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Abstract
The experience sampling method (ESM) allows for a high degree of ecological validity compared to laboratory research, at 
the cost of greater effort for participants. It would therefore benefit from implementations that reduce participant effort. In 
the present paper, we introduce a screenless wrist-worn one-button wearable as an unobtrusive measurement method that 
can be employed in ESM designs. We developed an open-source Android application to make this commercially available 
wearable easily configurable and usable. Over the course of six pilot studies, we explored the technical viability (e.g., bat-
tery life, reliability of inputs) of this wearable. We compared data quality between wearables and smartphones in a within-
subjects design, exploring both the input options of using the number of button presses as a Likert scale, as well as using 
the angle of the device as a Physical Analogue Scale. Assessments of Extraversion made with either of these methods were 
highly correlated to comparable assessments made with comparable methods on a smartphone (i.e., Likert scale or a Visual 
Analogue Scale, respectively). Furthermore, in a preregistered ESM field experiment (N = 134, 4 weeks), we compared 
compliance to real-life event triggers between wearable devices and smartphones. We found higher numbers of logged events 
in the wearable group, indicating better adherence to the event-contingent scheduling. Overall, despite the device’s minimal 
capabilities and resulting limitations, one-button wearables can be beneficial for use in ESM designs.

Keywords Experience sampling method · Ecological momentary assessment · Wearables · Ambulatory assessment · 
Physical analogue scale

High ecological validity is a hallmark of field research (Mehl 
et al., 2014). This necessitates methods and instruments that 
facilitate optimal performance in these types of studies. Wrist-
worn one-button wearables are a tool that has received little 
attention for use with in situ self-report methods (see van Berkel 
et al., 2017 for a review; Larsen et al., 2017; Stieger et al., 2020, 
2022). These devices are versatile, allowing inputs on a Likert 
scale via a button, and analog inputs via a Physical Analogue 
Scale (PAS) (Stieger et al., 2020) using an accelerometer. 
They are especially convenient for active in situ self-tracking 

of frequent events. They are low effort and designed to reduce 
participant burden and thereby increase data quality. However, 
due to their lack of adoption, little is known about their reliabil-
ity and usefulness. In this paper, we aim to validate one-button 
wearables in self-report research.

The experience sampling method

As a longitudinal in situ self-report method, the experience 
sampling method (ESM) allows the generation of natural-
istic data of high external validity (Larson & Csikszentmi-
halyi, 1983). This method is also commonly referred to as 
ecological momentary assessment (EMA) or ambulatory 
assessment (AA). In ESM designs, participants are required 
to fill out questionnaires that are either scheduled for certain 
times (Mehl et al., 2014) as indicated by the device, either at 
pseudo-random time points (signal contingent) or regularly at 
specific times (interval contingent), or as a result of an event 
occurring in the participants’ everyday life (event contingent). 
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Scheduling occurs through notifications, also referred to as 
‘bings’.

ESM designs place a higher burden on participants than 
laboratory experiments or surveys because ESM requires par-
ticipants to regularly interrupt their daily routines for data entry, 
over an extended period. Managing this burden is thus essential, 
as ESM designs with high burden can lead to reduced data qual-
ity, more missing data, and more frequent and earlier dropout 
(e.g., Eisele et al., 2022; Fuller-Tyszkiewicz et al., 2013; Klas-
nja et al., 2008). Due to the high rates of smartphone use in 
the general public (https:// www. stati sta. com/ stati stics/ 330695/ 
number- of- smart phone- users- world wide/), smartphone apps on 
the participant's personal devices, instead of carrying an addi-
tional device, are often used to reduce participants burden in 
an ESM study (van Berkel et al., 2017). However, several other 
systems of various levels of specialization have been proposed 
to alleviate participant burden. These include devices physically 
situated in a participant’s environment and operated via touch or 
button inputs. For example, Vega et al. (2018) explored several 
prototypes of devices to allow patients to report symptoms of 
Parkinson’s disease, including physical buttons fixed to a sheet 
of paper, and found that paper diaries had the highest compli-
ance. Heed, a device developed by Paruthi et al. (2018), was 
specifically designed as a situated self-reporting device. Heed 
devices can be placed in a space the user visits frequently, are 
associated with individual ESM items, and can prompt the par-
ticipant for an interaction via a flashing LED. Response options 
are printed just inside the circular, touch-sensitive rim of the 
Heed device, a few centimeters in diameter, which participants 
use to interact with the Heed device.

Another general approach to minimizing the burden is to 
minimize the interaction itself by using microinteractions 
(Ashbrook, 2010), which are interactions that take 4 s or less 
to complete. This short time includes both access time (i.e., the 
time required to retrieve and activate the device), and the usage 
time (i.e., the time required for the intended interaction with 
the device). Microinteractions mean that usually only a sin-
gle item can be answered on a single measurement occasion; 
however, the number of occasions can be increased without 
increasing the overall burden. This use of microinteractions 
has shown to be beneficial for compliance rates when used on 
smartwatches (Intille et al., 2016; Ponnada et al., 2017).

However, there is mixed evidence regarding the use 
of microinteractions on smartphones. Chan et al. (2018) 
found good compliance and low burden when an item was 
displayed on a smartphone’s lock screen, which could be 
answered with the same gesture to unlock the device (e.g., 
swipe). This reduces perceived access time, as participants 
would already have to retrieve their phone and swipe to 
unlock it. The drawback of this design is that the sampling 
time is not set by a pseudo-randomly timed bing, but by the 
participants themselves. On the other hand, using bings for 
microinteraction-based ESM is also problematic, because 

the access time for smartphones takes up a considerable por-
tion of the interaction. This was indicated by Ponnada et al. 
(2017), where most participants using microinteraction-
based ESM on smartphones dropped out shortly after the 
study began, reporting increased burden as a reason for drop-
out. Considering this, wrist-worn wearables, which offer 
minimal access time, may be a good alternative for ESM.

Wearables

We define a wearable in this context as an electronic device 
that can be worn on the body. While there are many differ-
ent methods, a common form factor is a wrist-worn device, 
similar to a watch. Smartwatches have already been used 
in ESM research (e.g., Hernandez et al., 2016; Intille et al., 
2016; Laborde et al., 2021; Ponnada et al., 2017, 2022). Soft-
ware solutions for implementing ESM on smartwatches are 
also available (Khanshan et al., 2021; Volsa et al., 2022), 
yet rare. Past research indicates that while microinteraction-
based ESM designs on smartwatches might produce higher 
perceived burden in terms of feelings of interruption than 
traditional ESM on smartphones, this approach also results 
in higher compliance (Intille et al., 2016). Furthermore, as 
mentioned above, smartwatches typically produce acceptable 
burden in the context of microinteractions, while use of smart-
phones has sometimes failed due to participants’ perception 
of excessive burden (Ponnada et al., 2017). This suggests that, 
at least in the context of microinteractions, the convenience 
of a wrist-worn wearable might alleviate participant burden.

One-button wearables are similar to smartwatches but have 
received little attention in the ESM field so far (Larsen et al., 
2017; Stieger et al., 2020, 2022). While their interfaces are 
limited, one-button wearables lend themselves well to micro-
interactions since they involve short and simple interactions, 
which are likely to minimize burden. One-button wearables 
also benefit from long battery life, which minimizes the need 
for maintenance. These features make one-button wearables 
a solid candidate for usage in an ESM study design.

For the following studies, we used MetaMotionR devices 
by Mbientlab (shown in Fig. 1, see https:// mbien tlab. com/ 
docum entat ion/ for device specifications). These boards 
(built around an ARM 32-bit processor) come with fitting 
cases and rubber wrist bands and are commercially avail-
able through retail. Their features include an acceleration 
sensor, a tactile button, a coin vibration motor, and a red, 
blue, and green light-emitting diode (RBG-LED). One-button 
wearables can provide options for user input and feedback. 
Furthermore, they have an in-built program memory, 64 kB 
RAM, a timer (for exact time measurements), and a 60-mAh 
lithium polymer battery which can be charged with a micro-
USB cable.

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://mbientlab.com/documentation/
https://mbientlab.com/documentation/
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To make these devices easily usable for ESM research, 
we created an open-source application for Android smart-
phones. All communication between the smartphones and 
wearables is via Bluetooth. It is important to note that the 
wearable generally operates without the need for a connec-
tion to a smartphone; i.e., the smartphone is only necessary 
to program the wearable and to download the data from the 
wearable after data collection is over. The application can be 
downloaded from the Google Play Store (https:// play. google. 
com/ store/ apps/ detai ls? id= at. jodli dev. metaw ear. study), and 
the source code is available on GitHub (https:// github. com/ 
KL- Psych ologi cal- Metho dology/ ESM- Board- Admin).

The input behavior of the wearable can also be configured 
via the smartphone application; i.e., how it behaves, and what 
is logged when the button is pressed. The device can either log 
the duration of presses or the number of consecutive presses. 
The latter counts the number of button presses that occur no 
more than 3 s apart from each other (i.e., if a press occurs less 
than 3 s after the last press, the counter is incremented, and 
the 3-s timer is reset; otherwise, the current count is logged). 
Counting of consecutive presses can be recorded using a 
sequential Likert scale. In addition to a mandatory button 
press parameter, the device can also optionally log accelera-
tion. Acceleration data can be used to calculate the device’s 
orientation in 3D space, as explained in more detail below in 
the section regarding the PAS. Figure 2 shows screenshots of 
the button behavior overview as well as the logging options.

The application can also configure the feedback behavior 
for each button press. Each device reaction (i.e., user feed-
back to a button press) activates the device’s LED (in one 
of the colors red, green, or blue) and optionally activates the 

vibration motor. For the latter, the user can configure the dura-
tion and intensity of the vibration (Fig. 3, left). If the device 
is configured to log the button press count, then there are two 
additional configurable options (Fig. 3, right). One is for the 
device to cycle the LED color in a predictable pattern with 
each button press (i.e., green, blue, red, green) instead of one 
single color. The other option is to configure timeout feedback 
(with similar options to the button feedback), which occurs at 
the close of the 3-s window for consecutive button presses.

