
Vol.:(0123456789)1 3

Behavior Research Methods 
https://doi.org/10.3758/s13428-023-02302-2

ORIGINAL MANUSCRIPT

Creating web applications for online psychological experiments: 
A hands‑on technical guide including a template

Gáspár Lukács1   · Erwin Haasnoot2 

Accepted: 20 November 2023 
© The Author(s) 2023

Abstract
The present tutorial provides a technical overview of how to create web applications for online psychological experiments 
from scratch via the HTML/CSS/JavaScript framework. This approach allows virtually unlimited flexibility in accomplish-
ing anything in an online experiment that a regular computer (or smartphone, etc.) is capable of. Apart from offering a fast 
introduction for complete beginners, this tutorial may also serve as a helpful guideline for more experienced programmers and 
researchers. Connected to the tutorial, a specific implementation is also given via the free and open-source template project 
at https://​github.​com/​gaspa​rl/​expapp, intended to be improved by the community to always follow the latest technological 
advancements and general good practices.

Keywords  Online experiment · Research method · Guide · Web application · JavaScript

The dramatic increase and impact of behavioral research 
conducted via the Internet in the past decades, and in par-
ticular in the past years (e.g., Anwyl-Irvine et al., 2021; Peer 
et al., 2021), also already led to several notable papers pro-
viding general abstract overviews of how to create online 
experiments (e.g., Gagné & Franzen, 2023; Grootswagers, 
2020; Kochari, 2019; Woods et al., 2015). However, none 
of these provide the details of how exactly an online experi-
ment should be implemented at the technical level. The pre-
sent paper is intended to fill in this gap as a hands-on tutorial 
for implementing web applications (web apps) for online 
psychological experiments (from here on: ExpApps) in the 
HTML/CSS/JavaScript (JS) web stack.1

Many ExpApp creator frameworks (e.g., PsychoJS, Peirce 
et al., 2022; OSWeb, Mathôt & March, 2022; lab.js, Hen-
ninger et al., 2022; Labvanced, Finger et al., 2017; Gorilla, 
Anwyl-Irvine et al., 2020; Qualtrics, Barnhoorn et al., 2015; 
some server-side solutions: JATOS, Lange et  al., 2015; 

Pavlovia, Peirce et al., 2022) provide more or less intuitive 
graphical user interfaces (GUIs) whereby users (researchers) 
can add, one by one, the building pieces of the experiment 
(e.g., a text content to appear on the screen or a response 
required from the participant). The most obvious advantage 
is that researchers can create ExpApps without any program-
ming knowledge and without having to deal with all the 
intricacies of the technical implementation. Another advan-
tage is that, typically, such frameworks have dedicated teams 
(as well as, in case of open-source software, the community) 
continually working to keep the software top-notch and up 
to date. In contrast, building web apps without frameworks 
has so far necessarily been an isolated effort by a single (or 
a few) individual(s). Part of our goal is to ameliorate this 
situation by providing guidelines and some template scripts 
(see below) for such endeavors.

Importantly, certain levels of HTML/CSS/JS knowledge 
permit the incorporation or management of features and 
functionalities that are typically not easily achievable or 
not possible at all through the exclusive use of these GUIs. 
These include easy control over the entire layout; any custom 
and complex interaction; intricate conditional operations; 
tailored restriction of stimulus presentation order; partici-
pant access limitations; customized data output; version 

 *	 Gáspár Lukács 
	 lkcsgaspar@gmail.com

1	 Department of Cognition, Emotion, and Methods 
in Psychology, Faculty of Psychology, University of Vienna, 
Liebiggasse 5, A‑1010 Vienna, Austria

2	 Data Science Group, Faculty of Electrical Engineering, 
Mathematics and Computer Science, University of Twente, 
Enschede, Netherlands

1  A software stack is a collection of technology components that 
work together to support the execution of a particular application 
(here: a web app).

http://orcid.org/0000-0001-9401-4830
https://orcid.org/0000-0002-2753-9634
https://github.com/gasparl/expapp
http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-023-02302-2&domain=pdf


	 Behavior Research Methods

1 3

control; unlimited integration with any third-party tech-
nologies and/or JS snippets or libraries; see details in the 
Appendix. Certain degrees of exceptions to these limitations 
do exist. Currently, the GUI of Labvanced (Finger et al., 
2017) in particular offers remarkably flexible approaches 
to stimulus ordering and dynamic conditional operations.

