
Vol.:(0123456789)1 3

Behavior Research Methods 
https://doi.org/10.3758/s13428-023-02319-7

ORIGINAL MANUSCRIPT

Ant colony optimization for parallel test assembly

Luc Zimny1  · Ulrich Schroeders2  · Oliver Wilhelm1 

Accepted: 6 December 2023 
© The Author(s) 2023

Abstract
Ant colony optimization (ACO) algorithms have previously been used to compile single short scales of psychological constructs. 
In the present article, we showcase the versatility of the ACO to construct multiple parallel short scales that adhere to several 
competing and interacting criteria simultaneously. Based on an initial pool of 120 knowledge items, we assembled three 12-item 
tests that (a) adequately cover the construct at the domain level, (b) follow a unidimensional measurement model, (c) allow reliable 
and (d) precise measurement of factual knowledge, and (e) are gender-fair. Moreover, we aligned the test characteristic and test 
information functions of the three tests to establish the equivalence of the tests. We cross-validated the assembled short scales and 
investigated their association with the full scale and covariates that were not included in the optimization procedure. Finally, we 
discuss potential extensions to metaheuristic test assembly and the equivalence of parallel knowledge tests in general.

Keywords Ant colony optimization · Automatic test assembly · Parallel tests · Declarative knowledge

Short scales of psychological constructs are essential in 
survey-based research because psychometrically sound short 
scales make it possible to save time and reduce individuals' 
workloads without jeopardizing the validity of the measure-
ment at the population level. Multiple parallel short tests that 
can be used interchangeably are needed if item exposure is 
a concern or repeated testing is envisioned. Usually, paral-
lel short scales are compiled from a larger pilot tested item 
pool, making it a task of item sampling targeting predefined 
goals while considering constraints such as reliability, valid-
ity, test fairness, construct coverage, or testing time (Kuhn & 
Kiefer, 2013; Schroeders et al., 2016a; Spaccapanico Proietti 
et al., 2020; Steger, Jankowsky, et al., 2022a, Steger, Weiss, 
et al., 2022b; van der Linden & Glas, 2000; Yan et al., 2014). 
Different methods have been proposed for this purpose, such 
as mathematical programming solvers (e.g., Ali & van Rijn, 
2016; Becker et al., 2021), machine learning (e.g., Sun et al., 
2022), and metaheuristic algorithms (e.g., Leite et al., 2008; 
Schroeders et al., 2016a).

In the present study, we illustrate the versatility of the 
metaheuristic ant colony optimization algorithm (ACO; 
Leite et al., 2008; Marcoulides & Drezner, 2003) for assem-
bling parallel short scales. Prior applications of ACO have 
focused exclusively on constructing single scales (Jankowsky 
et al., 2020; Janssen et al., 2015; Olaru & Jankowsky, 2021; 
Schroeders et al., 2016b, a). We extend previous work by 
simultaneously compiling three parallel declarative knowl-
edge scales that serve as indicators of crystallized intelli-
gence (gc; Cattell, 1987), which is an important predictor 
in many applied settings such as educational achievement 
(Postlethwaite, 2011; Rohde & Thompson, 2007), job per-
formance (Hunter, 1986), or even death (Deary et al., 2021). 
We illustrate that, using ACO, we can develop short scales 
with sufficient construct coverage and that the psychometric 
attributes of the parallel tests are congruent (i.e., test charac-
teristic curves and test information functions). At the same 
time, model fit, reliability, and gender fairness can also be 
optimized. Thus, the present work showcases the flexibility 
of ACO in parallel test assembly.

Challenges in test assembly of parallel tests

Once an initial item pool has been developed and validated, 
researchers are faced with assembling a final test version 
with a reduced item set that meets several requirements. 
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These requirements are manifold for ability tests, including 
sufficient reliability (or measurement precision), an appro-
priate range of item difficulty, decent construct coverage, 
model fit, fairness, predictive validity, and test duration. 
Critically, these requirements interact and vary with the 
selected item set: One item set might be particularly reliable 
but have weak predictive validity, whereas another is highly 
predictive but takes too long to complete. Therefore, it is 
necessary to identify an item set that best combines the 
desired properties. Testing all possible permutations quickly 

becomes unfeasible. For example, one can assemble 
(

30

10

)

 , 

that is, over 30 million different 10-item tests from an initial 
item pool of 30 items. The compilation of several parallel 
test versions is even more complex in terms of the combina-
torial complexity of the task.

Going beyond the compilation of a single scale introduces 
further criteria to consider. From the perspective of classical 
test theory, parallel tests need to have equal observed-score 
means, variances, and reliabilities (Lord et al., 2008). In item 
response theory (IRT), tests are considered weakly parallel 
when their information functions are identical (Samejima, 
1977) and strongly parallel if they have both the same length 
and identical test characteristic functions (Lord, 1980). 
Further, in both frameworks, psychological attributes such 
as content equivalence must also be secured besides psy-
chometric attributes (McDonald, 1999). For example, in 
the context of knowledge assessment, the same knowledge 
domains should be covered in equal shares across parallel 
tests. Importantly, parallel test compilation must jointly con-
sider and align all these criteria from parallel forms. Com-
piling tests manually from a large item pool while simulta-
neously considering multiple intertwined psychometric and 
psychological criteria is unfeasible and will almost invari-
ably lead to suboptimal solutions. Therefore, algorithmic 
approaches have been applied to solve this combinatorial 
optimization problem.

Automated test assembly

Automated test assembly (ATA; van der Linden, 2005) 
refers to applying algorithmic methods to assemble tests 
that meet pre-specified criteria. The most prominent meth-
ods are mixed integer linear programming (MILP; van der 
Linden, 2005) and metaheuristic algorithms (e.g., Chang 
& Shiu, 2012; Leite et al., 2008; Schroeders et al., 2016a; 
Veldkamp, 1999). All methods aim to solve constrained 
combinatorial optimization problems efficiently.