Beyond the button, the application also has several options 
to configure bings. With one-button wearables, bings have the 
same feedback options as button presses (i.e., flashing the LED, 
activating the vibration motor). Furthermore, a bing can be set 
to log the timestamp of occurrence alongside the current battery 
percentage. Fixed bings are configured to occur daily at a spe-
cific time. Figure 4 shows screenshots of the bing overview and 
configuration options of a fixed bing. In addition, the application 
also has options to create pseudo-random bings. These are con-
figured to occur in a set time frame. Due to device limitations, 
only one random time frame can be set, which can, however, 
be used for multiple bings. For example, it is possible to have 
one bing occur between 1:00 p.m. and 2:00 p.m. and another 
between 3:00 p.m. and 4:00 p.m., as these both have a 1-h time 
window. Overall, the device can store around five timers. This 
maximum is dependent on the specific type of timers used, as 
both pseudo-random bings and reminders (see below) internally 
require an additional timer. The mentioned maximum of five 
timers is the case for pseudo-random bings including reminders. 
The application also has options for reminders (i.e., if no reaction 
to the initial bing occurs), which can be configured to occur in 
set intervals and for a set number of times and are interrupted 
by button inputs. For example, a scheduled reminder will not 
occur if there is a button pressed beforehand. Due to technical 
limitations, there can only be one reminder configuration, but 
reminders can be reused across bings (i.e., all reminders share 
the same interval time and number of occurrences).

The aforementioned features are those which are likely 
most commonly used in ESM studies. However, the appli-
cation has some additional features, such as the capability 
to restore parts of the configuration after a reboot. See the 
supplement for additional details and screenshots concern-
ing the configuration application.

Physical Analogue Scale (PAS)

With the limited input options of one-button wearables, it is 
important to make use of any information available to expand 
the device’s capabilities. One source of information is the 
accelerometer, which can be utilized to infer the device’s angle, 
and, thereby, the angle of the participant’s lower arm relative 
to the ground plane. This angle can be recorded using a PAS 
(Stieger et al., 2020, 2022). By assigning one scale-end to the 

Fig. 1  The MetaMotionR wearable in its wrist band

https://play.google.com/store/apps/details?id=at.jodlidev.metawear.study
https://play.google.com/store/apps/details?id=at.jodlidev.metawear.study
https://github.com/KL-Psychological-Methodology/ESM-Board-Admin
https://github.com/KL-Psychological-Methodology/ESM-Board-Admin
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horizontal position of the lower arm (0°) and the other to the 
upright vertical position (90°), participants can indicate a value 
in a gradual fashion, similar to a Visual Analogue Scale (VAS).

This angle calculation makes several assumptions. When 
resting in an (approximate) inertial system, the only accelera-
tion it will measure is the earth’s gravitation. By analyzing the 
components of this vector, the angle between the wearable’s 
axes can be calculated. When the wearable is worn on the 
wrist, the y-axis will be parallel to the axis of the lower arm. 
This relation will not change, regardless of how the wearable 
is rotated around the wrist. This angle can be calculated using 
equation 1, where θ� denotes the angle in degrees, and x, y, and 
z denote the components of the measured acceleration.

This calculation is done automatically in the Android 
application mentioned above, meaning that the logfiles con-
tain angles for all axes, and the resulting acceleration log 
data will directly contain the PAS values.

(1)�
�

= atan

�

y
√

x2 + z2

�

×
180

�

The maximum value of the scale can also be set in this 
equation. The factor in the numerator of the last term is twice 
the maximum value. In Eq. (1), this is set to 180 for angles, 
so the scale ranges from 0° (horizontal) to 90° (vertical). 
However, this value could also be set to 200 to create a scale 
from 0 to 100, comparable to some VAS implementations.

The sign of this angle is dependent on how the wearable is 
worn (i.e., just how a watch could also be worn with the clock-
face appearing upright or upside down), as well as which arm is 
used (i.e., left- or right-handed). However, the orientation around 
the wrist does not impact the calculation. Participants may wear 
the device on the back of their wrist, the inside, or any other 
position around the wrist. As long as each participant wears the 
device in a consistent location, the sign will be consistent.

One important note regarding this calculation is that it only 
gives the elevation angle utilizing a spherical coordinate sys-
tem. Therefore, while PAS values below the lower scale end 
(i.e., below horizontal) can be distinguished from a value of 
the same angle above the lower end, values above the upper 
end (i.e., with the arm angled beyond vertical) will be mir-
rored back and are indistinguishable from values of the same 

Fig. 2  Screenshots of button configuration pane (left) and button logging configuration screen (right)
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angle below the upper end. Theoretically, it would be possible 
to infer the absolute orientation of the wearable; however, the 
radial orientation of the wearable on the wrist is uncertain, as 
this is dependent on where on the wrist the wearable is located 
(i.e., inside or outside of the wrist) and how the wrist is angled 
(e.g., angled in a way that improves button access). For this 
reason, it is important to record on which arm participants 
wore the wearable, so the affected data sets can be mirrored 
appropriately. Furthermore, participants must be instructed 
to keep both the arm and the orientation of the device on the 
wrist consistent throughout the duration of the study.

Present studies

The aim of the present series of studies was to evaluate the 
application of one-button wearables within ESM studies. 
First, we conducted six pilot studies. Pilot studies 1 and 2 
were concerned with the duration of battery life, with pilot 
study 1 assessing relatively new devices and pilot study 2 

assessing devices of the same batch 2 years later, to account 
for aged batteries. Pilot study 3 assessed whether the device 
is prone to accidental button inputs. Pilot studies 4 and 5 
assessed the variation in angle measurements that are nec-
essary for the PAS. Pilot study 6 assessed the accuracy of 
user-estimated angle measurements. We further compared 
the same measurements performed using Likert scales on 
the wearable (i.e., the number of button presses represent the 
position on the Likert-type scale) and Likert scales used on a 
smartphone. Similarly, we compared PAS measurements done 
on the wearable to VAS measurements done on a smartphone 
within participants.

Finally, we performed a large study (N = 134; 28 days, 
k = 3045 data points) using mainly event-scheduled sam-
pling to compare event-related compliance between the use 
of wearables and smartphones in a between-subjects experi-
mental design. The study was designed to answer the follow-
ing research question: are wearables beneficial for data quality 
(e.g., fewer missing data) compared to using a smartphone for 
data collection?

Fig. 3  Screenshots of different button feedback options: for duration logging (left) and for count logging (right)
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Pilot study 1: Battery test 1

A key aspect of the use of one-button wearables for ESM is 
the reduction of participant burden. One aspect of burden is 
the requirement for maintenance. An example of this issue is 
demonstrated by Hernandez et al. (2016), whereby participants 
had more trouble keeping smartwatches charged than smart-
phones. While the device used in this study has a small battery 
(60 mAh), the very low power required to operate the wear-
able results in overall long battery life. In order to empirically 
analyze the device’s battery life, we performed a pilot study.

Method

Materials

We tested the battery life of six randomly selected weara-
bles (out of a pool of 170 wearables), with the goal of 
acquiring an estimate of a baseline battery run-time. These 
wearables were fully charged before the start of the test.

Wearable configuration

All wearables were configured to trigger a bing once a day 
using a pseudo-random timer, and once a day using a fixed 
timer. For each bing, the wearables would turn on their LED 
and vibrate. Reminders were not used. While this configura-
tion is less complex than one that would be used in a typical 
ESM design, it is similar to the configuration used in the 
main study and can help to establish expectations for base-
line battery life (as devices are always on, and functions like 
Bluetooth continuously consume power).

For three of the wearables (numbers 1, 3, and 6), the 
study conductor reacted to bings with a button press to create 
a log; however, this was only done when the study conductor 
was present, resulting in 140 reactions to 257 bings (54.4%). 
The study conductor did not react to bings on the other three 
wearables. This was done to assess whether or not active 
logging would influence the devices’ battery life.

One wearable (number 1) experienced a software error 
that caused the LED to stay turned on after a bing, only 

Fig. 4  Screenshots of the bing configuration overview pane (left) and configuration options for a fixed bing (right)
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resetting with the next bing. This software error has since 
been fixed.

Results

Runtime was measured as the time between the first and 
last recorded bing, with the first entry generated at the time 
of configuring the device. The overall mean runtime was 
M = 46.62 days (SD = 7.54). Table 1 shows the runtime 
of the individual wearables. However, as mentioned above, 
one wearable showed anomalous behavior during one bing. 
Figure 5 shows the discharging curve of the logged battery 
percentage over the wearables’ runtime. The mentioned 
anomaly is noticeable in Fig. 5 in the curve for wearable 
1 toward the end of the first week. Excluding this device 
results in a mean runtime of M = 49.54 days (SD = 2.60).

Discussion

While one device behaved anomalously due to a software bug, 
causing increased battery drain, the other devices experienc-
ing more typical energy demand did not differ greatly in their 
runtime, with a standard deviation of less than 3 days. The 
two normally behaving devices that received button presses 
showed descriptively lower battery life than the other weara-
bles. However, this difference is comparatively small, and all 
wearables 2–6 showed practically similar performance.

Pilot study 2: Battery test 2

Lithium-ion batteries are used in the discussed wearable 
devices, yet they suffer from aging effects, reducing their 
capacity over time, dependent on use (Vetter et al., 2005). 
Due to this expected decline in capacity, we chose to repeat 
the battery test from pilot study 1 after approximately 2 
years to gain a longer-term view of the batteries’ behavior.

Method

The method was identical to that of pilot study 1, with the 
exception that no reaction presses to bings were performed. 
We used a separate batch of six randomly selected wearables 
from our pool of devices. All devices in that pool had been 
charged at regular intervals over a 2-year period to prevent 

the batteries from completely discharging. Due to the rela-
tively long battery life observed in pilot study 1, devices that 
were actively used in other studies were not actively charged 
more often, resulting in the number of charge cycles across 
devices being comparable.

Results

Figure 6 shows the trajectory of logged battery percentage 
over the wearables’ runtime. Despite our efforts to make 
sure all wearables were fully charged, the plot shows that 
the first data point of wearable 6 is slightly below 100%. 
Table 2 shows runtimes of this battery test in days. The aver-
age runtime was high, with a mean of 33.07 days, but with a 
higher variation in the overall runtime across wearables (SD 
= 9.65) compared to pilot study 1.

