated.
• Fixing A, B, and C, the core matrix G and the projec-

tion matrix PT
X are updated by solving a multivariate

linear regression problem (Kroonenberg & De Leeuw,
1980; Smilde et al., 2004; Andersson & Bro, 1998; Bro
& Andersson, 1998).

After each iteration, the loss function is recalculated from
the new values of the model parameters. When there is a
substantial decrease in the loss function, a new iteration is
performed. Otherwise, the algorithm stops and the values of
the last iteration are taken as the final values of the model
parameters.

This iterative process is repeated until a convergence crite-
rion is satisfied, such as when the change in the loss function
is below a certain threshold or when a maximum number
of iterations is reached. This process works by gradually
improving the estimates of the model parameters until a con-
vergence criterion is satisfied. In each iteration, one of the
model parameters is re-estimated while keeping the other

parameters fixed. This allows the algorithm to gradually
adjust the model parameters to minimize the loss function.

Although the convergence of the Tucker3-PCovR algo-
rithm is guaranteed, this does not mean that it cannot end up
in a local rather than the global optimum. To try to avoid this,
it is recommended to use a multi-start procedure, in which
the algorithm is run multiple times, each time with differ-
ent random or pseudo-random initialized parameter values.
Pseudo-random initial values can be obtained by slightly per-
turbing a rationally initialized solution (Ceulemans et al.,
2007). The solution with the lower value of the loss function
is kept. A more detailed description of the algorithm can be
found in Appendix A.

Model selection

To select a Tucker3-PCovR solution, it is necessary to deter-
mine the α value and the complexity of the Tucker3 model
(R1, R2, R3).

Givenα the complexity of themodel can be determined by
means of a scree test (Ceulemans &Kiers, 2009) or by cross-
validation (Vervloet et al., 2016; Hastie et al., 2009). When
performing a scree test different analyzes with different com-
plexity are performed, taking into account the rank of the
model values between (1, 1, 1) and

(
RMax
1 , RMax

2 , RMax
3

)
.

Themodel that has a good balance betweenmodel fit ( fi ) and
model complexity (ci ) is selected. Model fit can be quanti-
fied by the loss function value. Tomeasuremodel complexity,
the total number of components (i.e., ci = R1 + R2 + R3)
is used. Next, the CHULL procedure (Ceulemans & Kiers,
2006, 2009; Wilderjans et al., 2013) can be used to deter-
mine the optimal rank. The CHULL method consists of the
following steps: (1) selecting those models which are located
on the boundary of the convex hull from the plot obtained
by plotting the complexity versus fit of all the valid models
and (2) identifying for which model there is a good balance
between its complexity and its fit. This is done by calculating
the st-ratio for each model:

sti = ( fi−1 − fi ) / (ci − ci−1)

( fi − fi+1) / (ci+1 − ci )
(11)

and the model with the highest st-value is selected. Some
guidelines on how to choose the alpha value can be found in
Vervloet et al. (2013).

Rotational freedom

Since PCovR and Tucker3 decomposition have rotational
freedom, the Tucker3-PCovR decomposition is not unique
either. For example, the component matrices A, B, and C
obtained by theTucker3 decomposition can be rotated as long
as the core array G (and in the case of A also PX ) is coun-
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terrotated. In addition, the matrices A and PX can be rotated
as long as the core array and the other non-rotated matrix
(PX and A respectively) are compensated. Researchers can
take advantage of this rotational freedom to improve the
interpretability of the solution obtained. There are several
strategies to do this. The first option is to rotate the compo-
nent matrices, for example using a varimax rotation (Kaiser,
1958), and then counterrotate the core array. In this case,
more easily interpretable component matrices are obtained
at the expense of having a core array with many large num-
bers (i.e., complex interactions between the components).
The second option is to rotate the core array and then coun-
terrotate the component matrices (Kiers, 1998a, b, 1992).
This ensures that the core array has only a few large val-
ues, indicating the most important interactions between the
components, but the components may be more difficult to
interpret. Finally, it is possible to simultaneously rotate the
core array and the component matrices in such a way that
a criterion is optimized that balances the complexity of the
component matrices and the core array (Kiers, 1997). It is
important to note that the Tucker3-PCovRmodel is still iden-
tified after permutation and/or reflection of the components,
even after the freedom of rotation is fixed.