MILP is a mathematical optimization technique commonly 
applied for ATA (see van der Linden, 2005, 2015, for an over-
view and introduction). It requires the formulation of a list of 

test specifications that comprise formalized quantitative (e.g., 
reliability, difficulty), categorical (e.g., item content), or logi-
cal attributes (e.g., item overlap). The requirements are for-
mulated as linear functions that are integrated into a common 
objective function, which is then optimized by a mathemati-
cal solver to find an optimal solution (van der Linden, 2015). 
There is a substantial body of research on MILP, and MILP is 
routinely applied in large-scale educational assessments (e.g., 
Becker et al., 2021; Kuhn & Kiefer, 2013; OECD, 2019). In 
recent years, the solvers have become highly efficient in han-
dling large-scale test assembly problems (Koch et al., 2022). 
However, MILP also has two significant drawbacks. First, 
objective functions and constraints are almost exclusively 
formulated at the item level (van der Linden, 2015). While 
certain test-level characteristics are influenced by item-level 
characteristics (such as average test difficulty or test infor-
mation at a specific ability level), this relationship does not 
apply to some crucial criteria researchers frequently focus on. 
For example, measures of overall model fit (e.g., compara-
tive fit index [CFI], root mean square error of approximation 
[RMSEA]) cannot be estimated from pre-computed item-level 
indices. Second, MILP is technically and conceptually chal-
lenging, making it difficult to apply for researchers that are not 
trained in linear programming, even though few worked exam-
ples and free software packages have been published (Becker 
et al., 2021; Diao & Van Der Linden, 2011).

Metaheuristic algorithms have gained popularity as ver-
satile tools for ATA (Leite et al., 2008; Schroeders et al., 
2016a). Among the plethora of nature-inspired algorithms 
(Xing & Gao, 2014), the ACO algorithm has often been 
applied in psychological assessment. ACO is a metaheuris-
tic algorithm inspired by the foraging behavior of ants 
(Deneubourg et al., 1983). Prior studies have used ACO 
exclusively for assembling single scales in the confirma-
tory factor analysis (CFA) framework (e.g., Jankowsky 
et al., 2020; Kerber et al., 2022; Leite et al., 2008; Olaru 
& Jankowsky, 2021; Schroeders et al., 2016b; Schultze & 
Eid, 2018; Steger, Jankowsky et al., 2022a, Steger, Weiss 
et al., 2022b; Watrin et al., 2019). However, it can also 
be applied to assemble multiple parallel scales in the IRT 
framework. With regard to potential drawbacks of ACO, 
the algorithm may be less efficient than MILP, and the 
results depend on hyperparameter tuning. The following 
briefly explains how ACO works and how to assemble 
short scales that adhere to multiple criteria (see also Olaru 
et al., 2019, for an introduction).

Ant colony optimization

The technical details of the ACO algorithm have been com-
prehensively described elsewhere (e.g., Deneubourg et al., 
1983; Dorigo & Stützle, 2019; Marcoulides & Drezner, 2003; 
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Olaru et al., 2019). Therefore, we provide a conceptual intro-
duction to the algorithm within the context of ATA. Figure 1 
provides a flow chart of the ACO algorithm: At the outset, 
all items in the item pool have equal drawing probabilities 
corresponding to virtual pheromone levels. ACO begins by 
selecting multiple random item sets, mimicking multiple ants 
searching different routes to find the shortest path to a food 
source. Subsequently, all models are evaluated with respect to 
an optimization function. This function addresses the targeted 
criteria (e.g., maximizing reliability, maximizing model fit, 
minimizing differential item functioning). After each itera-
tion, ACO checks whether any model (= ant) is better than 
the current best model. If so, it saves this model as the new 
best model. Subsequently, the drawing probability of items 
included in the best model is increased. Thereby, the prob-
ability of drawing an item set that satisfies predefined criteria 
increases over iterations. This procedure mimics the phe-
nomenon of more pheromones accumulating on shorter (i.e., 
better) routes. In contrast, a process referred to pheromone 

evaporation reduces the drawing probability of all items by a 
small, fixed amount after each iteration (e.g., 5% per iteration). 
This avoids prioritizing initially drawn item sets or, put dif-
ferently, avoids local optima in the iterative search. Thus, the 
algorithm balances between intensification (i.e., further refin-
ing already good solutions) and diversification (i.e., widening 
the scope to enable a broad exploration of the solution space; 
Blum & Roli, 2003). ACO iteratively performs the steps of 
sampling, evaluation, pheromone updating, and evaporation 
until it finds an item set that fulfills all criteria or reaches a 
certain number of iterations without further improvements. 
The procedure remains the same for parallel test assembly, but 
instead of sampling and evaluating a single item set, multiple 
item sets are drawn. Their criterion values can then enter the 
optimization function individually or jointly.

The present study

In the present study, we illustrate the utility and versatility of 
ACO for automatic assembly of parallel tests. To that end, we 
simultaneously draw three 12-item short declarative knowl-
edge scales from a pool of 120 knowledge items. We chose 
12 items to retain the construct coverage of 12 knowledge 
domains as in the full scale. The number of parallel tests is 
not crucial here and mainly serves for purposes of illustration, 
as do the requirements defined below. They do not affect the 
functioning of the algorithm, and their specific instantiation 
ultimately depends on the specific purpose of the assembled 
parallel tests. The requirements for the short scales are con-
tent-related and psychometric, and they refer to both the indi-
vidual tests and the equivalence across parallel test versions. 
As a content-based requirement, we target a broad construct 
coverage of declarative knowledge across 12 domains (e.g., 
chemistry, law, arts). Regarding psychometric criteria for the 
individual tests, we aim to select short scales that adhere to 
unidimensional measurement models and provide sufficiently 
reliable total scores for population-level analyses. Further, we 
aim to sample item sets that show near-zero gender differences 
at the test level. Regarding the equivalence of the parallel test 
versions, we minimize the difference in test information and 
test characteristic curves to ensure that the three short scales 
are comparable in difficulty and precision. Moreover, we sub-
stantiate the equivalence of the short scales by investigating 
their relations to several covariates (e.g., age, interest).