Discussion

The data show a decreased capacity of older batteries com-
pared to the newer batteries in pilot study 1. Not only has 
the overall runtime decreased, but the discharge patterns are 
heterogenous, with variability between devices being larger 
than in the previous pilot study 1. This can most likely be 
attributed to some wearables having been used more than 
others, or some being stored at optimal charge for longer. 
Still, the batteries in all devices in this sample exceeded 2 
weeks runtime, suggesting that devices with older batteries 
remain usable without the need to recharge regularly.

Both pilot studies 1 and 2 used 2 bings per day, which 
is sufficient for a range of ESM designs. However, some 
designs require a greater number of bings (e.g., compare 

Table 1  Battery runtime per wearable in days from pilot study 1

a  Devices for which the button was pressed. b Device in which the LED anomaly occurred once

Wearable no. 1ab 2 3a 4 5 6a

Runtime 31.99 51.11 47.10 49.17 53.11 47.20

Fig. 5  Battery charge (in percent) over time from pilot study 1
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observations per day in aan het Rot et al., 2012). A third bat-
tery test (available in the online supplement) suggests that a 
higher count of bings and reminders could diminish battery 
life, but remain in a usable range. Devices were tested using 
five bings per day, with five reminders per bing, consistently 
exceeded a runtime of 20 days.

Pilot study 3: Assessment of accidental 
button presses

Because the wearable is always operational and does not 
have to be unlocked like a smartphone, the wearable’s button 
might occasionally be pressed unintentionally (e.g., while 
asleep). To explore the possibility of unintentional button 
presses, we conducted a 1-week ESM study by instructing 
participants not to press the button altogether.

Method

Eight participants wore wearables for seven complete consecu-
tive days, including at night. Participants were from a conveni-
ence sample and were balanced in gender (four female, four 
male). Their average age was 31.88 years (range, 26–45, SD 
= 6.49). Participants were predominantly right-handed (seven 
right-handed, one left-handed), and most wore the wearable 
on their left wrist (six left, two right). Wearables were only 
removed for showers or similar activities, as the devices are not 
waterproof. All wearables were configured to register and log 
button presses. The button was pressed on each device before 
and after the study duration to ensure that the devices were 
working and would indeed register button presses. Participants 
were instructed not to press the button during the study duration 

(i.e., 1-week field phase) and were further instructed to note the 
number of intentional (but unwanted) button presses.

Results

The number of button presses reported by the participants 
was identical to the number of button presses identified in 
the log entries for all participants. No further (i.e., acciden-
tal) button presses were present in the data.

Discussion

While the number of participants in this study was small, the 
range of situations in which the wearables were worn was 
likely sufficient to cause accidental presses (i.e., during the 
everyday life of participants). For sleeping periods, we can 
rule out the possibility of conscious avoidance of pressing the 
button. If buttons were overly sensitive, involuntary move-
ment during sleep would have triggered a button press. We 
cannot fully rule out the possibility that participants had a 
heightened attention to not pressing the button while awake. 
This explicit instruction could not be avoided, because with-
out any instruction participants might accidentally or inten-
tionally press the button without making note of the event, 
making it difficult to measure unintentional presses. This 
setting is also comparable to a regular study setting, where 
participants have the instruction to only press the button under 
certain conditions and avoid any further inputs. Considering 
this, we expect that participants within a study setting would 
be able to avoid erroneous or accidental inputs.

This raises the question of whether or not the device reg-
isters all intentional presses. The device’s feedback options 
(i.e., vibration and light signal) should ensure that partici-
pants are able to recognize when the wearable has regis-
tered an input. Yet, to test the possibility that intended button 
presses by participants are not registered by the wearable 
(e.g., button not firmly pressed, data storage erroneous), we 
conducted a further empirical pilot study (pilot study 6).

While registering button presses reliably is useful for log-
ging (e.g., the time of an occurring event), augmenting this 
information with accelerometer data allows the configuration 
application to use this data as a PAS, as described above. 
To assess the reliability of the PAS, we first assessed the 
reliability of angle measurements made without human esti-
mation. Pilot study 4 assesses the device’s influence itself 
(e.g., position of the board within the wearable’s casing) 

Fig. 6  Battery charge (in percent) over time from pilot study 2

Table 2  Battery runtime per wearable in days from pilot study 2

Wearable no. 1 2 3 4 5 6

Runtime 40.94 41.94 36.93 35.93 17.72 24.93
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on angle measurements by using fixed angles without the 
devices’ wrist bands. Pilot study 5 expands on this with the 
use of wrist bands and the measurement of multiple differ-
ent angles.

Pilot study 4: Test of synthetic angle 
measurements without wrist bands

To be comparable to the VAS, the PAS needs to be accurate 
across several domains. We discuss the accuracy of estima-
tion by humans using the PAS in more detail in pilot study 
6. The angle measurement itself must also be reliable; that 
is, having the device at a fixed angle must produce the same 
logged value. While datasheets indicating the accuracy of 
the device accelerometers are available, this device-related 
reliability is also influenced by other factors. Sensor-specific 
accuracy would be sufficient for purely relative continuous 
real-time measurements (e.g., to track movement). However, 
in the specific application of the PAS, the absolute orienta-
tion of the sensor is relevant and may be affected by the rela-
tive orientation of components to each other. Each of these 
components might be influenced by deformations due to the 
action of pressing a button to obtain a measurement (i.e., the 
position of the sensor board within the plastic casing, the 
plastic casing in the rubber wrist band, and the rubber wrist 
band on the wrist). Furthermore, the anatomy of the wrist is 
neither uniform nor rigid, introducing another factor that can 
influence reliability. To assess these influences, we obtained 
measurements from wearables without wrist bands, affixed 
to a flat surface.

Method

Materials and procedure

Four wearables were used in this test. The wearables were 
used without the elastic wristband and were affixed to a table 
using adhesive tape. All wearables were configured to log 
acceleration on a button press, as well as activate their LED 
and vibration motor. The latter two configurations will likely 
be used as feedback for participants in a real application, 
and, hence, were set to ensure that these settings have no 
influence on the measurement. Each wearable button was 
pressed ten times in quick succession.

Results

We analyzed the measured device angles on the y-axis 
because this is the axis of interest for the PAS. All devices 
were affixed flat to the table; as such, they were expected to 

measure an angle close to 0°. We did not expect exactly 0° 
because the table was not ensured to be exactly level, and 
the circuit board orientation within the plastic casing might 
result in an angle.

Table 3 shows a summary of data from the four weara-
bles. A Kruskal–Wallis H-test indicated significant difference 
across wearables, H = 33.40, df = 3, p < .001. The devices 
also significantly differed in the variability of measured angles 
according to a Levene test, F(3, 36) = 4.98, p = .005.

Discussion

While the wearables significantly differed in the measured 
mean angle, this difference did not exceed 5°. This is likely 
due to slight differences of circuit board orientation within 
the casing. Furthermore, the range of measurements did not 
exceed 3° on any wearable, suggesting that measurements 
are generally consistent within wearables. Therefore, while 
slight differences were observed, these are minimal and 
should not introduce a substantial bias to measured angles, 
especially compared to the expected inaccuracy of a human 
user estimating an angle.

Pilot study 5: Test of synthetic angle 
measurements with wrist bands

After assessing the precision of the wearables’ acceleration-
based angle measurement, we also investigated the role of 
the rubber wrist band in the accuracy of wearables, includ-
ing their angles. The rubber band might slightly yield when 
the button on the wearable is pressed; therefore, the orienta-
tion change of the device caused by the button press might 
be amplified.

Method

In order to set the wearables to specific angles, we con-
structed a device consisting of a thick cardboard pipe fixed 
to a wooden plate on a hinge. Figure 7 shows this device. 
In its neutral position, the pipe is vertical (i.e., 90° from the 
ground plane). A wooden cutout triangle enables reliably 
aligning the pipe diagonally (i.e., 45° to the ground plane) 
or horizontally (i.e., 0° to the ground plane).

Table 3  Summary of angle data for each wearable from pilot study 4

Wearable M SD Min Max Range

1 0.12 0.32 – 0.65 0.37 1.02
2 – 4.55 0.27 – 4.91 – 4.02 0.89
3 – 2.53 0.84 – 3.68 – 0.94 2.74
4 – 1.82 0.96 – 3.11 – 0.84 2.26



 Behavior Research Methods

Four wearables were strapped to the pipe using the rub-
ber wristbands that would also be used by participants to 
wear the device. Each wearable was configured to log the 
acceleration on a button press. The pipe was then set to three 
different angles (0°, 45°, 90°). Each wearable was pressed 
nine times per angle. The pipe was rotated between each 
measurement, changing the orientation of the device’s x- and 
z-axes, but preserving the orientation of the measured y-axis.

Results

Table 4 shows data from each wearable.

Discussion

Data suggest that the target angle can be recovered relatively 
closely on average, with some device-dependent variations. 
Wearable 1, for example, shows both the highest range of meas-
ured values in the 45° condition, and the highest deviation from 
the target value in the 90° condition. Such effects might be due 
to a loose wrist band, a problem that is also likely to occur in real 

use of the device. Overall, the values vary the most in the 45° 
condition. Considering Eq. (1), one can see that small deviations 
in acceleration should impact angles close to 45° to the greatest 
extent, which fits the observed findings. Thus, the deviations 
observed in this condition should be representative of the maxi-
mum expected deviations, considering the use of a rubber wrist 
band and pressing of the button for a measurement.

Pilot study 6: Validation of angles, Likert 
scale, and PAS

In the previous pilot studies, we investigated the basic prop-
erties of the wearable itself. The next steps are to consider 
the input options available when the wearable is in use. Uti-
lizing only the button allows measurements on a Likert scale 
by counting the number of presses. Utilizing the accelerom-
eter allows measurements on a PAS.

Both measurement options come with challenges compared 
to their pen and paper (or digital) counterparts. With a visual 
Likert scale, all possible values coexist, and the appropriate 
value can be selected (and usually modified); however, with the 
button input, the value is represented by a sequence, depend-
ent on the users’ ability to keep the current count in memory. 
To aid the counting procedure, the wearable has a function to 
change the LED color with each button press, giving the users 
better feedback on when a button press has been registered. 
However, there are two other issues with the counting pro-
cedure: first, erroneous additional inputs cannot be corrected 
by the users; second, long delays of > 3 s between inputs will 
result in two separate measurements in the data file.