There are various degrees of transitions between experi-
ment creator frameworks with GUIs alone and program-
ming web apps without any dedicated frameworks at all. 
For instance, even when created with GUIs, most frame-
works provide the web apps as HTML/CSS/JS files that are 
modifiable by researchers, though with various degrees of 
ease. The ease depends on the structure of the scripts, such 
as how many modifications are required for a given desired 
change in the experiment, and whether the change(s) in the 
script will have negative side-effects (e.g., glitches, errors, or 
other unexpected behavior), and so forth. Some frameworks, 
for example OSWeb and lab.js, provide some helpful docu-
mentation for such custom modifications. At the extreme, 
some frameworks, most notably jsPsych (De Leeuw, 2015), 
are explicitly intended for researchers with programming 
knowledge who merely use the framework as “plugins” (JS 
libraries), that is, collections of certain utility functions and 
perhaps some basic script templates that are to be rewritten 
and/or extended with further code for the specific experi-
ments by the researcher.

The present tutorial is aimed chiefly at those who wish to 
write their own custom programming scripts for web apps or 
to adjust or extend, with their own code, templates created 
by experiment creator frameworks or web apps available 
elsewhere (e.g., open-source projects or material from other 
researchers’ experiments). The tutorial and the connected 
template scripts are not meant to be competing alternatives 
to experiment creator frameworks – quite the opposite, 
developers of experiment creator frameworks also benefit 
from being informed of the latest recommended practices, 
and may freely follow or borrow from the template. Alto-
gether, we hope to serve all programmers who wish to know 
how to build, extend, or improve ExpApps.

Material

This tutorial has three main components. First, a high-level 
description of the main concepts are given in the present 
paper, serving as an initial general introduction in particu-
lar to those new to creating ExpApps. Second, a specific 
template for the HTML/CSS/JS implementation is given at 
https://​github.​com/​gaspa​rl/​expapp, which includes typical 
survey measures (multiple choice questions, scales, etc.) as 
well as a stop-signal task (SST) as a common example for 
a psychological response time test. Third, the same reposi-
tory contains an open-source tutorial, as a Markdown file, 

which is a greatly extended version of the present paper and 
includes a variety of detailed technical information and rec-
ommendations (specific JS functions, code snippets, etc.). 
This latter serves as an advanced guide for those in the 
process of implementing an ExpApp, or those wishing to 
improve an ExpApp (or a creator framework).

The present paper contains the overarching concepts that 
are expected to remain unchanged in the foreseeable future. 
In contrast, the template and the open-source tutorial are 
intended to be continually updated (by the present authors 
as well as by the community) based on the development of 
Internet browsers as well as new software solutions.

Code sections relevant to given topics (e.g., layout, or pre-
cise display timing) are marked in the scripts with bracketed 
numbers as [n1], [n2], and so forth, and are cited via these 
numbers in the Markdown tutorial (including hyperlinks). 
All modern text editors for programming allow searching an 
entire directory with all script files included (as downloaded 
from the GitHub repository). Hence one has to simply search 
for, for example, “n2” or “[n2]” (without quotes) to find the 
relevant functions or lines of code in the given script files, 
and/or the corresponding description in the open-source 
tutorial. The GitHub repository can be searched directly too 
(e.g., as https://​github.​com/​gaspa​rl/​expapp/​search?​q=​n2).

Due to its technical nature and despite not going into 
great detail (and not dwelling on advanced methods such 
as eye-tracking or 3D simulations), this tutorial necessarily 
describes a relatively specific approach. Even more so, the 
template implements one very specific approach. Tasks can 
be designed and scripts can be written in many different 
ways, and everyone may have their own preferred implemen-
tation. In the end, however, browser-based experimentation 
is restricted (or enabled) by the functions that the browsers 
make available. The ways to call these functions so that one 
makes use of them most effectively is even more restricted. 
In any case, regardless of personal preferences regarding the 
details, at the very least the present tutorial demonstrates the 
general workflow of how one may effectively create web 
apps for online experiments.

File structure and web hosting

For an interactive webpage (or: “web app”), there is usually 
at least one file of each of the following types: (a) HTML 
(Hypertext Markup Language), the standard language for 
creating the text content, including very basic formatting, of 
webpages; (b) CSS (Cascading Style Sheets): a style sheet 
language for more comprehensive formatting of HTML, and 
(c) JS (JavaScript): a high-level (“easy”) programming lan-
guage for making HTML webpages interactive (i.e., allows 
modifying HTML elements, usually via user interaction). 
Simply put, one writes a text in HTML, gives it a design 

https://github.com/gasparl/expapp
https://github.com/gasparl/expapp/search?q=n2


Behavior Research Methods	

1 3

with CSS, and then brings it “alive” with JS. Building web 
apps using such scripts is very intuitive, and there are vari-
ous excellent free tutorial websites (e.g., W3Schools2 or the 
Mozilla Developer Network3) and online courses (e.g., edX4) 
for learning all the basics. For authoritative and up-to-date 
information on any specific JS method, a most recommended 
source is the official website of the Mozilla Developer Net-
work (maintained jointly by Mozilla, Google, Microsoft, and 
Samsung, among others). The rest of this tutorial assumes a 
basic understanding of these three languages.