Method

Samples and measures

The study was conducted according to the ethical guidelines 
for online studies of the German Society for Online Research Fig. 1  Flow chart of ant colony optimization (ACO) algorithm
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(DGOF) and in accordance with the Declaration of Helsinki. 
Ethical approval was not required as per local legislation. 
Participants were recruited via a German online panel and 
provided informed consent. Comprehensive sample descrip-
tions have been previously detailed in publications that rely 
on the same data set (Schroeders et al., 2021; Watrin et al., 
2022). For the present study, we only included participants 
who indicated their gender as either men or women, result-
ing in a sample size of 1607 participants. The data set was 
split randomly and in equal shares into a training sample in 
which the short scales were derived using ACO and an inde-
pendent testing sample to cross-validate the key parameters 
of the scales (de Rooij & Weeda, 2020).

To provide further evidence for the psychometric sound-
ness of the assembled parallel scales, we administered two 
of the three final short scales to an independent large replica-
tion sample. The sample comprised both graduate students 
and the general population and was tested online as part of 
other investigations. Table 1 provides an overview of the 
demographic variables for all subsamples of the present 
study.

A comprehensive knowledge test with 120 items (hereaf-
ter referred to as “full scale”) constitutes the item pool from 
which the three short scales were sampled. The knowledge 

test covers four broad areas of knowledge (social sciences, 
natural sciences, life sciences, humanities) and 12 domains 
(e.g., law, chemistry, medicine, arts). Each knowledge 
domain was measured with ten multiple-choice items (for 
more information, see Watrin et al., 2022). In addition to the 
German knowledge test, participants completed a 12-item 
measure of openness/intellect (Olaru et al., 2015) and a 
30-item measure of interests (Armstrong et al., 2008). All 
items are openly available at https:// osf. io/ u68nk/.

Ant colony optimization function

For the parallel scales, we targeted (a) adequate construct 
coverage, (b) good model fit of a unidimensional model, (c) 
sufficient reliability at the population level, (d) equal preci-
sion, (e) equal difficulty across test versions, and (f) fair 
measurement across gender groups (see Table 2). In the fol-
lowing, we first describe an empirical approach to determine 
the thresholds of these criteria. Next, we explain how we 
included these thresholds in the optimization function of 
the ACO algorithm.

Determination of thresholds

Establishing an appropriate target threshold significantly 
impacts the performance of the item sampling procedure, 
making it an essential parameter in the application of ACO. 
Thresholds are often established in advance based on more 
or less agreed-upon conventions (e.g., the Hu & Bentler, 
1999, cutoff values for model fit indices, but see also 
McNeish & Wolf, 2021, for a criticism of fixed cutoffs). 
Ideally, the assembled short scales should satisfy all criteria, 
but the intended cutoffs might be out of reach with a limited 
initial item pool or with several competing optimization cri-
teria. For example, there is an inherent tension between reli-
ability and validity in psychological scales (Clifton, 2019; 
Steger, Jankowsky et al., 2022a, Steger, Weiss et al., 2022b). 
Determining cutoff values a priori can be challenging with-
out prior experience. Also, many criteria are arbitrary to 
a certain degree, especially if the criterion varies strongly 

Table 1  Demographic variables of the training, validation, and repli-
cation samples

Training Validation Replication

N 803 804 3634
Women 49.1% 45.8% 53.9%
Age, M (SD) 44.8 (14.6) 45.7 (14.7) 33.1 (12.6)
Education

   None 0.1% 0.1% 0.5%
   Elementary school 4.9% 5.2% 17.7%
   Intermediate track school 19.4% 18.8% 22.4%
   Academic track school 15.4% 15.8% 39.0%
   Vocational training 28.1% 27.7% 7.8%
   University degree 31.9% 32.1% 12.6%

Table 2  Optimization criteria for the three parallel short scales

Criterion Description

Construct coverage Each short scale comprises one item from each of 12 different knowledge domains (e.g., chemistry, law, art).
Model fit Each short scale conforms to a unidimensional measurement model, as indicated by the comparative fit index (CFI) and the 

root mean square error of approximation (RMSEA).
Reliability Each short scale is reliable, as indicated by the expected-a-posteriori (EAP) reliability  (rxx).
Precision The three short scales are equal in precision, as indicated by similarly shaped and located test information functions (TIF).
Difficulty The three short scales are equal in difficulty, as indicated by similarly shaped and located test characteristic curves (TCC).
Fairness None of the short scales exhibits substantial differences between women and men, as indicated by low differential test 

functioning (DTF).

https://osf.io/u68nk/
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across item or person samples or if the range of the criterion 
values is unknown (e.g., differences between multiple test 
information curves).

To overcome these issues, we propose a data-driven 
method to determine empirical thresholds without prior 
experience or guidelines (see also Steger, Jankowsky et al., 
2022a, Steger, Weiss et al., 2022b). Specifically, the pro-
cedure draws random models with a fixed structure (e.g., a 
unidimensional model with 20 items) to derive an empirical 
distribution of the targeted criteria. Thresholds can then be 
set based on percentiles of these distributions (5th or 95th 
percentiles; see below). By computing percentiles of the 
parameter distributions, one can determine realistic empiri-
cal thresholds (independent of the shape of the distribution) 
instead of using generic thresholds established in different 
settings.