Rotation of component matrices in a Tucker3 PCovR
model may be advisable in certain scenarios to facilitate
a more interpretable and meaningful representation of the
underlying relationships. Matrix rotation is particularly use-
ful when the original factor loadings are complex or difficult
to interpret. The application of rotation aims to simplify the
structure of the components, making it easier to identify and
understand the relationships between the variables. This is
particularly relevantwhendealingwith large datasets ormod-
els with many components, where rotation helps to achieve a
more concise and insightful representation of the underlying
patterns.

Biplot representation

The interpretability of the results of a Tucker3 analysis can
often be challenging due to the complexity of interpreting
the connections between themodes containedwithin the core
array. One potential solution to address this challenge is the
use of a biplot representation, as suggested byGabriel (1971).
Biplots serve the purpose of creating a low-dimensional
visual representation of a data matrix. This representation
allows us to visualize the relationships between individu-
als and variables, as well as the relationships between both
groups.

A general definition of a biplot

For a data matrix X of size I × L , the biplot graphical
representation involves the placement of markers (vec-
tors) a1, a2, . . . , aI for the rows and b1,b2, . . . ,bL for the
columns of X in such a way that their inner product:

x̂i j = aTi b j (12)

closely approximates the element xi j of X. Vectors are usu-
ally two- or three-dimensional, which means that we can
easily draw them on a piece of paper or computer screen.

The most classical biplot representation is derived from
approximating the data matrix X of rank r with a lower-
rank matrixX through singular value decomposition (SVD),
X = U�VT , where U and V are matrices of orthonormal
singular vectors satisfying UTU = I and VTV = I, and �

is a diagonal matrix containing the singular values.
For the biplot visualization, the previous factorization

is used, allowing us to express X as X = A∗B∗T , where
A∗ = U�s and B∗ = V�1−s . The scalar s, typically rang-
ing between 0 and 1, plays a crucial role in determining the
type of biplot: when s = 0, it is referred to as a GH-biplot,
and when s = 1, it is known as a JK-biplot. These biplots
are closely related to principal component analysis or factor
analysis, two of the most popular techniques for data analy-
sis.

From a broader perspective, any matrix’s decomposition
into the product of two other matrices with lower ranks can
be employed as a basis for creating a biplot. Such decompo-
sitions appear in many other multivariate techniques such as
canonical analysis, correspondence analysis andmany others
(Gower et al., 2011) and not always as the result of an SVD.

The geometric representation of a biplot is shown in Fig. 1,
and it remains independent of the specific decomposition
method used. Derived from the inner product described in
Eq. 1, points that predict the same value lie on a straight line
perpendicular to the biplot marker b j (as shown in Fig. 1, (a,
b). Different predicted values are situated on parallel lines
(Fig. 1, (c–b). To improve the usefulness of the biplot, graded
scales can be incorporated, allowing for the estimation of
approximate values for the matrix entries by projecting the
row markers onto the variable directions with these graded
scales (Fig. 1, (d)). The calculations required to obtain the
scale markers are straightforward.

We assume that the columns are centered to have zero
mean and then no constant needs to be fitted. Note that the
point that predicts 0 for all the variables is the origin, i.e., it
predicts the mean of each variable. It is convenient to label
the graded scaled with the initial rather than the transformed
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Fig. 1 Biplot approximation: a
Inner product of the row and
column markers approximates
(predicts) the element of the
matrix. b The set of points
predicting the same value are all
on a straight line perpendicular
to the direction defined by the
column marker b j . c Points
predicting different values are
on parallel lines. d The variable
direction can be supplemented
with scales to visually obtain the
prediction

values. For example, if the variable is centered, we could use
μ + x̄i to the label of the point μ.

To interpret a general biplot, the following factors should
be considered:

• Proximity of points: The proximity of points to each
other indicates their degree of similarity or dissimilar-
ity. Points closer together are more similar, while points
further apart are more dissimilar.

• Angle between vectors: The angle between two vectors
indicates the relationship or correlation between the cor-
responding variables. A small angle suggests a strong
positive correlation, while a large angle implies a weaker
or negative correlation.

• Vector lengths approximate the variability of the vari-
ables they represent.

• Inner products approximate the elements of the matrix.