Often, there is a single “index.html” HTML file. A con-
venience of this conventional naming is that by entering into 
a web browser the web address (uniform resource locator; 
URL) of the directory of the files, without the filename, the 
web server5 by default usually returns the “index.html” file, 
which is subsequently loaded into the browser. Hence, for 
example, instead of writing https://​gaspa​rl.​github.​io/​expapp/​
index.​html, one can just write https://​gaspa​rl.​github.​io/​
expapp. Often, there is just one CSS file, often named “style.
css” or similar, that contains all styles for the web page. 
However, in the template, there is an additional “rt_task.
css” file, related to the styling of the behavioral part of the 
experiment, which is somewhat distinct from the rest of the 
webpage, and therefore may be more conveniently stored 
and managed in a separate file. Finally, since the template 
includes a lot of JS code for a variety of different purposes, 
there are several files to contain these scripts. The most 
important ones are the following: (a) “main.js” – the main 
workflow of the experiment; (b) “utils.js” (within the “utils” 
folder) – various general utility functions; and (c) “rt_task.
js” (within the “rt_task” folder) – JS code related to the 
behavioral (response time) experiment.

Using such files, one can create a working ExpApp that 
can be opened and run locally (i.e., on one’s computer) in 
any modern browser (by opening the “index.html” file). 
However, to conduct an online experiment, there are two 
crucial further requirements. First, the app should be acces-
sible at the “client side” by users. Here, users mean par-
ticipants accessing the app via the “World Wide Web” (the 
Web), that is, online, by entering a given URL in a web 
browser on any computer with an Internet connection. Sec-
ond, the collected data should be stored at the “server side” 
for the researchers. This altogether necessitates a webserver 

with the capability of storing data via a server-side language 
such as PHP (PHP: Hypertext Preprocessor; originally: Per-
sonal Home Page). For a more detailed theoretical overview 
of client and server sides, see Grootswagers (2020).

Using web servers and server-side languages may seem 
daunting at first, but for ExpApps, this is actually very easy. 
Here, we describe the proper procedure, and, in the template, 
we provide the necessary code (which can remain almost 
exactly the same for all experiments; for related details, see 
the section Data Storage below). Most universities have 
their own web servers and provide web space for employees 
and often even for students, either automatically allocated 
or upon request. ExpApps typically require very little disk 
storage space, a tiny fraction of typically provided free web 
spaces, less than a megabyte (though exceptions do exist, 
e.g., in case of video stimuli; see also, for an informative 
anecdote, Woods et al., 2015, p. 12). Such small and rela-
tively infrequently accessed6 web spaces are also available 
as free plans of various commercial hosting services (which 
may be easily found googling “free php web hosting” or 
similar).

Whichever server may be used, they should have a 
detailed guide on how to upload files to the server (normally 
via a file transfer protocol [FTP] client, such as FileZilla, 
WinSCP, or Krusader). This procedure may differ slightly 
from server to server, but it is generally no more complicated 
than logging into an account via a straightforward graphical 
user interface (of an FTP client) and copying the ExpApp 
files to the desired directory under the web space (similarly 
to how one copies files from one directory to another on 
a computer’s usual local storage space). As soon as the 
proper files are copied to the server, the ExpApp is acces-
sible at a given URL, and the collected data will be stored 
at the server. The URL is always provided and described by 
the web hosting facility. For instance, the root URL of the 
default personal web space at the University of Vienna is 
“https://​homep​age.​univie.​ac.​at/​first​name.​lastn​ame”. If the 
“index.html” is placed in the root (top) directory, it will be 
available via this URL. However, for easier management 
of multiple projects, each ExpApp’s files may be placed 
in a separate subdirectory (i.e., folder). For instance, the 
files for the SST ExpApp could be placed in a subdirectory 
named “sst_exp.” In that case, the ExpApp (via the “index.
html”) will be accessible at “https://​homep​age.​univie.​ac.​at/​
first​name.​lastn​ame/​sst_​exp”. As a precaution (for permanent 
availability, compatibility, etc.), all resources such as third-
party plugins and JS libraries (or any media, etc.) should 

2  https://​www.​w3sch​ools.​com/
3  https://​devel​oper.​mozil​la.​org/​en-​US/​docs/​Learn/​Getti​ng_​start​ed_​
with_​the_​web
4  https://​www.​edx.​org/
5  A web server consists of the hardware where the web content (here: 
the ExpApp files) is stored and the software that makes the web con-
tent accessible to Internet users (usually via web browsers). For more, 
see, for example, https://​devel​oper.​mozil​la.​org/​en-​US/​docs/​Learn/​
Common_​quest​ions/​Web_​mecha​nics/​What_​is_a_​web_​server.