In the present case, we drew 10,000 times three randomly 
compiled knowledge tests with nonoverlapping item sets. 
The three models reflect the three parallel test versions. 
Each test consists of 12 items from the initial pool of 120 
knowledge items (Watrin et al., 2022). For each knowledge 
test, we estimated a unidimensional two-parameter logistic 
(2PL) model (DeMars, 2010). For each set of three models, 
we extracted the values of the criteria to be included in the 
optimization function (see Table 1) to establish their distri-
butions and correlations (see Fig. 2). Finally, we computed 
the 5th and 95th percentiles based on the distributions. This 
is evidently a data-driven approach, but we argue that it is 
more stringent than using uninformative thresholds.

The empirical percentiles provide a threshold that might 
sensibly be achieved with the available item pool. Figure 2 
illustrates the results from the random sampling procedure 
and the resulting cutoff values of the different criteria based 
on the 5th (RMSEA, TIF, TCC, DTF) and 95th (CFI, rxx) 
percentiles. The random sampling procedure gives valuable 
insight into redundancies between the optimization crite-
ria. For instance, there was a strong correlation between 
the measures of model fit (r(CFI,RMSEA) = −.81). If both 
measures were independently included in the optimization 
procedure, this would effectively result in an overweighting 
of model fit relative to other optimization criteria. Accord-
ingly, we combined the two fit indices to compute a single 
criterion for model fit [see formula (3) below]. The same 
goes for the sDTF and uDTF, which inform about different 
aspects of DTF and were therefore considered jointly as an 
emergent variable reflecting overall (un)fairness in the test. 
The observed correlation between the two indices was mod-
erate (r(sDTF,uDTF) = .39), but this correlation is biased 
downwards due to the censored data distribution (see Fig. 2). 
As is to be expected, the TIF and TCC were positively cor-
related (r(TIF,TCC) = .44) because the TCC constrains the 
TIF (van der Linden & Luecht, 1996). However, it is still 
sensible to consider the indices separately in test assembly 

because they reflect different aspects of the test, and their 
correlation is far from unity (Ali & van Rijn, 2016). The 
other correlations of psychometric criteria did not indicate 
meaningful redundancy.

In the optimization function, all values were logit-trans-
formed to place them on a common metric between 0 and 1. 
We used the empirically determined thresholds as the inflec-
tion points of the logit functions to maximize differences in 
the most decisive region (Olaru et al., 2019).

Determination of slopes

There is no research yet concerning the optimal choice of 
slope parameter. Previous studies have mostly optimized 
standardized criteria ranging between 0 and 1 (e.g., reli-
ability, criterion correlations, model fit). For such criteria, 
the slope parameter is usually set between 15 and 100 (e.g., 
Jankowsky et al., 2020; Janssen et al., 2015; Olaru et al., 
2019; Schroeders et al., 2016a, b, 2023). In the absence of 
prior experience, we propose using the results of the random 
sampling procedure to approximate sensible slope param-
eters. Figure 3 illustrates the empirical distribution of CFI 
values from the 10,000 random models combined with five 
logit functions with the same threshold but different slope 
parameters. As can be seen, very flat slopes reward a sizable 
number of models that do not satisfy the required criterion. 
In contrast, very steep slopes assign low pheromone levels 
even to models only slightly below the targeted threshold. 
Given logit functions with varying slope parameters and the 
results of the random sampling procedure, one can identify 
the slope that suits the individual needs. For example, in 
the present study, a slope of 100 resulted in the top 10% of 
models receiving a pheromone level larger than 0.25. The R 
code accompanying this article provides functions to visual-
ize the logit function, facilitating a stepwise identification 
of appropriate slope values. When in doubt, we recommend 
flatter slopes to ensure that a criterion is considered at all, at 
the price of longer running times.

Determination of weights

Like the solvers in MILP, ACO requires a single objective 
function to optimize. Therefore, once the individual parts 
of the overall optimization function had been determined 
[functions (1) to (9)], we created a single overall optimiza-
tion function [see function (10)]. This is commonly done 
by summing and optionally weighting individual objec-
tive functions (e.g., for model fit or reliability). Extensive 
research has been conducted on multi-objective optimiza-
tion (Deb, 2011). Ultimately, assigning different weights 
expresses priorities in the optimization function (Marler & 
Arora, 2010). Weights can be increased to emphasize the 
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importance of certain criteria (e.g., model fit) or to address 
redundancy between criteria (e.g., reducing the individual 
weights of two highly correlated criteria). In the absence 
of prior knowledge or experience, we suggest implement-
ing a parsimonious and pragmatic equal-weighting scheme 
that assigns equal weights to all criteria (e.g., Janssen 
et al., 2015; Olaru et al., 2019; Watrin et al., 2019).

Criterion 1: Construct coverage

The full scale with 120 items covered 12 different knowl-
edge domains. To retain adequate construct coverage in the 
parallel short scales, we imposed the constraint that every 
short scale must contain exactly one item from each of the 

12 different knowledge domains and that these items do not 
overlap.

Criterion 2: Model fit

We estimated three unidimensional 2PL models with 
12 binary indicators in each iteration and evaluated the 
CFI and the RMSEA (via the M2 statistic; Maydeu-Oli-
vares & Joe, 2006). The worst CFI  (CFImin) and RMSEA 
 (RMSEAmax) observed in any of the three models was 
decisive for the respective pheromone level, ensuring that 
all short scales met the defined requirements. The model 
fit thresholds established with the random sampling pro-
cedure were CFI ≥ .97 and RMSEA ≥ .02, respectively. 

Fig. 2  Distributions and correlations of the optimization criteria 
across 10,000 random samples. Note. CFI = comparative fit index, 
RMSEA = root mean square error of approximation, rxx = reliability, 
TCC = test characteristic curve, TIF = test information curve, sDTF 
= signed differential test functioning score, uDTF = unsigned differ-

ential test functioning score. TCC and TIF values are divided by 1000 
for readability. Solid red lines mark the 5th or 95th percentile of the 
indices' distribution, constituting the empirical thresholds later used 
in the optimization function
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These values represent the inflection points of the logistic 
optimization functions [see denominators of functions (1) 
and (2)].