On the PAS, on the other hand, all possible values coexist. 
However, compared to the VAS, the PAS has its own issues. 
First, the PAS is highly dependent on the users’ ability to 
estimate angles. While users are able to judge specific points 
on a VAS fairly accurately (Reips & Funke, 2008), the same 
might not be true for the PAS. This is further compounded by 
the deformations that can occur when the button is pressed, as 
mentioned above in pilot study 4. Second, while users can eas-
ily set the value of the VAS to its end points, the end points of 

Fig. 7  The device used to fix wearables to specific angles

Table 4  Summary of measurements for each wearable and angle from pilot study 5

All values are in degrees

Target angle

0° 45° 90°

Wearable No. M SD Range M SD Range M SD Range

1 – 1.25 4.09 9.71 45.19 6.94 22.21 78.69 1.65 4.85
2 1.95 1.23 4.08 46.67 2.39 8.69 89.57 1.11 3.50
3 – 0.84 4.82 12.09 44.26 3.25 9.88 85.52 1.90 6.22
4 2.11 1.49 4.34 43.75 4.62 14.74 86.72 1.71 5.87
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the PAS might actually be relatively inaccurate. As the posi-
tion and orientation of the device on the user’s wrist cannot 
be predicted, the available data can effectively only be used 
to determine the polar angle in a spherical coordinate system. 
Therefore, angles above 90° (i.e., beyond the vertical apex 
point) result in mirrored values. This means that, while very 
intentional lower end measurements (i.e., angles noticeably 
below the horizontal) might be accurately identified, the same 
intention on the upper end (i.e., angles noticeably beyond the 
vertical) would result in attenuated values.

To validate the use of these scales on our wearable, 
we performed another pilot study using a within-subject 
design, by comparing values from Likert-type scales and 
PAS obtained from wearables to their counterparts on smart-
phones (visual Likert-type scale and VAS). Beyond that, we 
also tested participants’ ability to estimate predefined angles 
(0°, 45°, 90°), replicating the design from pilot study 5.

Method

Participants

A total of N = 58 participants took part in this study. Par-
ticipants were students at the Karl Landsteiner University 
of Health Sciences. The majority were female (Nfemale = 52, 
Nmale = 5, Nother = 1). Participants had a mean age of M = 
22.24 years (SD = 3.88, range = 18-37).

Materials

Each participant was provided with a wearable. The weara-
bles were programmed to log the number of button presses 
as well as the angle during each button press. For compari-
son, participants used their personal smartphones to fill out 
questionnaires in the web-app-based ESM software ESMira 
(Lewetz & Stieger, 2023).

The eight extraversion items of the German version of 
the Big Five Inventory (BFI) were used (Lang et al., 2001; 
Rammstedt, 1997). These items were answered both on an 
analog scale (VAS or PAS, depending on input device) and 
a five-point Likert scale (visually on a smartphone, or via 
wearables by pressing the button for 1–5 times). The BFI 
was selected because it usually has means near the center of 
the scale, and some spread across the scale (John and Sriv-
astava, 1999; Lang et al., 2001). Participants were, therefore, 
likely to vary interindividually, thus making full use of the 
scale overall. Furthermore, BFI is a trait concept that should 
be stable during the assessment phase across devices.

Procedure

Participants were first provided with the wearable and 
allowed to familiarize themselves with it. They were then 

instructed on how to access the questionnaires on the 
ESMira platform and confirmed the functionality of ESMira 
by filling out an initial questionnaire about demographic data 
and their wearable number for matching purposes.

First, participants were instructed to set their lower arm 
to 0° (i.e., horizontal position), then 45° (i.e., diagonal posi-
tion), and finally 90° (i.e., vertical position). Participants 
pressed the button once for each angle to make a measure-
ment. Second, participants answered each of the eight extra-
version items first by using the VAS on the smartphone, and 
then the PAS on the wearable, before moving on to the next 
item. Third, participants again estimated angles, this time in 
descending order from 90°, 45°, down to 0°. Fourth, partici-
pants answered the extraversion items again, but on a five-
point Likert-type scale: first, on the smartphone using the 
classical visual representation of the Likert scale; second, 
on the wearable by pressing the button from 1 to 5 times 
depending on the desired value.

Analysis

During coding, wearable data were assigned to one of the 
conditions (i.e., first or second angle measurement, Likert 
scale measurement, or PAS measurement). Due to some 
erroneous entries, some data could not be assigned (e.g., if 
there were nine instead of eight measurements in the PAS 
condition). Data that could not be clearly associated with a 
condition were discarded.

Results

Angle data

After coding, data from all 58 participants were available. 
However, six individual angle blocks (5.17%) were dis-
carded, leaving a total of 330 observations (110 per angle). 
The mean angles were 0.25 (SD = 8.91) in the 0° condition, 
40.89 (SD = 11.66) in the 45° condition, and 77.60 (SD = 
8.59) in the 90° condition. Figure 8 shows the correspond-
ing violin plots.

Test–retest reliability was also assessed for the 45° angle 
specifically. This target angle was of interest because it was 
preceded by another angle in both instances (i.e., it followed 
the 0° target angle in the first angle estimation sequence, or 
the 90° target angle in the second). Thus, its estimation was 
approached from different directions for each measurement. 
After discarding six incomplete pairs (10.34%), data from 
52 participants were left. Figure 9 shows histograms of the 
estimated angles for each of these two measurements. The 
right-shifted distribution in the downward-condition com-
pared to the upward-condition indicates that participants’ 
estimations of the 45° target angle were higher in the latter. 
A Wilcoxon signed-rank test indicated that the distribution 
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for the upward estimation (M = 37.13, SD = 12.97) and the 
downward estimation (M = 44.52, SD = 9.27) significantly 
differed in their location (d = 0.66, V = 297, p < .001).

Likert scale data

After discarding one Likert scale data block (1.72%), data 
from 456 individual observations across 57 participants were 
available for the Likert scale comparison. Table 5 shows the 
correspondence between the wearable and the smartphone 
devices.

The Spearman rank correlation between smartphone data 
and wearable data on the Likert scale was r = .96 (p < .001). 
A total of 11 observations (2.4%; generated by five partici-
pants) did not match up; however, a χ2-test did not indicate 
that this deviation was significant (χ2 = 0.11, df = 4, p > 
.999). Cohen’s κ also indicated high agreement between the 
scales (κ = .97; 95% CI: .95, .99).

Analogue scales data (i.e., VAS and PAS)

After discarding three PAS data blocks (5.17%), data from 
440 observations across 55 participants were available. The 
angles of the PAS were rescaled for better comparability 
between scales, so that the maximum angle (i.e., vertical 
scale end) would be at a value of 100 instead of 90. Two 
data points were identified as outliers because the difference 
between scales exceeded 50 (i.e., more than half the scale) 
and hence were removed, leaving a total of 438 observations 
for analysis.

On the item level, the two scales (PAS vs. VAS) were 
highly correlated over all items, r = .89 (p < .001). On the 
scale level (i.e., with the items averaged calculating the 
Extraversion score), the correlation increased to r = .95 (p 
< .001). These high correlations, as well as inspections of 
scatter plots, indicated a linear relationship. A linear mixed 
effects model was used to further assess correlations (see 
the online supplement for the model specification) with 
a multilevel approach to account for the grouping of data 

points within participants. The regression was performed 
on transformed data, with the difference between PAS and 
VAS serving as criterion variable, and the VAS values as 
predictor variable. If both scales were equal, this difference 
should be 0 across all possible VAS values, resulting in a 
slope of zero.

The results of this model are shown in Table 6. The VAS 
value predictor had a significant slope, indicating a measur-
able bias. The positive intercept of 9.34 indicates that the 
PAS significantly overshoots the VAS at the lower scale end 
(i.e., for VAS values close to 0). The significant negative 
slope of – 0.25 indicates that PAS values do not grow as fast 
as VAS values, resulting in the PAS values being lower than 
corresponding VAS values at the other scale end (i.e., values 
close to the VAS scale end at 100). This is also evident by 
the mismatch between the regression line and the expected 
line in Fig. 10.

Discussion

Considering the angle data overall, a similar pattern of devi-
ation as in pilot study 5 was observed, such that there were 
lower deviations at the scale ends compared to the middle. 
The standard deviations were considerably higher than that 
in pilot studies 4 and 5; however, this was expected because 
this condition adds further variance to the orientation of the 
device (e.g., the wearable on the wrist might be at a slight 
angle to the overall angle of the lower arm, and the wrist 
band might deform more if worn loosely). The means of the 
angle estimations suggest a progressive negative bias, with 
0° being the most accurately estimated target angle, and 90° 
undershooting the most. These observations are similar to 
those in pilot study 5.

The angle estimation also seems to be influenced by the 
direction of the measurement; for example, whether a par-
ticipant raises (vs. lowers) their arm to reach the target angle. 
Participants typically raise their arm for a measurement in 
most situations. Therefore, we expect that such an effect 
would have little influence in a typical study of this kind.

Fig. 8  Violin plots of measured angles for each target angle from 
pilot study 6

Fig. 9  Histograms for the 45° target angle from pilot study 6, sepa-
rated for upwards and downwards estimation
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The comparison of PAS and VAS shows a pattern simi-
lar to that of the angle estimations on the upper scale end, 
with participants increasingly underestimating values on the 
upper end of the VAS. However, in contrast to the direct 
angle estimation, in which the 0° angle was the most accu-
rately estimated angle, the PAS shows an initial overestima-
tion of low values on the VAS. Overall, this creates a pattern 
of PAS values being attenuated towards the center of the 
scale, compared to the VAS. Despite these mismatches, the 
scales remain highly correlated, particularly when averaged. 
This suggests that the two scales are similar in their prop-
erties. Comparisons across the scales would be difficult to 
correctly interpret; however, comparisons within the PAS 
should appropriately discriminate values.

In contrast to the PAS-VAS pairing, the Likert scale does 
seem to be directly comparable. The data show only occa-
sional mistakes with the Likert scale, with most measure-
ments (97.6%) matching up between both input methods. 
This suggests that participants are generally capable of 
counting and entering correct values.