6  Experiments with substantial material to download and/or with 
many thousands of participants may exceed free tier traffic limits, but 
this is not typical for online psychological experiments.

https://gasparl.github.io/expapp/index.html
https://gasparl.github.io/expapp/index.html
https://gasparl.github.io/expapp
https://gasparl.github.io/expapp
https://homepage.univie.ac.at/firstname.lastname%E2%80%9D
https://homepage.univie.ac.at/firstname.lastname/sst_exp%E2%80%9D
https://homepage.univie.ac.at/firstname.lastname/sst_exp%E2%80%9D
https://www.w3schools.com/
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web
https://www.edx.org/
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Web_mechanics/What_is_a_web_server
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Web_mechanics/What_is_a_web_server


	 Behavior Research Methods

1 3

ideally be downloaded by the researcher and also placed 
under this directory (to be sourced via the “index.html” file).

Basic layout (HTML/CSS) structure

Having just one HTML file essentially gives a single-page 
application (SPA). This means that the entire ExpApp will 
remain, throughout the experimental procedure, at the same 
URL (e.g., https://​homep​age.​univie.​ac.​at/​gaspar.​lukacs/​sst_​
exp). This (a) prevents users arbitrarily navigating back and 
forth between pages (or even skipping ones, by manually 
changing the URL); (b) requires only a single-time loading 
(hence subsequent pages will not require any loading time or 
even any Internet connection at all); (c) provides an arguably 
easier-to-maintain, compact code structure; and (d) makes 
the script straightforward to integrate with JS-based frame-
works for creating native (and/or cross-platform) apps. More 
detailed information about this latter possibility is beyond 
the scope of the present tutorial. However, there are a variety 
of free online tutorials for the purpose,7 and, given that such 
frameworks are based on the same HTML/CSS/JS structure 
as described here, the present tutorial is just as applicable to 
them regarding ExpApps.

To explore and adjust the style (size, color, etc.) of any 
HTML element, one can at any time conveniently inspect 
and manually modify the CSS properties in any major 
browser’s developer tools. Clicking on any element and 
selecting the “Inspect” option from the drop-down menu 
directly displays in the developer tools window’s dedicated 
tab (e.g., “Inspector” in Firefox or “Elements” in Chrome) 
the given element’s CSS properties, which can be manu-
ally overwritten. Once the desired looks is achieved via the 
properties modified in the browser (which apply only to the 
loaded page, and are discarded as soon as the browser tab 
or page is closed), the same CSS properties can be adjusted 
accordingly in the local files too.

Size, color, and font

Size

For relatively consistent visual angle (i.e., perceived size) 
across devices, HTML element sizes should be defined in 
CSS pixels (px).8 This is, importantly, not equivalent to 

physical display device pixels (whose size varies unpredict-
ably depending on the hardware), but is an abstract unit that 
explicitly serves to provide a standardized comparable view-
ing experience across different devices, taking into account 
typical viewing distances (e.g., smartphones are typically 
viewed at a closer distance than desktop computers).9 For 
desktop computers (that assume reading at an arm’s length), 
one CSS pixel should be about 0.26 mm (1/96 inch), but 
it should be smaller for a laptop computer (ca. 0.20 mm) 
and smallest for smartphones (ca. 0.16 mm). There may be 
slight discrepancies between different devices, but uniform 
appearance and behavior are essential for web pages, and 
therefore manufacturers can be expected to closely adhere 
to web standard specifications and conventions.

Color

Setting up a desired balance of hue, saturation, and bright-
ness is difficult enough when calibrating the display of 
colors in a dedicated laboratory (Wilms & Oberfeld, 2018). 
In online research, however, the large variety of physical 
devices used to display images together with unpredictable 
idiosyncratic monitor settings and lighting conditions makes 
it practically impossible to very accurately render colors, let 
alone to have identical colors perceived by different partici-
pants. Nonetheless, it is reasonable to expect broad color 
definitions, such as “green” or “red,” and large brightness 
differences within a screen (i.e., relatively much darker vs. 
relatively much lighter colors), to hold true for all partici-
pants. In other words, it is highly unlikely that, for instance, 
an element colored fully “green” (in CSS: “#00ff00”) will 
not be seen by all participants (with full color vision) as 
some sort of green color, even though the specific type of 
greenness will differ.