Because the CFI failed to reach the cutoffs more often 
in the random samples than the RMSEA, we weighted it 
more heavily in the overall objective function for model 
fit. This adaptation of the objective function is optional, 
and the weights are arbitrary. However, it emphasizes the 
importance of the CFI in the overall optimization and likely 
increases the probability that ACO finds a suitable solution.

Criterion 3: Reliability

We estimated the reliability of the three short scales based 
on the expected-a-posteriori (EAP) factor scores of the 2PL 
models (Chalmers, 2012). As for the evaluation of model 
fit, the lowest reliability  (relmin) was decisive for the respec-
tive pheromone level, ensuring that all short scales met the 
defined requirements.

(1)�CFI =
1

1 + e100∗(.97−CFImin)

(2)�RMSEA = 1 −
1

1 + e100∗(.02−RMSEAmax)

(3)�Fit =
3 ∗ �CFI + 1 ∗ �RMSEA

4

(4)�Rel =
1

1 + e100∗(.63−relmin)

Criterion 4: Difficulty

To guarantee comparable difficulty across the parallel short 
scales (Ali & van Rijn, 2016), we computed their respective 
TCCs and minimized the squared and summed differences 
between the curves.

Criterion 5: Precision

To support comparable precision across the parallel short 
scales, we computed their respective TIF and minimized the 
squared and summed differences between the curves.

Criterion 6: Differential test functioning

To ensure fairness across gender groups, we assessed uni-
form and nonuniform DTF using the indices proposed by 
Chalmers et al. (2016). DTF indicates whether there is a 
scoring bias between the investigated groups and the test 
level. The signed DTF measure indicates the extent of over-
all scoring bias across groups, that is, if the reference group 
scores consistently lower or higher on average than the focal 
group(s). The unsigned DTF measure reflects the discrep-
ancy between the reference and focal groups(s) test curves, 
potentially indicating scoring bias at particular ability (theta) 
levels. The highest DTF of the three parallel versions was 
decisive for the respective pheromone level.

(5)�Diff = 1 −
1

1 + e0.025∗(202−TCCsqsum)

(6)�Prec = 1 −
1

1 + e0.08∗(62−TIFsqsum)

Fig. 3  Optimization functions with a fixed threshold and different 
slopes. Note. Histogram of CFI values from 10,000 randomly sam-
pled models. The logit functions share a common threshold of .97, 

which was established through the random sampling procedure, but 
they vary in their slope parameter
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Finally, we aggregated all previous results of the spe-
cific functions into a single global value to be optimized 
via ACO.

Statistical analysis

We performed all analyses using R (R Core Team, 2020). 
We used the packages mirt to estimate IRT models (version 
1.36.1, Chalmers, 2012) and lavaan to estimate CFA mod-
els (version 0.6-12, Rosseel, 2012). We used the packages 
doParallel (version 1.0.17, Microsoft Corporation & Wes-
ton, 2022) and foreach (version 1.5.2, Daniel et al., 2022) 
for parallel computation. For general data handling, we used 
packages from the tidyverse (version 1.3.2, Wickham et al., 
2019), and for descriptive statistics, we used the package 
psych (version 2.2.5, Revelle, 2020). Data and annotated 
code for all analyses are provided in a repository of the Open 
Science Framework: https:// osf. io/ u68nk/. We also provide 
the items for the full scale and the three short scales. In 
addition, we provide a web application that allows for easy 

(7)�sDTF = 1 −
1

1 + e25∗(0.13−sDTFmax)

(8)�uDTF = 1 −
1

1 + e25∗(0.29−uDTFmax)

(9)�DTF =
�sDTF + �uDTF

2

(10)�overall =
�Fit + �Rel + �Diff + �Prec + �DTF

5

norm-based evaluation of the short scales: https:// psy- diagn 
ostics. shiny apps. io/ gc_ scali ng/.

Results

Table 3 shows the psychometric properties of the best three 
short scales in the training, validation, and replication sam-
ples. In line with implemented constraints on the construct 
coverage, each short scale comprised items from 12 dif-
ferent knowledge domains. Across all samples and scales, 
the model fit indices were close to the targeted (empirical) 
thresholds of CFI ≥ .97 and RMSEA ≤ .02. Considering test 
length and coverage, the reliability was adequate and similar 
across the parallel short scales and the investigated samples. 
While higher reliability would be desirable for individual 
diagnostics, there is inevitably a trade-off between construct 
coverage (i.e., content validity) and reliability (Clifton, 
2019; Steger, Jankowsky et al., 2022a, Steger, Weiss et al., 
2022b). Reducing the test length to only 12 items came at 
the price of reduced measurement precision. Therefore, we 
suggest that researchers requiring a scale with higher reli-
ability use a combined version of two or three short scales. 
As Table 3 indicates, a combined 36-item scale had good 
model fit and substantially higher reliability.

The TCCs of the three scales overlapped strongly in the 
training and validation samples. They showed only minor 
deviations in the important range between −2 and 2 on the 
ability distribution θ, indicating a strong equivalence in test 
difficulty across the three short scales (see the upper part 
in Fig. 4). In the replication sample, the TCCs of scales 1 
and 2 overlapped strongly in the ability range above average 
but increasingly deviated in the ability range below average.

Table 3  Psychometric properties of the three short scales and a combined 36-item scale

NTraining = 803, NValidation = 804, NReplication Scale 1 = 2896, NReplication Scale 2 = 1603. Train. = training sample, Val. = validation sample, Rep. = replica-
tion sample, M = average proportion correct, SD = standard deviation of proportion correct, CFI = comparative fit index, RMSEA = root mean 
square error of approximation, rxx = reliability, sDTF = signed differential test functioning score, uDTF = unsigned differential test functioning 
score

Scale

1 2 3 1 + 2 + 3

Train. Val. Rep. Train. Val. Rep. Train. Val. Train. Val.