One limitation of the PAS is that it may be influenced by 
gender. Male participants are typically better at spatial abil-
ity tasks (e.g., mental rotation, Maeda & Yoon, 2013) than 
female participants. This might influence the estimation of 
angles. Effects of gender were not assessed in the present 
study, due to only five male participants in the sample. See 
the supplement for a descriptive comparison of males and 
females.

Main study: Event compliance in a field 
setting

The final study investigated the effects of the wearable device on 
participants’ event compliance; that is, reacting to certain events 
in daily life and logging them using the device. Event-based 

Table 5  Comparison of Likert scale entries per device from pilot study 6

Smartphone

1 2 3 4 5

Wearable 1 61 0 0 0 2
2 0 103 1 0 1
3 0 0 86 2 0
4 0 0 1 137 2
5 0 1 0 1 58

Table 6  Results of linear mixed effects model for analogue scales data from pilot study 6

NVPN = 55, Nobs = 438, ICC = .26
ICC = intra-class correlation of the null model

Fixed Random

B CI SE t p SD

Intercept 10.03 6.78; 13.28 1.65 6.07 < .001 10.26
VAS value – 0.26 – 0.30; – 0.22 0.02 – 11.68 < .001 0.12

Note. The solid line indicates the regression line of the mixed effects model, while the
dashed line shows the expected line if both scales were equivalent.  

Fig. 10  Scatterplot of VAS values and corresponding PAS values 
from pilot study 6
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scheduling places responsibility on the participants because they 
must react to a signal reminding them of their study participation 
and also actively build an association between an event in their 
lives and filling out a questionnaire about this event.

In this study, laughter was chosen as an ‘event’ because 
it is a potentially frequent, transient, and overt behavior. 
Laughter has been studied previously using diary methods. 
For example, Kambouropoulou (1930) and Graeven & Mor-
ris (1975) had participants record detailed descriptions of 
laughter events. Mannell and McMahon (1982) and Mar-
tin and Kuiper (1999) also had participants record laughter 
events using short pen-and-paper questionnaires, akin to 
using event-contingent scheduling in ESM designs.

One of the first studies using a one-button wearable for self-
tracking events was a case study by Larsen et al. (2017). To 
date, there has been no investigation of the effects that one-
button wearables have on compliance. Participant burden is 
an important driver of motivation, and, thus, compliance. We 
hypothesized that, when used properly, one-button wearables 
would lower the burden for participants compared to smart-
phones. Compliance with recording events is hard to assess 
because a validated reference value of event frequency is not 
available. However, given random assignments to groups, we 
can assume that the average frequency would be equal across 
groups. Further, considering that participants are far more likely 
to not report an event rather than report events that have not 
happened, either intentionally or by accident (see pilot study 
3), we can assume that burden would bias the results by reduc-
ing the count of logged events. We, therefore, assume that an 
observed difference in the count of logged events indicates that 
the group with the higher count is closer to the actual number of 
events (i.e., a higher fraction of events that happened have actu-
ally been logged). Thus, while actual event compliance remains 
unknown, a difference in logged event count can be interpreted 
as the group with higher logged event count having better event-
compliance. Hypothesis 1 is, therefore, that the group using 
one-button wearables will have a significantly higher number 
of events logged on average than the group using smartphones 
in an experimental design with random assignment to groups.

Due to the lower burden, we also expect the participants 
in the wearable group to be less likely to delay entering an 
event. We would, therefore, expect to see a bias for later event 
times in the smartphone group. Therefore, Hypothesis 2 is 
that the average time of day for logging laughter events is ear-
lier in the wearable group compared to the smartphone group.

Lastly, as we measure happiness, both on a VAS and a 
PAS, depending on the device used, we can compare the two 
measuring methods, similarly to pilot study 6. At the time 
of planning of this study, we expected both measurement 
methods to work similarly; thus, our Hypothesis 3 is that 
the mean happiness scores are equal across the one-button 
wearable and smartphone groups.

Method

Preregistration

The design plan, sampling plan, analysis plan, and hypotheses 
of this study were preregistered on the Open Science Frame-
work (OSF) and can be accessed at https:// osf. io/ yjgfu. However, 
there were some deviations from the preregistration. First, we 
did not reach the preregistered sample size. See the participants 
section below for a rationale on why we believe the used sample 
size is sufficient for the current study. Second, we stated in the 
preregistration that we would exclude participants who did not 
own an Android smartphone. However, we had since acquired 
Android smartphones to lend to participants, which allowed us 
to also include those who did not own an Android smartphone. 
Furthermore, the application became available on iOS later in the 
data collection phase, allowing for the inclusion of participants 
with iPhones. Third, we expanded the data cleaning procedure 
and revised one preregistered exclusion criterion; these changes 
are further explained in the statistical analysis section.

We deviated from the analysis plan for Hypothesis 1. Ini-
tially, we mentioned the use of a t-test in the preregistration for 
this analysis. However, we realized later that generalized mixed 
effects models (specifically negative binomial mixed effects 
models) are more appropriate for count data. Furthermore, we 
realized over the course of data collection that we had several 
other variables that could serve as indicators for participant moti-
vation. We, therefore, include these as covariates in our model for 
Hypothesis 1. We made sure that these changes would not lead to 
different main findings by including the originally preregistered 
analyses in the supplement. Beyond the preregistered analysis, 
we performed some exploratory analyses, which were not pre-
registered, and which are reported in their own section below.

Participants

A power analysis, using the smallest effect sizes reported by 
Martin and Kuiper (1999), r = .1, was used as benchmark for 
expected comparable effects of personality on laughter. Using 
this effect size, a power calculation indicated a required sample 
size of N = 614 (α = 5%, power = 80%, one-sided). However, 
the longitudinal design increases power due to the repeated 
measurements. Using an approach presented by Twisk (2006, 
p. 123), we calculated a required sample size based on the 
expectation that we would obtain at least one observation per 
day from each participant (thus using 28 as number of level 
1 units), and an expected intraclass correlation coefficient 
(ICC) = .3, resulting in the preregistered sample size of N 
= 200. However, this sample size was based on the smallest 
expected effects for personality. The main group difference 
(i.e., Hypothesis 1) was expected to have a small-to-medium 
effect size (r = .2) which, as mentioned above, would result 

https://osf.io/yjgfu
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in a total sample size of N = 50. Therefore, we believe the 
reached sample size of 134 to be sufficient for this study.

A total of 167 participants began participation in the study 
(82 in the wearable group, 85 in the smartphone group). 
Of these, 147 participants finished the study by completing 
the final questionnaire (70 in the wearable group, 77 in the 
smartphone group). Thirteen participants (11 from the wear-
able group, two from the smartphone group) were excluded 
due to technical issues (e.g., malfunctioning devices, loss of 
data) or not completely following the study protocol (e.g., 
indicating that they only participated on weekends). The 
analytic sample size was, therefore, N = 134. Of these, 59 
participants were assigned to the wearable group and 75 
to the smartphone group. The difference in group size was 
due to a larger dropout rate in the wearable group. How-
ever, dropout was not statistically significant according to 
a binomial test (p = .195), and the groups were similar in 
their demographics. Participants in the wearable group were 
mostly female (66%; 39 female, 20 male) and, on average, 
aged 30.47 years (range, 18–74, SD = 14.22). Participants 
in the smartphone group were also mostly female (68%; 51 
female, 23 male, one other) and, on average, aged 31.11 
years (range, 18–85, SD = 13.79). Overall, participants were 
mainly female (67%; 90 female, 43 male, one other) and, on 
average, aged 30.83 years (range, 18–85 years, SD = 13.93).

Design and procedure

Each participant was invited to an introductory meeting. 
Participants were first given an overview of the study, and 
then signed an informed consent form if they decided to 
participate. During this meeting, participants were assigned 
to one of the experimental groups (wearable vs. smartphone) 
according to a pre-randomized list in order of appearance. 
Both groups used their smartphones with the application 
ESMira (Lewetz & Stieger, 2023). Due to ESMira not being 
available on iOS (i.e., iPhones) for most of the data collec-
tion period, 17 participants (12.7%) who were iPhone users 
were given Android smartphones with ESMira preinstalled 
to borrow. As mentioned above, this was a deviation from 
the preregistration. Participants were then given the required 
equipment (i.e., a wearable in the wearable group, or a bor-
rowed smartphone if necessary) and were assisted in set-
ting up ESMira. After this initial meeting, participants were 
asked to follow the study protocol for 28 days.

Laughter events were defined as a ‘belly laugh’ or ‘fit of 
laughter’. A belly laugh was defined as follows: “A belly 
laugh means a sincere, loud laughter, coming from the heart. 
It moves the whole body, especially the belly and chest. It 
is characterized by rhythmic movement of the diaphragm 
and is usually triggered automatically.” A fit of laughter was 
defined as follows: “A fit of laughter is a severe laugh lasting 

a longer time, accompanied by tears and the feeling of being 
unable to stop.” The exact German definitions given to the 
participants can be found in the supplement.

The general task for the daily routine was to log laugh-
ter events, but only if it met the definition of a belly laugh 
or a fit of laughter (exact definitions were given during the 
introductory meeting). Whenever a laughter event occurred, 
participants indicated this on their device, and also indi-
cated the type of laughter (i.e., belly laugh or fit of laughter) 
and rated their happiness during the event. In the wearable 
group, laughter type was indicated by pressing the button 
either once or twice (for belly laughs or fits of laughter, 
respectively). Happiness was rated using the PAS. In the 
smartphone group, the type of laughter was a selectable item 
(technically realized as a two-point Likert scale), and happi-
ness was rated via a VAS.

In addition to this event-based measurement, partici-
pants would also receive three pseudo-random bings per day 
(between 9:00 a.m. and 6:00 p.m.), prompting them to rate 
their current happiness independent of any laughter. In the 
wearable group, the bing would be signaled by the device 
vibrating and activating its light, to which participants were 
asked to react with a PAS measurement (this measurement 
was marked as a reaction by using three button presses). In 
the smartphone group, the bings were provided as notifica-
tions, unlocking a single-item questionnaire with a VAS.