Font

If strictly identical font across tests is crucial (or for some 
reason an unusual font type is needed), one may add font 
files,10 that contain the desired font type outlines, to the 
app to be loaded (via CSS) and used for all displayed texts. 
However, in most cases this is probably unnecessary. Practi-
cally all operating systems support either Arial (or the near-
identical Helvetica) or another sans-serif font type (e.g., on 
Android, Roboto) that is for the human eye generally hardly 
distinguishable from Arial. Hence, one may simply specify 
font family for the entire ExpApp as Arial and a “sans serif” 7  Mainly via the official websites of the relevant framework (e.g., 

Native React or Ionic).
8  The notable exception is when an element’s size is specified rela-
tive to its parent element’s size. For instance, a smaller square within 
a larger square may be specified to have height and width as 50%, so 
that it would always be half the size of the larger square (whose width 
and height is specified in pixels). In that case, both can be modified 
by modifying the latter’s pixel sizes

9  For a detailed explanation, see https://​hacks.​mozil​la.​org/​2013/​09/​
css-​length-​expla​ined/.
10  There are countless free font files (WOFF, TTF, etc.), for various 
font types, available online, and easy to integrate with CSS.

https://homepage.univie.ac.at/gaspar.lukacs/sst_exp
https://homepage.univie.ac.at/gaspar.lukacs/sst_exp
https://hacks.mozilla.org/2013/09/css-length-explained/
https://hacks.mozilla.org/2013/09/css-length-explained/


Behavior Research Methods	

1 3

fallback option, so that if Arial is unavailable, a very similar 
sans serif font type is used.

Basic operational (JS) structure

Similarly to CSS, any major browser’ developer tools (Con-
sole) may be used to very conveniently inspect or modify JS 
variables too, at any point of the experiment.

On document load

As soon as the web page (the ExpApp) is loaded in the 
browser, certain procedures (see below) may be executed as 
precautions or as preparations of the upcoming experiment.

Browser compatibility

“ECMAScript” is a JS standard intended to ensure the 
interoperability of web apps across different browsers. In 
2015, ECMAScript 6 (ES6) was introduced as a major revi-
sion, and was soon adapted by all major modern browsers. 
Nonetheless, web developers often continued to try using 
JS without ES6 features in order to stay compatible with 
older browsers. However, given the rapid development of 
browsers, it should be assumed that nearly all, if not all, 
users have a browser supporting ES6. Our template therefore 
includes various ES6 features (however, to be safe, no more 
recent ones).

Query string

Often, there are different versions of the same experi-
ment that differ only in some small but important aspect. 
For example, the same experiment may be done in differ-
ent languages. In this case, the language may be indicated 
via a “query string”: a text attached to the URL, separated 
by a question mark. For example, to indicate that the given 
ExpApp should be in English, one may write https://​gaspa​
rl.​github.​io/​expapp?​lg=​en, while, for a German version, one 
may write https://​gaspa​rl.​github.​io/​expapp?​lg=​de. The infor-
mation for the “lg” parameter can then be accessed in JS. 
There can be multiple parameters. For instance, https://​gaspa​
rl.​github.​io/​expapp?​lg=​de&​device=​mobile may indicate an 
ExpApp in German and intended for mobile devices.

Multilingual experiments

In case of multiple language versions of the same experi-
ment (e.g., for international and cross-cultural studies), an 
elegant way to store the text content is to have different JS 
files for each language (in the template, two such files serve 
as examples, “lg_en.js” for English, “lg_de.js” for German), 

where each contains a JS “dictionary” object with all the 
various texts of the given ExpApp. On page load, the desired 
language is detected from the query string (or otherwise 
defaults to English), the corresponding language file (with 
the given language’s dictionary) is loaded, and, based on a 
match between element IDs and the dictionary keys, all texts 
of the given language are inserted into the HTML.

Precautionary measures

There are some precautionary measures that may be imple-
mented at any point during the experiment, described in the 
following sections. One good time for activating these might 
be right after the participant consented to participation via 
a button click.

Unloading the web page

It is easy to leave (technically: “unload”) a web page by 
closing the browser tab (or window) or by navigating back 
to a previous page (via the browser’s “Go back one page” or 
similar button or keyboard shortcut). This could happen, for 
example, if the participant unwittingly attempts to navigate 
back to a previous section of the experiment, while this is 
not in fact permitted (and will not work on a typical single-
page app where the URL is unchanged). Therefore, one may 
disable back navigation and show a warning and ask for 
confirmation when a participant tries to leave the page.