M (SD) .58 .59 .54 .59 .59 .57 .59 .59 .59 .59
(.21) (.20) (.23) (.21) (.21) (.21) (.21) (.21) (.18) (.18)

CFI .982 .957 .979 .964 .974 .963 .967 .967 .954 .954
RMSEA .020 .026 .026 .029 .022 .028 .028 .026 .030 .030
rxx .664 .623 .706 .660 .634 .654 .667 .644 .851 .851
sDTF .046 −.205 −.135 −.020 −.247 −.095 −.066 −.316 −.066 .915
uDTF .235 .205 .242 .300 .319 .097 .285 .336 −.670 .839

https://osf.io/u68nk/
https://psy-diagnostics.shinyapps.io/gc_scaling/
https://psy-diagnostics.shinyapps.io/gc_scaling/


Behavior Research Methods 

1 3

In the training samples, the TIFs were closely aligned, 
indicating highly comparable information across the 
entire ability range. In the validation sample, the TIFs 
were closely aligned for two scales, while one scale (scale 
3) discriminated slightly better at lower levels of abil-
ity (θ < 0.5) than the two other scales. In the replication 
sample, scale 2 had a similar TIF as in the training and 
validation samples, and the TIF for scale 1 had a similar 
distribution across the ability range but was more informa-
tive overall.

Concerning gender differences, both the signed and 
unsigned DTF scores indicated little differential test func-
tioning between women and men. As both measures 
remain in the original metric (Chalmers et al., 2016), they 
indicate less than one-third of a point difference in the test 
scores between men and women on a scale from 0 to 12, 

or less than one point on the combined scale from 0 to 32, 
respectively.

Correlations among scales

In the validation sample, the manifest correlations between 
the sum scores of the three short scales were substantial 
(r1,2 = .62, r1,3 = .63, r2,3 = .64). To estimate correlations 
free of measurement error, we fitted a CFA in which each 
12-item set loaded on one latent factor, and the three fac-
tors were allowed to correlate freely. This model had satis-
factory fit (χ2(591, N = 804) = 865.1, p < .001, CFI = .948, 
RMSEA = .024), and the latent factors correlated perfectly. 
This indicates that apart from measurement error, the rank 
orders of participants are perfectly preserved across the short 
scales. In fact, the three latent factors correlated slightly 

Fig. 4  Test characteristic curves and test information curves of the three short scales in the training, validation, and replication samples
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above 1 (r1,2 = 1.03, r1,3 = 1.04, r2,3 = 1.01), also known as 
Heywood case (Savalei & Kolenikov, 2008). This is to be 
expected with values at the limit of the possible range, and 
constraining correlations of latent variables to unity did not 
deteriorate model fit significantly [Δχ2(3, N = 804) = 3.15, 
p = .37].

Correlations with covariates

To further substantiate the equivalence and validity of the 
three short scales, we investigated their association with 
the full scale and several covariates in the validation sam-
ple, namely age, gender (1 = women, 2 = men), education 
(1 = none to 6 = university degree), the personality factor 
openness (Olaru et al., 2015), and vocational interests (Arm-
strong et al., 2008). To test for meaningful differences in 
the correlation coefficients, we computed 95% confidence 
intervals based on nonparametric bootstraps with 10.000 
iterations (Cumming, 2014). Table 4 shows that the 95% 
confidence intervals did not indicate meaningful differences 
between the correlation coefficients.

Discussion

Short scales of psychological constructs are indispensable 
in research and applied settings because they save time and 
reduce individuals' workloads while maintaining the valid-
ity of the measurement at the population level. Parallel 
scales allow for repeated testing and increase test security 
in unproctored settings. Selecting items manually to derive 
parallel and psychometrically sound tests almost inevitably 

leads to suboptimal solutions. It quickly becomes unfea-
sible depending on the size of the initial item pool, the 
desired test length, and the number of criteria to fulfill. 
Compiling parallel short scales of general declarative 
knowledge is particularly challenging because the con-
struct definition of general knowledge is inherently broad 
and heterogeneous. Yet it is essential to ensure an adequate 
level of reliability. Further, it is difficult to establish uni-
dimensional measurement models of declarative knowl-
edge, given the overlap between knowledge domains and 
within-item multidimensionality (Schroeders et al., 2021). 
Finally, knowledge tests tend to disadvantage women, 
which can be remedied by appropriate item compilation 
(Schroeders et al., 2016b). Meeting all these competing 
requirements requires consideration during item selection.

We illustrated how the metaheuristic algorithm ACO 
can help in solving this combinatorial optimization prob-
lem. We demonstrated that the algorithm can be used to 
construct multiple parallel short scales adhering to several 
competing and interacting criteria. The three assembled 
general knowledge tests adhered to the criteria of con-
struct coverage, model fit, reliability, equivalent difficulty, 
information, and (lack of) differential test functioning. As 
this study is the first application of ACO in parallel test 
assembly, further experience is needed to better under-
stand which thresholds, slopes, and weighting schemes are 
appropriate in different application areas and how different 
criteria interact. In the following, we discuss generaliz-
ability, equivalence, and validity issues, the usefulness 
of the random sampling approach for threshold determi-
nation, and possible extensions to parallel test assembly 
using ACO.