Biplots for three-way data

When discussing three-way data, two types of biplots can
assist in the interpretation of analysis results: the joint biplot
and the interactive biplot (Carlier & Kroonenberg, 1996).

Joint biplots

Joint biplots are constructed using the following decomposi-
tion:

yi jk =
R3∑

r=1

ckr

⎡

⎣
R1∑

p=1

R2∑

q=1

aipb jq gpqr

⎤

⎦ =
R3∑

r=1

ckr d(i j)r (13)

where d(i j)r corresponds with the term in square brackets.
To construct a joint biplot, it is essential to work with the

matrix Dr = AGrBT = A∗
rB

∗T
r . This involves performing a

singular value decomposition (SVD) for each value of r on
the core sliceGr (R1 × R2):Gr = Ur�rVT

r withUT
r Ur = I

and VT
r Vr = I. Consequently, Dr = AUr�rVT

r B
T .

Next, the orthonormal left singular vectors Ur and the
orthonormal right singular vectors Vr are combined with A
and B, respectively. The diagonal matrix �r , which con-
tains the singular values, is divided between them as follows:

A∗
r = ( I

J

)1/4
AUr�

1/2
r and B∗

r = ( J
I

)1/4
BVr�

1/2
r (the

fourth-root fractions are introduced to account for the dif-
ferent number of levels in the two-component matrices).
Consequently, the columns of the fitted component matrices,
A∗
r and B∗

r , represent the axes of the joint biplot.
Thus, when dealing with joint biplots, a crucial decision

must be made: the selection of both the display mode and the
reference mode.
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A notable drawback of a joint biplot is that its inter-
pretation requires an examination of the reference mode to
determine the sign of the interaction. This makes interpre-
tation difficult. For our particular problem, joint biplots are
probably less useful.

Interactive biplots

The second category of biplot is called an interactive biplot
and is also based on the Eq. 13. In this biplot, a single marker
is used to represent each possible combination of variables
originating from two of the modes. For example, if the sec-
ond and third modes are combined, there will be J × K
column markers. In this context, the row and column mark-
ers areA∗ = A andB∗ = GA (C ⊗ B)T . This is basically the
same as the Eq. 3 with B∗ = PT

Y = GA (C ⊗ B)T . Then we
have a set of markers a∗

1, a
∗
2, . . . , a

∗
I for the first mode and

a set b∗
1(1), . . . ,b

∗
1(K ), . . . ,b

∗
J (1), . . . ,b

∗
J (K ) for the second

and third interactively coded modes.
The interpretation of interactive biplots is identical to

that of two-dimensional biplots, as we also obtain a (close)
approximation of the values in the data matrix.

A notable disadvantage of this type of biplot is the poten-
tially large number of column markers that can occur when
dealing with large arrays, which can make them difficult to
interpret. This type of biplot is most useful when the product
J × K remains manageable in size. On the other hand, its
main advantage lies in its ability to simultaneously display
all the information associated with the three-way data array.

One possible approach to simplify interpretation is to
focus on representing a single attribute across all the sources
or representing all the attributes for a single source.

Interactive biplots for responses and predictors:
Triplots

The biplots described above are good for understanding how
the dependent variables relate to each other, but not so good
for predicting the values of the dependent variables from
the values of the independent variables, or the relationships
between the two sets. For this last purpose, several other
biplots can be plotted.

Simultaneous representation of predictors and responses

The first is a representation that combines the representations
for predictors and responses as follows. Equation 1 defines
a biplot for the predictors X, sharing the A coordinates with
the previous one. Consequently, the coordinates in PX can
be incorporated into the existing biplot, allowing the simul-
taneous representation of individuals (A), predictors (PX ),
and responses (PY ). This combined graphical representation
is called a “triplot”. It essentially combines two biplots, the

first showing the structure of the predictors and the second
showing the responses. Both biplots focus on illustrating the
relationships between these two sets of variables as in Ter
Braak (1990) for twowaymatrices. The angles between vari-
ables of different sets are also interpreted in terms of their
correlation.