Fullscreen

Conducting online experiments throughout using the brows-
er’s fullscreen mode is often recommended and used by 
experiment creator frameworks, in order to reduce distrac-
tions (e.g., Gagné & Franzen, 2023, p. 9), even though it 
may be debatable whether its impact is substantial. Regard-
less, the technical implementation is not difficult, although 
making the browser enter fullscreen mode via JS requires 
an active user input, such as a keypress or a click on an 
element. A reasonable approach may be to enter fullscreen 
when the participant consents on the first page with a but-
ton click, and, in case the participant manually exits the 
fullscreen, to reenter fullscreen whenever the participant 
continues (via, e.g., a button click or a keypress) to a next 
section in the experiment. Another option would be, unless 
fullscreen is a crucial part of the experiment, to respect the 
participant’s decision not to use fullscreen and allow them 
to proceed in such a way – likely contributing to a more 
positive experience.

https://gasparl.github.io/expapp?lg=en
https://gasparl.github.io/expapp?lg=en
https://gasparl.github.io/expapp?lg=de
https://gasparl.github.io/expapp?lg=de&device=mobile
https://gasparl.github.io/expapp?lg=de&device=mobile


	 Behavior Research Methods

1 3

Scaling

Preventing page scaling (“zooming” in or out, typically 
using Ctrl and the mouse wheel) is strongly discouraged by 
browser vendors and specific programmatic measures have 
been implemented against it, since they wish all users to 
indeed be able to scale pages for accessibility (i.e., read-
ability). It should also be considered that, while elaborate 
methods do exist to measure it (Li et al., 2020), viewing 
distance is impossible to ensure throughout an online experi-
ments, and therefore different participants may have very 
different visual angles for the given stimuli anyway. Hence, 
it may just be better to let them scale the page if they wish 
to – especially if they otherwise might have difficulty seeing 
the page content. There is in any case no established method 
for scaling prevention.

Data storage

There are several increasingly popular new server-side lan-
guages and solutions, but, to date, owing also to the sim-
plicity of its setup, PHP is still by far most popular, alone 
accounting for the great majority of the market share.11 Uni-
versities typically provide servers with a PHP interpreter 
that allows to use PHP code without any necessity for an 
in-depth understanding of the server’s (or the PHP inter-
preter’s) workings. Using PHP for ExpApps, the very simple 
approach that we recommend is to save each participant’s 
data as a separate text file. The PHP files provided in the 
template can be used for almost any ExpApp, since essen-
tially all they do is just write any text content data sent from 
JS to a new file created on the server.

Partial data

To assess dropout rates (Zhou & Fishbach, 2016), partial 
data may be intermittently stored. For instance, all data up 
to the given point may be stored on the server when the 
page is first loaded, and afterwards on each new section 
start (new questionnaire, new task, etc.; in case of no clear 
sections, one may also set up a time interval, e.g., every 
5 min). Dropouts are typically discussed in the context of 
their biasing effects on surveys, but they may in fact impact 
behavioral data collection as well (Lukács, 2021). Hence, 
partial data may also be intermittently stored on the server 
during behavioral data collection at a certain desired interval 

(e.g., in the template, having about hundred trials altogether, 
at every tenth trial12).

Complete data

At the end of the experiment, the full complete data may 
be stored. The JS function awaits the server response and 
provides corresponding feedback to the participant. In case 
of successful storage, a success message is shown. In case 
of any sort of issue (e.g., temporary loss of Internet con-
nection), the participant may be offered options such a retry 
button via which saving the file at the server is reattempted, 
and a download button via which the results files may be 
manually downloaded and sent via email to the researcher.

Data format

Data format may particularly be up to preference, but one 
convenient way is to keep behavioral data in single lines 
per trial, while keeping all other, miscellaneous (e.g., demo-
graphic) data in JSON (JavaScript Object Notation) for-
mat13 (Fig. 1) in the very last line of the file. If desired, for 

Fig. 1   JSON example. Note. Sample data from the last, JSON format 
line from the experiment results of the template ExpApp. The JSON 
format was “beautified” (reformatted) using Visual Studio Code in 
order to display each attribute-value pair in a new line, which makes 
the data even more easy to overview. Such reformatting may also be 
done in any other code popular editor or via many freely available 
and easy-to-use online websites for this purpose

12  It could also be done on every single trial, but that seems unnec-
essary in terms of dropout estimates, and would increase server load 
by ten times. While uploading small text files is a very light job for 
a regular server, caution is advisable, in particular when considering 
the potentially simultaneous participation of hundreds of participants.
13  JSON is a standard data format that uses human-readable text to 
store and transmit data objects consisting of attribute-value pairs and 
arrays. Originally based on JavaScript’s object syntax, today it is also 
in widespread use in all kinds of applications unrelated to JavaScript.

11  https://​w3tec​hs.​com/​techn​ologi​es/​histo​ry_​overv​iew/​progr​amming_​
langu​age/​ms/y

https://w3techs.com/technologies/history_overview/programming_language/ms/y
https://w3techs.com/technologies/history_overview/programming_language/ms/y


Behavior Research Methods	

1 3

subsequent analysis, the JSON format can be easily restruc-
tured into newly designated columns per each row.