Table 4  Correlations of the three short scales and the 120-item full scale with the covariates

NTraining = 803, NValidation = 804, Ntotal = 1607. 95% confidence intervals in parentheses

Scale

1 2 3 Full scale (120 items)

Full scale .80 [.77, .82] .82 [.79, .83] .82 [.80, .84]
Age .12 [.06, .19] .09 [.03, .13] .13 [.06, .20] .12 [.06, .15]
Gender .06 [−.01, .12] .06 [−.01, .13] .10 [.03, .15] .06 [.01, .11]
Education .30 [.25, .36] .34 [.27, .40] .29 [.22, .34] .35 [.31, .39]
Openness/intellect .25 [.21, .32] .24 [.18, .31] .22 [.18, .29] .29 [.24, .33]
Vocational interests

  Realistic −.11 [−.17, −.05] −.12 [−.17, −.05] −.08 [−.14, −.02] −.09 [−.13, −.05]
  Investigative .12 [.05, .17] .11 [.05, .18] .13 [.06, .18] .18 [.12, .22]
  Artistic .14 [.07, .20] .11 [.04, .17] .12 [.06, .17] .14 [.08, .19]
  Social .09 [.02, .15] .06 [.01, .14] .08 [.03, .14] .11 [.05, .15]
  Enterprising −.10 [−.16, −.04] −.08 [−.14, −.01] −.09 [−.16, −.04] −.09 [−.13, −.03]
  Conventional −.15 [−.21, −.09] −.21 [−.27, −.16] −.16 [−.21, −.09] −.18 [−.22, −.13]



Behavior Research Methods 

1 3

Generalizability of the results

Generalizability refers to the extent to which research findings 
apply to variations in items, persons, and methods. In the pre-
sent context, such variations are based on different items (item 
sampling), the recruitment of subjects from different popula-
tions (person sampling), or the use of different computational 
procedures (method sampling). We used cross-validation to 
investigate overfit in our data and used an independent replica-
tion sample (see also Dwyer et al., 2018, for the hierarchy of 
generalizability) to see whether the psychometric properties 
were identical in a sample that differed in age and education. 
The present results support the psychometric equivalence 
across samples. However, the issue of generalizability is not 
specific to ACO but concerns the validity of psychological 
assessment in general (Cronbach et al., 1963).

Methodologically, ACO is not bound to any particular 
framework (e.g., CFA, IRT) or type of criterion (e.g., item-
level, test-level). As a general-purpose local search algorithm, 
it can optimize any objective that can be expressed numeri-
cally. In the present study, we estimated 2PL IRT models 
because they are parsimonious and fit the data reasonably well. 
However, ACO could also be applied to 3PL models (e.g., 
Lord et al., 2008), graded response (e.g., Samejima, 1969), 
Rasch testlet models (e.g., Wang & Wilson, 2005), network 
models (e.g., Borsboom et al., 2021) or formative models (e.g., 
Diamantopoulos et al., 2008). All it requires is to extract the 
desired parameters and set up an optimization function.

For illustrative purposes, we assembled three parallel short 
scales, as many high-stakes assessments require two versions 
of the tests to avoid copying from seat neighbors, and lon-
gitudinal research requires at least two forms. However, the 
approach described can theoretically be extended to more par-
allel versions with different numbers of items. Whether ACO 
succeeds in finding an optimal solution depends on the size 
and quality of the initial item pool. Here, ACO is subject to the 
same pragmatic limitations as MILP or any other test compila-
tion method. Although the initial item pool was limited (120 
items), we successfully assembled three parallel short scales. 
The random sampling procedure we described to derive the 
thresholds can provide insights into how promising a parallel 
test composition is given the size and the quality of the initial 
item pool, the target criteria, and the number of parallel tests 
and items.

Equivalence and validity of short knowledge 
tests

The three knowledge scales exhibited highly similar 
means, standard deviations, and reliabilities. The latent 
factor correlations indicated that the rank orders of 

subjects did not change across the parallel scales once 
measurement error was accounted for. Further,

the scales correlated similarly with all investigated 
external criteria. Therefore, the tests can be considered 
parallel (AERA et al., 2014), and it is sensible to assume 
that the "forms measure, within acceptable limits, the same 
psychological function" (Angoff, 1984, p. 86). However, 
two important points must be considered.

First, the reliability of the short scale is adequate at 
the population level, but the measurement precision at the 
individual level is necessarily low, with only a few hetero-
geneous items (Mellenbergh, 1996). As the reliability is 
comparable to other brief cognitive measures applied in 
survey research (e.g., Schmiedek et al., 2022), and meas-
urement error can and should (Bollen, 2002) be addressed 
with latent variable models, the scales are well suited for 
population-level analyses (e.g., analyses of covariance). 
In turn, confidence intervals around point estimates will 
be large, introducing considerable uncertainty in individ-
ual-level decisions (Kruyen et al., 2013). In cases where 
measurement precision is crucial, we recommend using the 
combined scale with 36 items to achieve sufficient meas-
urement precision, or other more comprehensive knowl-
edge tests (e.g., Amthauer et al., 2001; Liepmann & Beau-
ducel, 2010; Watrin et al., 2022; Wilhelm et al., 2014).

Second, given the broad definition of gc (Cattell, 1987; 
Horn & Blankson, 2005; Schneider & McGrew, 2018), 
a 12-item measure can merely be considered a proxy. In 
fact, even the 120-item knowledge test, which served as 
a basis for the short scale compilation, theoretically does 
not adequately reflect the breadth and depth of gc, and even 
broader assessments with thousands of knowledge items, 
as illustrated by Steger et al. (2019) ; Buades-Sitjar et al. 
(2021), might be necessary. Indeed, the latent variable gc 
extracted from a specific item set should not be confused 
with the construct gc (Borgstede & Eggert, 2023). The 
equivalence of the three knowledge scales only applies to 
the latent variables that capture the common variance of 
their respective 12 items. At the item level, equivalence 
in knowledge assessment might be an elusive fiction. For 
example, the three economy items cover different aspects 
of the knowledge domain (subsidy, social markets, and 
outsourcing), and different individuals might have had 
different learning opportunities for them. Recent stud-
ies have shown that items comprise knowledge-irrelevant 
variance, e.g., age-related (Schroeders et al., 2021) or 
country-related (Watrin et al., 2023) effects at the item 
level. While these results do not detract from the utility of 
total scores, they prohibit item-level comparisons of the 
parallel scales. The scales assembled in this study are well 
suited as economic proxies and can serve as informative 
predictors and covariates in various contexts. However, 
they are only incomplete measures of gc.
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The utility of empirical thresholds