Biplot representation of the regression weights

If we combine the Eq. 3 with the Eq. 2 we get:

YA = XWXPT
Y + EA (14)

thus

Z = WXPT
Y (15)

define a set of regressionweights on the original variables that
canbeplottedon abiplot to help assess the importanceof each
predictor in explaining each response and the direction of its
effect. The markers for the predictors are now represented by
the rows of W∗ = WX , and the markers for the responses
are the rows of B∗ as defined previously. The inner product
ẑl j(k) = w∗T

l b∗
j(k) represents theweight of the l-th variable in

predicting the j-th attribute at the k-th source. For example,
projecting all the markers w∗

1,w
∗
2, . . . ,w

∗
L onto b∗

j(k) can
help determine the relative importance of each variable on the
attributes and the direction of the effect. Positive and negative
predictions correspond to positive and negative effects. This
biplot is similar to the partial least squares (PLS) proposals
in Oyedele & Lubbe (2015) or Vicente-Gonzalez & Vicente-
Villardon (2022).

Interpolation and prediction biplots

All the described biplots are “prediction biplots” because the
inner product of two vectors predict some value (the observed
value of the datamatrix or some regression coefficient). There
is another kind of biplot that could be useful in this context,
the interpolation biplot for the predictors, combined with the
prediction biplot for the responses. That allows for the projec-
tion of new supplementary individuals on the representation,
using a set of values for the predictors, and then predict the
values of the responses from the biplot scores.

We have thatW = WX contains the vectors to interpolate
a new point on the representation. Suppose we have a new
observation x = (x1, . . . , xJ )T , using Eq. 2 we can project
the new observation onto the biplot with

a = xTW =
L∑

l=1

x jwl (16)
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That is aweighted sumof thevectorswl using theobserved
values x = (x1, . . . , xJ )T as weights. The graphical inter-
pretation of the interpolation is shown in Fig. 2. The sum of
the vectors is calculated here using the centroidmultiplied by
the number of points (the position of the new point is the end
of the arrow). Once the point is interpolated we can obtain a
prediction of the responses by projecting it on the directions
for the dependent variables. See, for example, Gower (1996)
or Gower et al. (2011).

The directions are given by the w’s and scales are easily
placed. To find themarker for a fixed valueμ, on the direction
of vector wl we look for the point (x, y)

x = μ wl1; y = μ wl2 (17)

The analytic interpolation is probablymore useful than the
geometric interpolation. We have added it here to illustrate
the process.

Illustrative application

An important goal in the field of psychology is to analyze
the relationship between the way people react to a particular
situation and the dispositions or traits they have (Van Coillie
et al., 2006). It seems reasonable to think that personality
traits can explain reactions to certain situations. To this end,
we will perform a Tucker3-PCovR analysis on a pairwise
dataset that contains, on the one hand, the reactions of a
group of people to certain situations and, on the other hand,
their personality traits.

Fig. 2 Interpolation biplot with three independent variables (black),
and prediction biplot for the responses (red)

Fig. 3 Chull plot of the complexity of themodel versus the loss function
value for all Tucker3-PCovR estimated models with α=0.5

First example

The first example consists of a hypothetical 8 persons × 7
emotions × 6 situations data array and an 8 persons × 10
dispositions data matrix (Wilderjans et al., 2009).

The three-way data array was pre-processed in such way
that the scores were mean-centered across persons and the
scores for each response were normalized. The disposition
data matrix was also pre-processed by standardizing.

Tucker3-PCovR analysis was performed on the coupled
dataset for all valid ranks between (1, 1, 1) and (4, 4, 4) and
α = 0.50 (equal importance for degree reduction and pre-
diction). The Chull model selection procedure was used to
select from the estimated models a solution that best bal-
ances model fit and model complexity. The Chull model was
used with the value of the loss function as the (mis)fit value
and the total number of components as the complexity value.
Based on the results obtained (Fig. 3) the solution (2, 2, 2)
was chosen.

Looking at the scores of the situation component (Table 1),
the first component can be interpreted as an interpersonal
dimension because situations in which there is a confronta-
tion with others load high on this component (quarrelling

Table 1 Component values for the situations, resulting from the
Tucker3 PCovR (values exceeding 0.4 in absolute value are in bold)

Situation Label Comp 1 Comp2

Quarrelling with someone S1 −0.56 0.16

Partner leaves you S2 −0.67 −0.04

Someone is telling lies about you S3 −0.48 −0.04

Giving a bad speech S4 −0.02 0.56

Failing a test S5 0.01 0.63

Writing a bad paper S6 0.09 0.51
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Table 2 Component values for the response scales, resulting from the
Tucker3-PCovR (values exceeding 0.4 in absolute value are in bold)