Data protection

In the following, we briefly consider data protection primar-
ily from the perspective of EU nations’ ethical conventions 
(World Medical Association Declaration of Helsinki, 2013) 
and legal regulations (Regulation [EU], 2016; also known as 
the General Data Protection Regulation or GDPR). In other 
parts of the world, the relevant legal frameworks and eth-
ics are generally either comparable to or less stringent than 
those in the EU (e.g., Greene et al., 2019).

In general, online data collection is subject to the same 
legal and ethical principles applicable to any other research 
involving human subjects (Greene et al., 2019; Regulation 
[EU], 2016): Personal information should be processed law-
fully, transparently, and fairly, collected and used only for 
clearly stated, valid purposes, limited to those relevant pur-
poses, maintained accurately and up-to-date, retained only 
as long as necessary, and stored securely.

The exact details of certain aspects are debatable (includ-
ing what constitutes “personal information”), and local laws 
and institutional regulations must also be taken into account. 
Nonetheless, in any case, what is relevant from a technical 
perspective, and hence to the present tutorial, is avoiding the 
unnecessary or covert collection of personal information, 
and ensuring the secure storage of any collected data.

Regarding personal information, obvious examples 
include identity details such as a personal name or birth 
date, or a participant’s face visibly recorded in a picture or 
video. It is less clear whether certain types of physiological 
data (e.g., eye tracking or typing patterns) can be used for 
personal identification, especially when combined with other 
types of data. Focusing again on the technical side, browser 
information (e.g., user agent, plugins), IP (Internet Proto-
col) addresses, and cookies may each also be categorized as 
personal information, because, when combined with addi-
tional information, they could lead to personal identification 
(Greene et al., 2019). Therefore, such information should 
only be collected when truly necessary; when collected, 
participants should be informed, and the confidential data 
should be handled securely.

As for the secure handling, our template provides one 
ideal example of securely saving the data to a (PHP) server. 
However, it might be necessary to configure the webserver to 
serve the ExpApp and receive the participant’s data through 
“Transport Layer Security” (TLS; the modern successor to 
“Secure Sockets Layer,” SSL), which provides encryption 
and integrity checks to secure data in transit. For this, the 
web server needs to be configured with a certificate, which 
most web space providers can handle for free through the 

use of Let’s Encrypt (https://​letse​ncrypt.​org/). The proce-
dure is specific to each server, but for that very reason the 
web hosting providers or server administrators normally 
offer instructions for the implementation, which is usually 
straightforward. That TLS is in use is indicated in the URL 
prefix “https://” (where “s” stands for “secure”) in contrast 
to the plain “http://” URL prefix. Most university web ser-
vices provide ready-to-use TLS (observable in the “https://” 
URL prefix by default), so that no configuration is needed 
by the users.

If alternative approaches are desired or necessary, we rec-
ommend consulting an expert. The server space (or data-
base) itself, where the data is stored, should of course also 
be kept secure (e.g., using a strong password, potentially 
two-factor authentication, encrypted data, etc.; see, e.g., 
Jamieson & Salinas, 2018).

Collecting survey data

Collecting survey data (via checkboxes, multiple choice 
questions, scales, text input, etc.) is a basic and extremely 
widely used feature of web apps, and therefore its general 
setup is mostly common knowledge (e.g., Baatard, 2012), 
with technical details well described in general HTML 
tutorials. Precautionary methods for survey data are also 
extensively discussed in various previous review papers 
(e.g., Curran, 2016). Nonetheless, in view of ExpApps, one 
aspect perhaps worth highlighting is that it is helpful to think 
beyond conventional paper-based checks and to make use of 
technical possibilities for this purpose. For instance, instead 
of asking participants to select a specific answer on a Likert 
scale (which could however also happen by accident), they 
may rather be asked to click three times on any of the Likert 
scale items. Some further easy-to-do yet perhaps neglected 
possibilities in ExpApps are dragging and dropping items, 
multimedia presentation, and geolocation.

In the context of online experiments, it is advisable (and 
costs practically nothing), to include a brief question on the 
calmness and quietness of the environment during testing, 
and an open-ended question regarding any potential feed-
back, in particular – and hence the present point’s relevance 
to this tutorial – if the participant may have experienced any 
sort of technical issues (especially useful in case of initial 
piloting).