Participants in the wearable group were instructed to con-
sistently wear the device on the same arm and in the same 
orientation, given the findings from our pilot study of the PAS 
mentioned above. Most participants reported adhering to this 
instruction, with only one participant indicating in the cross-
sectional questionnaire to have switched sides at least once. 
Almost all participants also reported that they made sure the 
orientation was consistent, with only four participants report-
ing that the orientation was changed at least once1.

At the end of the day, following a customizable bing, 
which was defaulted to occur at 8:00 p.m., participants in all 
groups filled out a short end-of-day questionnaire on their 
smartphones using the ESMira application.

After 4 weeks, participants completed a final cross-sec-
tional questionnaire on an online platform, which included 
items to assess demographics and personality. Participants 
were thanked and debriefed and offered an overview of their 
personal data if they were interested.

Materials

The daily end-of-day questionnaire consisted of four ques-
tions. For the first two questions, participants were asked to 

1 As Hypotheses I and II did not relate to the PAS, we included these 
participants in the corresponding analyses. Separate analyses exclud-
ing these participants did not substantially change the results.
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recall or estimate how many laughter events of each category 
they believe they had forgotten to log. Participants were 
also asked to provide the time they went to bed the previous 
night, as well as the time they got out of bed in the morning. 
These last two items were used to group laughter events 
according to waking periods rather than strictly by calendar 
dates (i.e., if a participant stayed up beyond midnight and 
experienced a laughter event, this event could be associated 
with the date of the previous day).

The final, cross-sectional questionnaire included some 
custom questions, as well as multiple established scales. 
For sociodemographic data, we asked for age and gender. 
Further concepts were assessed which were not analyzed 
as part of this study (i.e., satisfaction with life, personality, 
gelotophobia, cheerfulness).

Statistical analysis

Some participants continued the study protocol for several 
days after they were due to terminate it. We chose to exclude 
any data after the 30th day. This allowed us to use some 
of the additional data while keeping the risk of including 
erroneous entries low. There were instances of multiple 
responses to bings in both groups. In the wearable group, 
this was mainly caused by participants pressing the button 
multiple times, while in the smartphone group, there was an 
occasional software bug that allowed participants to fill out 
the questionnaire for a single bing multiple times. We chose 
to only keep the first response within 30 min after each bing, 
removing 13 entries (0.3%). This was done for compatibility 
between groups, as the questionnaires were only available 
for 30 min after each bing in the smartphone group. Event 
entries were then summed on each day for each participant. 
If a participant had not reported any events, but other data 
were available (i.e., responses to signals or the end-of-day 
questionnaire), the count was set to zero. However, if no 
data at all were available from a participant on a particular 
day, that day was removed. This resulted in 495 (13.2%) of 
all recorded days being removed. Note that the procedures 
described above were not part of the preregistration.

We originally overestimated adherence to the study proto-
col. In the preregistration, we stated that we would exclude 
subjects with no data on individual days (i.e., no event 
counts, no reaction to signals, and no filled out end-of-day 
questionnaire). Adherence to this protocol would, however, 
have reduced the number of analyzed participants to 52, thus 
drastically reducing power. Considering this, we changed 
our analysis to use mixed effects models, which will natu-
rally give participants with sparser data less influence, and 
also analyzed the full data set. Furthermore, we included 
the number of missing days per participant as a predictor 
in our models, as this variable may also be an indicator of 
overall motivation.

We calculated random-intercept, random-slope, general-
ized linear mixed effects models to address Hypothesis 1. All 
analyses were done with the GLMMadaptive package in R 
(Rizopoulos, 2022). GLMMadaptive allows fitting general-
ized mixed effects models using adaptive Gaussian quadra-
ture for a maximum likelihood estimation. The variances of 
the counts were considerably larger than the means in the 
descriptive data, indicating overdispersion comparative to a 
Poisson distribution, in which the variance and mean would 
be equal. The data were therefore assumed to follow a nega-
tive binomial distribution, which can model overdispersed 
count data. Overdispersion in the used parametrization of the 
negative-binomial distribution is modeled with the param-
eter φ. The relationship between mean and variance is σ2 = 
μ + μ2 / φ. Due to this inverse relationship, higher values of 
φ indicate less overdispersion (i.e., a variance close to the 
mean), while values close to zero indicate more overdisper-
sion (i.e., high variance). Negative values would indicate 
underdispersion (i.e., a variance smaller than the mean). 
In the model, days (level 1) are nested within participants 
(level 2). All continuous level 2 predictors were grand-mean-
centered. Furthermore, the insight package (Lüdecke et al., 
2019) lacks functions to extract the residual variance from 
GLMMadaptive’s MixMod objects; therefore, we used the 
lme4 package (Bates et al., 2015) to fit empty models to 
calculate ICCs. The final model is as follows:

Level 1:

Level 2:

Level 2:

Level 2:

To address Hypothesis 2, we calculated the average num-
ber of daytime laughter events per participant. Average time 
was measured in minutes since midnight. We also accounted 
for late events, coding events that occurred after midnight 
but before participants went to bed as belonging to the prior 
day (i.e., adding 1440 minutes). We then used a t test to test 
to assess the difference in means between the two groups.
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Lastly, to assess Hypothesis 3, we performed a 
Mann–Whitney U-test for each measurement category (belly 
laughs, fits of laughter, reactions to bings) to test for differ-
ences in happiness between measurement methods (i.e., PAS 
in the wearable group and VAS in the smartphone group). We 
used a Bonferroni correction to account for multiple testing, 
resulting in an adjusted significance criterion of α = .0017.

Results

Table 7 shows the descriptive data of counts. The wearable 
group had a mean count of total logged events over three 
times as large as that of the smartphone group. However, the 
(estimated) counts from the end-of-day data were much more 
consistent across groups. As expected, the frequency of fits 
of laughter was considerably lower than that of belly laughs.

Initially, we intended to use the end-of-day data of for-
gotten events to supplement the logged events. However, 
after analyzing that data separately, we had concerns about 
the quality of those data (see supplement for detailed analy-
sis). If those data were accurate, we would expect certain 
symmetries to the logged data; that is, because the overall 
event count is expected to be essentially invariant, effects in 
logged data should be mirrored in the estimates of forgot-
ten events. For example, a higher logged event count in the 
wearable group should lead to a higher estimated count of 
forgotten events in the smartphone group, to compensate for 
that difference. These symmetries were lacking in the end-
of-day data; as such, we decided against using these data in 
the main analysis.

Table 8 shows the results of the generalized mixed effects 
model described above. Of the analyzed predictors, all but 
the two signal-related compliance variables had significant 
effects on count. The log scale beta values are converted to 
multiplicative percentages in the following analyses. The 
expected difference between groups was significant, with 
counts 3.30 times higher in the wearable group, indicat-
ing support for Hypothesis 1. The day variable indicates 
a 5.18% decline in counts per day (i.e., 76.18% over the 
course of 28 days). The number of missing days also had a 
negative influence of 6.87% daily decline on the frequency 
for days with available data (e.g., a hypothetical participant 

with 28 missing days has an event count 85.36% lower than 
that of a participant with no missing days). Furthermore, 
the cross-level interaction between the group and day vari-
able indicates an attenuated decline in the wearable group 
(3.21% decline per day, or only 58.61% over the course of 
28 days, compared to the 76.18% in the smartphone group). 
The mean counts per day, as well as predicted counts per 
day, are shown in Fig. 11. See the online supplement for 
more detailed model diagnostics.

To test Hypothesis 2, a t-test between the average laughter 
time of day in the wearable group (M = 862.05 min, i.e., 
2:22 p.m., SD = 215.35 min) and the smartphone group (M 
= 867.52 min, i.e., 2:27 p.m., SD = 231.02 min) indicated no 
significant difference (t = – 37.46, df = 123.48, p = .964; d 
= 0.01). Thus, we found no support for Hypothesis 2.

To test Hypothesis 3, concerning parity between the PAS 
and VAS, we compared happiness measurements provided 
on each of the device types (i.e., wearables and smart-
phones) in each of the three categories (i.e., belly laughs, 
fits of laughter, reactions to bings). There were some issues 
with happiness measurements in the wearable group. Seven 
(11.9%) participants in the wearable group indicated mis-
use of the PAS or similar problems in the debriefing (e.g., 
changing the orientation of the wearable as mentioned above 
or assuming the arm angle after pressing the button). Data 
from these participants were excluded from the following 
analysis. Of the remaining wearable data, 226 entries (1.6%) 
were removed as outliers, because they had values below 
– 30°. The resulting data consisted of 13,874 data points 
(8496 from the wearable group, 5378 from the smartphone 
group). Of these, there were 8184 from belly laughs (weara-
bles: 5619, smartphones: 2565), 997 from fits of laughter 
(wearables: 725, smartphones: 272), and 4693 from bings 
(wearables: 2152, smartphones: 2541). As in pilot study 6, 
the PAS values were rescaled to have a maximum value of 
100, to enable direct comparison between the measurement 
methods. Table 9 shows means and standard deviations for 
all categories, separated by group. Mann–Whitney U-tests 
indicated that the locations of the belly-laugh distributions 
(d = – 0.92, U = 10,833,807, p < .001), fit-of-laughter distri-
butions (d = – 1.01, U = 159,230, p < .001), and bing-reac-
tion distributions (d = – 0.73, U = 3,805,142, p < .001) all 

Table 7  Daily means of event counts and end-of-day data from main study

Standard deviations in parentheses

Event counts End-of-day data

Belly laugh Fit of laughter Total Belly laugh Fit of laughter Total

Wearable 4.65 (7.11) 0.56 (2.00) 5.21 (8.22) 2.56 (5.62) 0.47 (2.22) 3.03 (7.44)
Smartphone 1.53 (2.59) 0.16 (0.53) 1.69 (2.71) 2.87 (9.06) 0.21 (0.70) 3.09 (9.17)
Total 2.94 (5.37) 0.34 (1.42) 3.28 (6.13) 2.73 (7.70) 0.33 (1.58) 3.06 (8.43)
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differed significantly between measurement methods. How-
ever, in both the descriptive statistics and visually in Fig. 12, 
the order of categories remained the same between measure-
ment methods; that is, the bing reactions show the lowest, 
and fits of laughter the highest, happiness scores across both 
measurement methods, as expected. However, due to the 
change in location, Hypothesis 3 was not supported.