Response Label Comp 1 Comp2

Other anger RP1 −0.47 −0.21

Shame RP2 −0.52 −0.22

Love RP3 0.44 0.20

Sorrow RP4 −0.52 0.26

Fear RP5 −0.03 −0.06

Guilt RP6 −0.15 0.61

Self-anger RP7 −0.11 0.65

with someone, someone is telling lies about you, partner
leaves you). In contrast, the second component can be inter-
preted as an intrapersonal dimension because situations such
as giving a bad speech, failing a test, and writing a bad paper
score high on this component.

Regarding the response component scores (Table 2), reac-
tions such as other anger, shame, sorrow, and love score on
the first component, the first three negatively while the last
one positively. Secondly, guilt and self-anger (emotions that
force a person to confront himself) score high on the second
component.

When interpreting the person component scores (Table 3),
it can be seen that all persons score positive on the first com-
ponent, the first three persons score highly negative on the
second component, while the last four persons score highly
positive on the second component. Note that person4 scores
close to 0 on the second component. There is a similarity
between person1, person2, and person3 on the one hand and
person5, person6, person7, and person8 on the other.

From the Table 4, it can be seen that dispositions which
characterize people who are more other-oriented (fear to be
refused, kindness, importance of others’ judgments, altru-
ism) have positive scores on the second component, while
those which characterize people who are more self-oriented

Table 3 Component values for
the person scales, resulting from
the Tucker3-PCovR

Person Comp 1 Comp2

Person 1 0.36 −0.38

Person 2 0.32 −0.45

Person 3 0.38 −0.33

Person 4 0.61 0.05

Person 5 0.20 0.34

Person 6 0.26 0.36

Person 7 0.29 0.42

Person 8 0.26 0.35

Table 4 Component values for the dispositions, resulting from the
Tucker3-PCovR (values exceeding 0.4 in absolute value are bold

Disposition Comp 1 Comp2

Fear to be refused 0.84 −0.85

Kindness 0.94 −0.50

Importance of others’ judgments 0.80 −0.66

Altruism 0.82 −0.58

Neuroticism 1.50 0.21

Openness −0.02 0.14

Being strict to oneself 0.92 0.76

Low self-esteem 0.93 0.76

Conscientiousness 1.09 0.92

Depression 1.12 0.93

(being strict to oneself, low self-esteem, conscientiousness,
depression) have negative scores on the second component.

From Fig. 4, it can be seen that the personality traits of
person1, person2, and person3 are mainly fear to be refused,
kindness, importance of others’ judgments, and altruism.We
could therefore describe them as other-oriented people. On
the other hand, person5, person6, person7, and person8 are
characterized by low self-esteem, conscientiousness, being
strict to oneself, and depression, i.e., self-oriented people.
Person4 is mainly neuroticist.

To interpret the relationships between the elements in dif-
ferent modes, which reflect the interactions between them,
the core array G is needed (Table 5). Looking only the
largest (in absolute value) core values, it appears that per-
son1, person2, and person3 when faced with situations such
as quarrelling with someone, partner leaves you, or some-
one is telling lies about you feel other anger, shame, sorrow
and unloved. Remember that these peoplewere characterized
by their kindness, altruism, importance of others’ judgments
and fear to be refused. On the contrary, person5, person6,
person7, and person8 react to situations such as giving a bad
speech, failing a test orwriting a bad paper react with feelings
of guilt and self-anger. It is important to note that these peo-
ple are characterized by low self-esteem, conscientiousness,
being strict to oneself, and depression.

All this information can be extracted from the joint biplot
(Figs. 5, 6) and the interactive biplot (Fig. 7).

Figure 5 shows the joint biplot for persons and responses
for the first component of situations. This component takes
negative values for quarrelling with someone, partner leaves
you and someone is telling lies about you. This means that
proximity between persons and responses in the graph is
interpreted as a negative interaction and distance as a positive
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Fig. 4 Biplot representation of
persons and their dispositions

interaction for the above situations. On the other hand, love
scores positively in this component, so the interpretation is
the opposite. Figure 6, which shows the second component
of situations, can be interpreted in the same way. Note that
this component is positive for guilt and self-anger.