The proposed random sampling approach helps identify 
redundancies between criteria and sets achievable thresholds 
for each criterion. This is important because we know little 
about how different test characteristics covary in real-world 
data. While theoretical associations between test characteris-
tics are well established, their interaction is rarely considered 
comprehensively. Given the plethora of variables that might 
affect such interactions, it is difficult to derive overarching 
rules of thumb that hold in vastly different settings. Redun-
dancies (i.e., high correlations) between criteria are prob-
lematic because they lead to a relative overweighing and, 
thus, unbalanced item selection. For example, the CFI and 
RMSEA in our study were highly correlated in the random 
samples because both assess (different aspects of) model fit. 
Including them separately in the optimization function would 
have resulted in an almost twofold higher weight for model 
fit. Therefore, we pooled the estimates. Other redundancies 
between criteria of interest are not always obvious (e.g., item 
discrimination and factor loadings). Therefore, the approach 
we propose is to examine the criteria in a large number of 
random models to study the empirical interdependencies 
between different criteria. Obviously, these considerations 
are derived from a random sample of parallel test compila-
tions, and we need to assume that mutatis mutandis relations 
between criteria stay the same during ACO estimation. Future 
studies might also consider the normalization of optimization 
criteria prior to computing a combined score.

Setting attainable thresholds for the individual criteria is 
crucial because it enables all aspects of interest to be consid-
ered equally in the model evaluation. The logit transforma-
tion allows the criterion values to be placed on a common 
metric and the differences around the inflection point (i.e., 
cutoff values) to be maximized. If the thresholds are set too 
ambitious, this might lead to a criterion being included with 
(close to) zero in the overall pheromone level and effectively 
not being considered in the model evaluation. Determining 
empirical thresholds based on the available data and choosing 
flat(ter) slopes can avoid this problem. Thus, although ACO 
is an algorithmic approach for test assembly, some parameter 
tuning remains necessary to achieve optimal results.

Future applications and investigations 
of ACO for simultaneous assembly 
of multiple tests

Future studies might investigate alternative practical use 
cases of ACO for simultaneous test compilation and the 
formal limits of the algorithm in test compilation. In the 

present study, we optimized a set of criteria we deemed 
relevant for parallel knowledge tests that can be used inter-
changeably for general-purpose applications. Instead of 
interchangeable parallel tests, tests could also be designed 
to optimally track a learning process in an educational 
context or to maximize predictive validity in a selection 
context. For example, multiple scales with a common set 
of linking items and increasing difficulty of the remaining 
items might aid in adequately mapping learning progress. 
Such a linking design and increasing difficulty can be 
implemented in the optimization process via constraints on 
the selected items and mean shifts in the test characteristic 
curves across test versions.

Alternatively, in a selection context, it may be of inter-
est that the different test versions are maximally and 
equally predictive of a particular criterion measure. In a 
stepwise selection process (e.g., first a short online pre-
test for preselection, then a comprehensive onsite test), 
ACO could compile tests that maximize information gain 
or incremental predictive validity at a specific point in 
testing (Feng & Hancock, 2021). Such an approach with 
sequential tests would be similar to multistage testing (Yan 
et al., 2014). Multistage tests are better suited to maximiz-
ing measurement accuracy over the entire ability range. 
However, they cannot be easily implemented in common 
survey platforms and are also much more limited in terms 
of the criteria that can be optimized; that is, they are typi-
cally limited to test-inherent criteria such as reliability 
or difficulty. With ACO, a sequential set of tests can be 
compiled that considers a multitude of criteria, several 
of which we have already studied (e.g., fairness, crite-
rion correlation). Therewith, the capabilities of ACO go 
beyond other approaches typically implemented in func-
tional programming (Breithaupt & Hare, 2015; van der 
Linden, 2005).

From a methodological perspective, simulation studies 
should more thoroughly investigate under which condi-
tions ACO succeeds in identifying an optimal solution and 
how to improve the likelihood thereof. Formal aspects of 
the procedure, such as the number of ants and iterations, 
are straightforward to manipulate and quantify. However, 
the composition of the initial item pool (i.e., size, coher-
ence, psychometric characteristics) will largely determine 
whether an optimal test form can be drawn. Simulating 
these aspects requires extensive knowledge about the con-
structs under consideration and the items used to study 
them. For example, in knowledge assessment, one would 
need to vary the dimensionality of the initial item pool 
(e.g., Steger et al., 2019), group differences (e.g., Schroed-
ers et al., 2016b; Watrin et al., 2023), correlations with 
covariates (e.g., Ackerman, 1996; Cattell, 1987) and item-
level correlations (i.e., within-item multidimensionality; 
Schroeders et al., 2021). However, all these phenomena 
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have been insufficiently studied so far. Until well-founded 
empirical findings allow substantial simulation studies, 
ACO, combined with the proposed random sampling pro-
cedure, will allow researchers to pragmatically identify 
(close to) optimal solutions in a heuristic, data-driven way.

Conclusion

We strongly encourage the application of ACO in paral-
lel test assembly because it is a versatile tool that greatly 
facilitates complex test compilation under multiple con-
straints. We argue that ACO is excellent for bringing the 
item sampling aspect of psychological measurement more 
to the forefront, whether to support pragmatic questionnaire 
development as in the present study or to answer substantive 
questions.
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