Exploratory analyses

As a further marker of burden, we compared signal-based com-
pliance between groups (i.e., how often participants responded 
to the signal-based bings). A t test indicated no significant dif-
ference between the compliance in the wearable group (M = 
0.49, SD = 0.29) and the smartphone group (M = 0.40, SD = 
0.24) (t = – 1.89, df = 111.36, d = 0.34, p = .061).

Furthermore, we reanalyzed the data for hints of demo-
graphic influences, including gender and age as level 2 pre-
dictor variables. Due to the lack of available data, the one 
person with other gender was excluded from this analysis, 

resulting in a single binary gender variable. We also included 
whether participants were using a borrowed phone for the 
study, as well as the interaction of that variable with the used 
device. The following model was used:

Level 1:

Level 2:

Level 2:

Level 2:
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Table 8  Results of generalized linear mixed effects model for total laughter count from main study

Npart= 134, Nobs= 3,054, ICC = .58, φ = 1.61
Reference category for wearable was smartphone, ICC = Intra-Class Correlation of the null model

Fixed effects Random effects

Coeff. B CI SE z p Coeff. SD

Intercept β00 0.203 – 0.244; 0.651 0.228 0.891 .373 r0i 0.915
Day β10 – 0.053 – 0.065; – 0.041 0.006 – 8.746 < .001 r1i 0.032
Compliance Day β20 0.135 – 0.037; 0.307 0.088 1.537 .124 r2i 0.370
Compliance General β01 – 0.053 – 1.336; 0.212 0.395 – 1.424 .154
Missed Days β02 – 0.071 – 0.110; – 0.032 0.020 – 3.595 < .001
Wearable β03 1.195 0.847; 1.543 0.178 6.729 < .001
Wearable * Day β04 0.021 0.005; 0.036 0.008 2.557 .011

Fig. 11  Measured and predicted mean event counts per day from 
main study, for wearables, smartphones, and overall average. Note. 
Bars indicate average measured counts; lines show mean-subject 
model predictions

Table 9  Mean, standard deviation (in parentheses), and median of 
happiness for each type of measurement, separately for vas and pas 
measures from the main study

VAS PAS

Mean (SD) Median Mean (SD) Median

Belly Laughs 72.87 (18.61) 74.00 50.48 (26.59) 53.58
Fits of Laughter 85.71 (13.92) 89.00 60.84 (27.59) 67.07
Bing-reaction 

(Baseline)
54.63 (21.91) 55.00 37.26 (25.57) 38.93
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Table 10 shows the results of this analysis. The effects 
observed in the main analysis remained significant. Neither 
gender nor age reached statistical significance. Participants 
with a borrowed phone logged significantly more events, 
but the interaction with the device type was not significant.

Discussion

In this study, we investigated how the use of wearable devices 
affects compliance in studies using event-based scheduling. 
We found significant evidence of some motivational effects, 
with more complete datasets leading to higher counts, as well 
as a decline in event counts with ongoing study duration. 
Furthermore, we found the expected group difference in the 
event count, with wearables resulting in a count of three times 
as high as that of smartphones. An interaction between the 
device and study duration also suggests that the motivational 
decline over time is attenuated in the wearable group.

We had a larger sample in the smartphone group than 
the wearable group. The drop-out rate was slightly larger in 
the wearable group, with 12 participants from the wearable 
group dropping out before completion, while only eight par-
ticipants from the smartphone group dropped out. A bigger 
difference between devices was due to technical difficulties 
(e.g., corrupted data due to software bugs or malfunction-
ing wearables), which were subsequently solved throughout 
the ongoing study. However, the resulting sample did not 
statistically deviate from an even split.

In the exploratory model, the difference between partici-
pants using a borrowed smartphone for the study was sig-
nificant. However, this additional influence did not notably 
change the effects found in the main analysis, nor did this 
variable interact with device type. Therefore, the use of bor-
rowed phones and the inclusion of data from participants 
using them should not negatively impact our results. Rather, 
the effect of borrowed smartphones is positive. It might be 
assumed that an additional smartphone, particularly one that 
participants are not used to, would make participants less 
likely to use such a device and, therefore, log fewer events. 
However, it might be possible that the presence of an unfa-
miliar device served as a physical reminder for participants, 
more so than their regular smartphone.

Unfortunately, the required sample size calculated 
within the a priori power analysis was not met. However, 
to assess the reliability of the found effects, we calculated a 
post hoc sensitivity analysis. Using the approach by Twisk 
(2006), again with parameters from the study (i.e., 134 
level 2 units, using the average of 23 observations per par-
ticipant as the number of level one units, and the observed 
ICC of around .6), we calculated an effective sample size 
of Neff = 179 . A sensitivity analysis in G*Power shows an 
effect size of r = .18 to be detectable reliably when test-
ing two-sided with 80% power. The main effect of group 
assignment shows a correlation of r = .33 with the laughter 
count. This suggests that power might be suboptimal for 
some of the smaller effects found in this study, and that the 
main finding of wearables reaching higher event compli-
ance than smartphones should be robust, lending support 
for Hypothesis 1.

Nonetheless, Hypothesis 2 could not be supported, sug-
gesting that, while data from participants in the smartphone 
group is sparser, there is no bias to report events later. This 
may be influenced by our method, because the end-of-day 
questionnaire gave participants the option to account for 
events they might not want to log immediately, rather than 
delaying them and logging them later.

One noticeable disparity is the stark contrast in laughter 
frequencies reported in this study compared with previ-
ous research. Martin and Kuiper (1999) found an average 
of 17.6 laughter events per day, in line with Mannell and 
McMahon (1982), who reported an average of 13.4 overt 
laughter events per day. Lower frequencies were found in 
earlier studies by Graeven and Morris (1975) and Kam-
bouropoulou (1930), who reported 6.1 and 6.0 laughter 
events per day, respectively. Our current findings (5.21 
in the wearable group, 1.69 in the smartphone group) are 
closer to these latter results. A potential cause for the dif-
ference in our findings compared to the two more recent 
studies (Mannell & McMahon, 1982; Martin & Kuiper, 
1999) is the operationalization of laughter. While those 

Fig. 12  Density plots of happiness data from belly laughs (event-
based), fits of laughter (event-based), and baseline happiness (signal-
based bing reaction) from the main study
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two studies included any overt laughter, the present study 
required a belly laugh, with the instruction specifically 
excluding “smaller” sorts of laughs like giggles. Thus, 
the present study’s laughter operationalization represents 
a subset of what was measured by previous studies.

Overall, the one-button wearable seems to have both 
strengths and weaknesses compared to the more generally 
applicable smartphone. The wearable performed well in 
the present design involving one input equating to two 
items. The lack of visual feedback means that differing 
prompts cannot be used, and, while multiple consequent 
inputs are technically possible, they require manual coding 
and are prone to error (see pilot study 6). The frequency 
of required inputs is most likely also important. If used for 
a more overt and infrequent type of event (e.g., eating a 
meal), then the relative burden of retrieving a smartphone 
might be smaller. Such events might also be less prone 
to recall errors, making alternative methods like the Day 
Reconstruction Method (Kahneman et al., 2004) viable.

A further limitation of one-button wearables is that the 
devices need to be handed out to participants in direct con-
tact. Combined with the long study duration, this severely 
limited the number of potential participants. In this study, 
this was further complicated by the COVID-19 pandemic, 
which limited physical contact that could be made with 
participants.

We also had the opportunity to compare the PAS and 
VAS again in this study. Hypothesis 3 (mean happiness 
scores would be equal across groups) was not supported. 
However, this result is in line with the results of pilot study 
6, despite the current study using a between-subjects design.

The variability was higher in the PAS data compared to 
the VAS data. Furthermore, the ordinal quality of the dif-
ferent categories is preserved between measurements, with 

both distribution means, medians, and the visually identified 
modes, showing the same distinct order in both measurement 
methods. Overall, this fits the assumption that both PAS 
and VAS behave similarly in their measurements but are 
not identical. Therefore, while comparisons between scales 
might be problematic, comparisons within scales should be 
feasible.

General discussion

In this paper, we examined screenless, one-button weara-
bles and their capabilities and feasibility for use in ESM 
designs. Larsen and colleagues (Larsen et al., 2017) have 
already demonstrated the viability of one-button wearables 
for self-tracking. Later, Stieger and colleagues (Stieger et al., 
2020, 2022) further assessed the input options of one-button 
wearables with the introduction and use of the PAS. In the 
present publication, we introduce an open-source software 
that enables the use of one-button wearables, specifically 
the MetaMotionR by Mbientlab, in ESM designs. This soft-
ware can handle the complete workflow, from configuring a 
device to downloading the data, within an easy-to-use and 
open-source Android application. Being open-source further 
opens this software up to the scientific community, making it 
easily available to users and open for further improvements 
and adaptations. Thus, this software makes the presented 
methods accessible to any interested researcher without 
requiring programming skills.