When analyzing the interactive biplot it must be taken into
account that all combinations of situations and reactions are
shown. From Fig. 7 it can be seen that all combinations of
situations 1 (Quarrelling with someone), 2 (Partner leaves
you) and 3 (Someone is telling lies about you) and reactions
1 (Other anger), 2 (Shame) and 4 (Sorrow) are negatively
correlated with reaction 3 (Love) for the same situations and
at the same time uncorrelatedwith combinations of situations
4 (Giving a bad speech), 5 (Failing a test) and 6 (Writing a
bad paper) and reactions 4 (Sorrow), 6 (Guilt) and 7 (Self-
anger). Obviously, the interpretation of the interactive biplot
leads us to conclude the same results obtained previously.

It is also possible to create a “triplot” of people, situa-
tions, reactions and dispositions (Fig. 8) (captions in Figs. 7
and 8 represent all possible combinations of situations and
responses. So Si RP j represents response j−th and situation

Table 5 Core array resulting from the Tucker3-PCovR analysis (values
exceeding 1 in absolute value are in bold and values exceeding 2 in
absolute value are underlined)

Situation component 1 Situation component 2
Person comp Resp. comp1 Resp. comp2 Resp. comp1 Resp. comp2

1 2.21 0.62 −0.67 1.45

2 −1.86 −0.22 −0.51 1.57

i − th). From Fig. 8 it is possible to predict how a person will
react to a situation based on their personality traits. People
with depressive, conscientiousness, being strict to oneself or
low self-esteempersonality traits, when confrontedwith situ-
ations such as giving a bad speech, failing an exam or writing
a bad paper, experience reactions of sadness, guilt, and self-
anger. On the other hand, people who have personality traits
such as kindness, altruism, who value the judgements of oth-
ers, or who are afraid of being rejected in situations such as
quarrelling with someone, being abandoned by a partner, or
having someone tell lies about you, experience other anger,
shame or sadness. In addition, these people do not feel loved
in these situations.

The second example

A couple dataset was used, containing both the behavioral
profiles and the dispositions of 128 participants. The S-R
Inventory of Anxiousness (Endler & Hunt, 1968) scores
of the 128 participants were collected in the three-way
data array. This questionnaire measures 14 anxiety-related
responses (Table 6) to 11 different stressful situations
(Table 7) on a 5-point scale ranging from exhibiting the
response “not at all” to “very much”. In addition, to measure
personal dispositions the Cognitive-Affective Personality
System questionnaire CAPS (Mischel & Shoda, 1995) was
administered to each individual. This questionnaire consists
of 63 items on a 7-point scale and it is designed to mea-
sure different types of cognitive-affective variables in relation
to different types of stress. Therefore the Tucker3-PCovR
analysis was performed on a three-way data array of size
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Fig. 5 Joint biplot for persons
and responses for the first
component of situations

Fig. 6 Joint biplot for persons
and responses for the second
component of situations

Fig. 7 Interactive biplot
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Fig. 8 Simultaneous
representation of persons,
situations, reactions and
dispositions

(128 × 14 × 11) and a data matrix of size (128 × 63) shar-
ing the first mode (the 128 participants).

The three-way behavioral data array was pre-processed in
such a way that the scores were mean-centered across per-
sons and the scores for each response were normalized. The

disposition data matrix was also pre-processed by standard-
izing.

Tucker3-PCovRanalysiswas performed on the previously
pre-processed dataset for rank (2, 2, 2) and α = 0.50 (same
meaning for degree reduction and prediction). In this case,

Table 6 Component values for
the response scales, resulting
from the Tucker3-PCovR
analysis with α = 0.5 (with
values exceeding 0.20 in
absolute value being indicated
in bold)

Response Label Component 1 Component 2

Need to urinate frequently RP1 −0.21 0

Mouth gets dry RP2 −0.38 0

Need to defecate RP3 −0.35 0.31

Feel paralyzed RP4 −0.30 0

Full feeling in stomach RP5 −0.31 0.29

Perspire RP6 −0.35 −0.10

Feel nausea RP7 −0.20 −0.22

Emotions disrupt action RP8 −0.11 0.41

Heart beats faster RP9 −0.25 −0.35

Feel exhilarated and thrilled RP10 −0.29 −0.14

Enjoy the challenge RP11 −0.24 0

Seek experiences like this RP12 0 0.61

Not want to avoid situation RP13 0 0.14

Uneasy feeling RP14 −0.35 −0.18
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Table 7 Component values for the situations, resulting from the
Tucker3-PCovR analysis with α = 0.5 (with values exceeding 0.20
in absolute value being indicated in bold)

Situation Comp 1 Comp 2

Speech before large group 0 −0.20

Job interview −0.22 0

Match in front of audience −0.43 0

Consult counseling bureau 0 −0.49

Ledge high on mountainside 0 −0.19

Sailboat on rough sea −0.53 0

New date 0.17 −0.46

Auto trip −0.64 0

Alone in woods at night 0 −0.41

Psychological experiment −0.14 −0.54

the choice of the rank was made in order to simplify the
interpretation of the results obtained.

To obtain an easier to interpret solution, the response, situ-
ation and disposition component matrices were orthogonally
rotated by varimax (Kaiser, 1958) and then the person com-
ponent matrix and the core array were counterrotated.

The post-processed component matrices for the response
scales and situations are given in the Tables 6 and 7. The
post-processed core array is presented in the Table 8. In this
table, the rows correspond to the person components and the
columns to the combinations of a response and a situation
component. Due to the size of the person component matrix,
it is not included in the article.

Looking at the response component matrix (Table 6), one
can see how some responses involving a physical manifes-
tation load negatively on the first component (e.g., need to
urinate frequently, mouth gets dry, feel paralyzed or perspire)
while some others load negatively on the first component and
positively on the second (e.g., need to defecate or full feel-
ing in stomach). Feeling nausea and heart beats faster load
negatively on both. Reactions related to seeking/avoiding
the situation are distributed between the first and second
components, e.g., emotions disrupt action load the second
component while enjoying the challenge loads the first. Sim-
ilarly, situations are distributed between the two components
(Table 7), so that situations such as job interview or match

in front of audience load the first component while new date
or alone in woods at night load the second.

The core array (Table 8) summarizes themain interactions
between the different components corresponding to people,
situations, and responses. When examining the core array
only the largest (in absolute value) core values should be con-
sidered. From the core array, it can be deduced that people
who score high on the first component will show first com-
ponent reactions when faced with first component situations.
For example, when faced with a job interview, these people
will experience the following physical manifestations: need
to urinate frequently, mouth gets dry, need to defecate, feel
paralyzed, full feeling in stomach,... with higher or lower
frequency than the average. On the other hand, in situations
with the second component, they manifest all kinds of reac-
tions above or below the average. In relation to people who
have a high second component load in first component situa-
tions, they only show above or below average first component
reactions.

More information can be obtained by analyzing biplots.
Figure 9 shows the joint biplot for persons and situations for
the first component of responses. We can see that there are
two groups of situations. Situations such as match in front of
audience, sailboat on rough sea, final exam, auto trip and job
interview are highly correlated. The rest of the situations are
highly correlated.

Given the large number of situations and responses, inter-
active biplots are created for two specific situations (each
loading on a different component) to facilitate interpretation
of the results. Figure 10 shows the responses to the situation
“Match in front of audience” (which is highly loaded on the
first component). It can be seen that some people experience
different physical reactions and do not seek such experiences.
Others score high on seeking such experiences and do not
experience physical reactions. The rest of the individuals do
not react in any way.

Looking at Fig. 11, which corresponds to the reactions
to the “new date” situation (which is highly loaded on the
second component), it can be observed that a group of peo-
ple experience different physical reactions but do not want
to avoid the situation, while others do not experience any
reaction.

Table 8 Core array resulting
from the Tucker3-PCovR
analysis with α = 0.5 (with
values exceeding 20 in absolute
value being indicated in bold)

Situation component 1 Situation component 2
Person component Resp. comp1 Resp. comp2 Resp. comp1 Resp. comp2

1 −27.41 1.94 −61.46 30.10

2 23.82 −6.20 −0.48 −2.14
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Fig. 9 Joint biplot for persons
and situations for the first
component of responses

Furthermore, a triplot of responses and dispositions was
made for the “new date” situation in order to analyze the
relationship between them (Fig. 12). Given the large number
of dispositions, it was decided to show only some of them.
Descriptions of the disposition and response labels can be
found in Tables 6 and 9, respectively.