To judge the capabilities of the method, we investigated 
several basic properties of the used device, and further-
more tested it in realistic applications. Pilot studies 1 and 2 
assessed the performance of the built-in battery. The meas-
ured battery runtimes were sufficient for the wearables to run 

Table 10  Results of exploratory generalized linear mixed effects model for total logged laughter count including additional predictors from main 
study

Npar= 133, Nobs= 3,031, ICC = .58, φ = 1.60

Fixed effects Random effects

Coeff. B CI SE z p Coef. SD

Intercept β00 0.154 – 0.285; 0.593 0.224 0.688 .492 r0i 0.845
Day β10 – 0.052 – 0.064; – 0.041 0.006 – 8.804 < .001 r1i 0.038
Compliance Day β20 0.139 – 0.033; 0.312 0.088 1.583 .113 r2i 0.376
Compliance General β01 – 0.430 – 1.169; 0.309 0.377 – 1.140 .254
Missed Days β02 – 0.074 – 0.111; – 0.037 0.019 – 3.915 < .001
Wearable β03 1.119 0.774; 1.464 0.176 6.361 < .001
Age β04 0.003 – 0.008; 0.013 0.005 0.498 .619
Gender (m) β05 – 0.068 – 0.383; 0.247 0.161 – 0.425 .671
Borrowed Phone β06 0.770 0.019; 1.520 0.383 2.010 .044
Wearable * Day β07 0.020 0.004; 0.035 0.008 2.495 .013
Wearable * Borrowed Phone β08 – 0.254 – 1.182; 0.674 0.474 – 0.537 .592
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continuously without charging for most required study dura-
tions. This was even the case for older, degraded batteries. 
Therefore, the battery can be viewed as an advantage of the 
one-button wearable device, because it reduces maintenance 
for the participant. Pilot study 3 showed the reliability of the 
push-button, by demonstrating that accidental, unintended 
button presses are exceedingly rare (i.e., none were observed 
in pilot study 3). This is important for ESM designs because 
participants generate data unobserved in the field. A reliable 
button ensures that the logged data are true entries. Further-
more, the results on the use of a Likert scale on the wearable 
in pilot study 6 also showed the button to be reliable for 
inputs, allowing participants to reliably enter an intended 
value (i.e., number of button presses). Therefore, a Likert (or 
categorical) scale appears to be a viable option for use with 
the wearable. Beyond the input method of press counting, 
the validity of the relatively novel PAS was of special inter-
est. Pilot studies 4 and 5 assessed the one-button wearable’s 
basic measurement accuracy for acceleration-based angle 
measurements. Of these, pilot study 5 found results closer 
to the realistic baseline variability (i.e., before factoring in 
variability due to participants) and showed a standard devia-
tion of around 7°. This increased to roughly 12° for freehand 
estimations by participants in pilot study 6.

We also investigated the PAS in more detail. Pilot study 6 
compared the PAS and VAS within a person. This compari-
son showed a centering bias, whereby PAS values towards 
the ends of the scales were generally attenuated towards the 
scale center, compared to the corresponding VAS values. 
VAS and PAS were, therefore, highly correlated on the item 
level. The correlation further increased when comparing the 
two methods on the scale level (i.e., comparing the extra-
version scores calculated with each measurement method). 
This suggests that the variability of the angle measurement, 
especially when adding variability of freehand angle estima-
tion, might be randomly distributed, and thus would partially 
cancel out when multiple measurements are aggregated. The 
main study further compared the two methods in a between-
subjects design. While there were clear differences in scale 
use between groups (e.g., the mean values were consistently 
lower for each category when measured with the PAS), cer-
tain patterns remained consistent. The order of categories 
was identical across measurement methods; for example, 
mean happiness measured by bing reactions was the lowest, 
mean happiness of fits of laughter was the highest, while 
mean happiness of belly laughs was between the two. This 
suggests that, despite numerical differences, both measure-
ments captured the same construct across the two groups. 
Overall, the differences between the PAS and the VAS sug-
gest that they are not directly equivalent. However, the high 
correlations between the two scales suggests that they are 
capable of measuring the same constructs. Therefore, the 

PAS poses a suitable option for an analog scale when using 
one-button wearables.

The main study mainly also investigated the effects that 
the use of one-button wearables had on event compliance. 
We found that over three times more laughter events were 
logged in the group using wearables than in the group using 
smartphones. True event frequency should be consistent 
across groups; therefore, we interpret this difference as a 
difference in the fraction of captured events. Despite the 
absolute fraction of events captured by each group being 
inaccessible, the measured difference is indicative of more 
missing events in the smartphone group. This is in line 
with previous research comparing ESM on smartphones 
and wearable form factors (i.e., smartwatches) that found 
increased compliance when wearables were used (e.g., 
Intille et al., 2016; Volsa et al., 2022). There was a clear 
difference in event-related compliance but only trend sig-
nificance in signal-related compliance, most likely due to 
the low number of bings per day.

A further benefit of using wearables as input method is 
that they do not require the participant’s visual attention dur-
ing a measurement. Button press counting is supported by 
a color-changing LED, and some participants might judge 
their arm angle visually when using the PAS. However, both 
inputs can also be used by exclusively relying on haptic and 
proprioceptive feedback. This can, theoretically, increase 
accessibility for participants with impaired sight or in situ-
ations with reduced visibility of the device. More impor-
tantly, this independence of visual attention could have been 
a contributing factor to the results of increased event compli-
ance found in the main study. As previous findings suggest, 
laughter most likely occurs in social situations (Martin & 
Kuiper, 1999). However, while laughing with another per-
son, it might not be possible, or socially acceptable, to inter-
rupt the situation to interact with one’s smartphone. This 
could make participants in the smartphone group especially 
reluctant to enter an event. On the other hand, a social situa-
tion is barely interrupted when using one-button wearables, 
because access and use time are minimal, and participants 
could maintain eye contact when pressing a button during 
a social situation.

Despite the mentioned benefits, several limitations 
became apparent over the course of these studies. The 
most prominent were limitations of input and output. 
When the button press was used for a categorical input, as 
was the case in the main study, participants were required 
to remember the correct associations between catego-
ries and number of button presses. This is necessary as 
the only discernible output of the device is the colored 
LED, limiting the number of categories feasible for such 
an item. While in color changing mode, the LED cycles 
through three different colors, allowing for associations 
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but requiring multiple associations with the same color 
if the number of categories exceeds 3. Using the button 
press for a Likert scale can also be problematic. While 
pilot study 6 showed that the use of a Likert scale is pos-
sible, the use of multiple consequential items can cause 
issues with coding. Moreover, because the device cannot 
handle questionnaires, manual assignment of responses 
to items may be necessary. In pilot study 6, some partici-
pants made an incorrect number of entries, invalidating 
that measurement occasion. These limitations apply less to 
devices with a screen (e.g., smartphones), which can dis-
play questionnaires. Furthermore, the wearable is limited 
in the number of signals it may elicit. While the number 
of bings may be sufficient for some designs it could be a 
limiting factor for others.

A further limitation shared with all specialized devices, 
compared to personal smartphones, is the requirement for 
physical interaction. ESM studies implemented via smart-
phone applications generally allow for remote administra-
tion, increasing the pool of viable study candidates. Weara-
bles, on the other hand, must be provided to participants 
together with instructions on their use. A second meeting 
may also be required to return the device. Such commit-
ments may reduce potential participants’ willingness to par-
take in a study using wearables.

The Main Study further exposed the wearables’ poten-
tial for error, resulting in missing, unusable, or corrupted 
data. Errors were far more pronounced in the wearable group 
than in the smartphone group, mostly due to initial points 
of failure (e.g., software bugs) and the lack of intuitiveness 
in using the device. We attempted to mitigate both of these 
problems by improving our protocol and instructions to par-
ticipants, which partially helped. However, a key benefit of 
a smartphone, compared to a one-button wearable, is that 
participants are familiar with touch-screen user interfaces, 
and instructions can be displayed directly on a smartphone 
device. Another source of error is the necessity to consist-
ently wear the device on the same arm and in the same ori-
entation to use PAS. We specifically instructed participants 
to do so; however, some did not adhere to this instruction. 
A daily reminder or self-report check for wearing the device 
may, therefore, reduce errors.

Despite the limitations mentioned above, the main 
study showed that, when using a design appropriate for 
the device (i.e., two items per measurement), wearables 
can outperform smartphones in terms of reduced partici-
pant burden in handling the wearable. The access time 
on smartphones (e.g., retrieving and unlocking the smart-
phone, navigating to the appropriate application) is often 
disproportionately high compared to the usage time, espe-
cially in the context of questionnaires with only one or 
two items. Wearables, on the other hand, minimize access 
time because they are always ready for input. Therefore, 

wearables are more likely to satisfy the requirements of 
microinteractions (i.e., a total interaction time of 4 s or 
less) and are potentially less intrusive (Ashbrook, 2010). 
This is in line with Ponnada et al. (2017), reporting that 
four out of the first five participants in a smartphone group 
of a microinteraction-based ESM condition (i.e., 30 bings 
per day with single-item questionnaires) dropped out 
within the first few days, citing excessive burden.

It is important to consider how one-button wearables 
compare to other wearables, like smartwatches, which 
could allow dynamic presentation of information via a 
screen and provide more direct response options via their 
touchscreen. We suspect a tradeoff between these two 
options of wearables. Smartwatches might allow a user to 
request and input data with greater ease and would thus 
provide a good balance between the benefits of one-button 
wearables and smartphones. One-button wearables, on 
the other hand, are low maintenance because they need 
to be charged only infrequently, unlike smartwatches, 
which typically require charging daily or at least every 
few days. It is, therefore, likely easier for participants to 
keep one-button wearables in an operable state, reducing 
gaps in data collection due to empty batteries. It is also 
likely that one-button wearables require less attention for 
a measurement because, as mentioned above, one-button 
wearables can mostly be operated without looking at the 
device, relying on participants’ sense of proprioception. 
Inputting data on a device with a screen (e.g., smartwatch) 
might require more attention, which would reduce ease 
of use and make individual measurements less conveni-
ent for participants. Furthermore, not relying on a display 
for measurements might be beneficial for measurements 
in social situations, where interacting with a smartwatch 
screen could be perceived negatively by others, similar to 
phubbing. Ultimately, we believe that smartwatches should 
be another viable option for designs with frequent and 
short interactions. However, while one-button wearables 
restrict the scope of interactions by their limiting nature, 
we assume that designs using smartwatches need to mini-
mize the scope of interactions as well. The small screen 
should be practical for quick glances and short inputs, but 
might be tedious for larger numbers of items or require-
ments of multiple precise inputs.

Overall, one-button wearables are a viable alternative to 
smartphones, provided the study design is suitable. One-
button wearables involve single item microinteractions, with 
frequent measurements. When used for event tracking, the 
wearable is optimal for events that occur frequently (and 
thus accumulate high access times on other devices), in 
social situations, or that cannot easily be recalled later. Other 
devices, such as smartphones or smartwatches, may be more 
appropriate when the design necessitates longer question-
naires or dynamic elements such as varying questionnaires. 
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Software options for smartwatches include systems intro-
duced by Khanshan and colleagues (Khanshan et al., 2021) 
and Volsa and colleagues (Volsa et al., 2022). However, 
in situations where one-button wearables could be used, 
benefits such as increased data quantity, and probably also 
quality, are strong arguments to do so. Furthermore, with the 
provided open-source configuration application, one-button 
wearables are easy to use in research.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13428- 023- 02322-y.
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