In Fig. 12, we can see that the dispositions most corre-
lated with the responses for the situation “New date” are “In
a physically threatening situation I readily expect that my
health will be damaged” (D8), “I easily experience a situa-
tion in which I may suffer physical injury, as risky” (D40)
and “In an unclear situation, I immediately prepare myself
for theworst” (D13). However, people with dispositions such
as “I can deal well with stress” (D43) do not experience any
of the above reactions (the angle formed by these vectors
is straight). Relationships between dispositions could also
be analyzed; for example, “I easily experience a situation in
which I may suffer physical injury, as risky” (D40) and “I
can deal well with stress” (D43) are uncorrelated and “When
I am obliged to do something, I easily think that I am not able

to do it” (D17) and “I often expect that things will end badly”
(D5) are highly correlated. In summary, this figure shows the
reactions to the ’new date’ situation in relation to the individ-
ual’s personality profile. The same analysis could be carried
out for all other situations so that it would be possible to pre-
dict how a person will respond to a situation according to his
or her personality profile.

Conclusion

This paper presents the Tucker3-PCovR model. It is a
global model for the simultaneous analysis of a coupled
dataset consisting of a three-way data array sharing a mode
with a two-way data matrix in such a way that the data matrix
is used to predict the data array. The goal of this model is to
reduce the predictors to a few components that are used to
predict the criterion. To achieve this, a global objective func-
tion is used that depends on a weight parameter, this weight
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Fig. 10 Interactive biplot for
persons and responses for the
situation “Match in front of
audience”

Fig. 11 Interactive biplot for
persons and responses for the
situation “New date”
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Table 9 Labels for (selected)
dispositions used in the coupled
dataset

Label Description

D3 I think it is important to be healthy

D5 I often expect that things will end badly

D8 In a physically threatening situation I readily expect that my health will be damaged

D13 In an unclear situation, I immediately prepare myself for the worst

D14 I find it hard to stay calm in a stressful and uncertain situation

D17 When I am obliged to do something, I easily think that I am not able to do it

D25 When I fail, I am completely thrown off balance

D26 I think it is important to keep my body fit

D31 I can cope with a physically threatening situation

D37 In a performance-related task, I easily expect that I will fail

D40 I easily experience a situation in which I may suffer physical injury, as risky

D43 I can deal well with stress

D50 I think it’s important to live without stress

D52 I attach great importance to having as little stress as possible

D53 I tend to pay much attention to physiological changes in my body

indicates the importance that degree reduction and prediction
have in the analysis.

We focus on the particular case where the three-way array
is modeled by the Tucker3 model. An algorithm is proposed
to implement the Tucker3-PCovR model. Moreover, given
the difficulty in interpreting the results obtained, different
biplots are proposed. More specifically, the joint and the
interactive biplot are proposed for the visualization of the

three-way data array while the triplot is suggested for the
prediction of the three-way data array from the two-way data
matrix. Finally, the proposed model has been applied to ana-
lyze some datasets in psychology.

Both the method and the biplot representation are imple-
mented in R (R Core Team, 2023). They are available as
part of the R packageMultBiplotR (Vicente-Villardon et al.,
2023).

Fig. 12 Simultaneous
representation of reactions and
dispositions for the situation
“New date”
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A. Appendix

The ALS algorithm to perform the proposed Tucker3 PCovR
is the following:

Algorithm 1 Tucker3 PCovR.
Require: X (I × L) and Y (I × J × K )

(1) Initialize A, B, C
(2) Calculate initial G, PT

X and PT
Y

G = ATY (C ⊗ B)

PT
X = (

ATA
)−1

ATX

PT
Y = GA (C ⊗ B)T

(3) Calculate Q as in Eq. 8
(4) Calculate loss function value
(5) Update S as in Eq. 9

(6) Update A = (
ST S

)−1
STQT

(7) UpdateB = MNT whereM andN are the R2 left and right singu-
lar vectors, respectively, associated with the R2 largest singular
values of YB (A ⊗ C)

(8) UpdateC = MNT whereM andN are the R3 left and right singu-
lar vectors, respectively, associated with the R3 largest singular
values of Yc (B ⊗ A).

(9) Update G, PT
X and PT

Y as in Step 2.
(10) Calculate new loss function value
(11) If convergence stop, otherwise go to 5
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