Collecting behavioral data

Unlike collecting survey data, collecting behavioral data is 
not at all a basic feature of web apps, nor is it widely used. 
Rather, it is largely restricted to those conducting behavioral 
experiments online, primarily for academic research.

https://letsencrypt.org/


	 Behavior Research Methods

1 3

Our template implements keypress and tap response 
times, but the general approach would similarly apply to 
other experiments involving sequential stimulus presenta-
tion and precise timing. All details of the relevant code, in 
the “rt_task.js” file, are thoroughly commented within the 
script. Here, only a general outline is given. Namely, a typi-
cal and convenient method is to generate, preceding the start 
of each block, a list of objects where each object contains, 
as properties, the information for a single trial in the experi-
ment. For example, in the case of a keypress-based Stroop 
task (where one key is assigned to each color; MacLeod, 
1991; Stroop, 1935), it could contain the color name to be 
displayed, the color in which this name is to be displayed, 
and the correct key to be pressed. So the object could con-
tain the following property keys: “itemName,” “itemColor,” 
“correctKey.” Following this, the entire block can be run 
sequentially taking one object after another from the pre-
generated list (until none is left), and, from each object, the 
desired properties are accessed in order to correctly prepare 
and execute each given trial. So, in the Stroop task exam-
ple, a JS function could insert the itemName property in the 
HTML element to be displayed, and assign its color from the 
itemColor property. When the keypress response is given by 
the participant, the pressed key could be checked against the 
correctKey property to potentially provide feedback and in 
any case to record whether the response was correct.

Given the lack of supervision in online experiments, it is 
most recommended to include practice trials with trial-by-
trial feedback regarding the correctness of responses (e.g., 
Gagné & Franzen, 2023). In case of too few valid responses, 
the entire practice phase may be asked to be repeated. In the 
template, there is a maximum of one repetition only, and at 
the second completion the participant is allowed to continue 
regardless of the ratio of valid responses. This is advisable in 
case there is a potential concern about habituation, fatigue, 
or other undesirable effects of overly long practice.

Undesired participant behavior

The lack of supervision comes with a lack of control too. 
Therefore, one should ideally record all available relevant 
information, especially suspicious or undesirable user 
actions (in which case immediate warnings may also be 
given to the user). This includes invalid responses (e.g., 
pressed key not among the ones applicable to the given task), 
programmatically simulated responses, and unwarrantedly 
long inactivity at any point during the experiment.

Recent advances in artificial intelligence (AI) deserve 
special attention. Simple bots can be programmed to auto-
matically fill out surveys. AI algorithms can scrape the web 
to gather information or specific answers to questions in the 
experiment. Advanced natural language processing models 

can provide convincing replies to open-ended questions. 
There is no perfect assurance against AI use. Nonetheless, 
mass submission via simple bots (in case of a publicly avail-
able survey) can be greatly mitigated by CAPTCHAs (e.g., 
Dinh & Hoang, 2023), potentially complemented by detect-
ing suspicious browser characteristics (such as the limited 
features of headless browsers that bots tend to use, e.g., no 
plugins or APIs). One may also analyze basic expected pat-
terns, such as time of completion and consistency among 
the individual’s responses. For open-ended questions’ reply 
fields, paste and drop actions can be disabled to hinder the 
use of AI-generated text – although adept programmers can 
circumvent this.

There is plenty of empirical evidence that many online 
participants cheat when they have motivation and oppor-
tunity (e.g., Nagin & Pogarsky, 2003). However, studies 
developing and investigating preventive measures have 
been scarce, and, to our knowledge, all focus on informa-
tion search (i.e., participants searching the Internet for the 
correct answers in a survey). To this latter issue, propos-
als for prevention and detection include setting time limit 
(Domnich et al., 2015), asking the participant to pledge not 
to cheat (Clifford & Jerit, 2016), and detecting the survey 
being obscured by another window or application (Dieden-
hofen & Musch, 2017) – such approaches may to a great 
degree curtail information search, but do not fully prevent it 
(see Graham, 2023).

A systematic empirical investigation of other kinds of 
cheating seem well overdue. Speaking from abundant per-
sonal experience, some participants are really capable of all 
sorts of trickery to get done with the task faster or easier. To 
mention one typical phenomenon: in case of multiple-page 
apps, participants will manually navigate to the last page to 
get the completion code. But participants’ endeavors can 
go much further. In one case (using a single-page ExpApp, 
and completion code stored only at the server), we observed 
missing data in a supposedly completed file. We contacted 
the participant, who then admitted having waded through 
our code to find the submission mechanism, using which he 
submitted his incomplete data as a supposedly completed 
file (which triggered the return of the completion code). At 
least in this and similar cases, the cheater can be detected 
based on incomplete data. However, again, there is no per-
fect assurance against cheating. For instance, participants 
may use an external robotic lever for responses, or they may 
just generate artificial data to be submitted – though such 
great efforts to substitute valid participation in a brief task 
seems unlikely.

Importantly, non-compliance has been observed far less 
often on Prolific than on more general crowdsourcing web-
sites for microtasks (MTurk, Appen) – also corresponding 
to the conclusions of formal assessments of data quality per 
platform (see, e.g., Peer et al., 2021; Uittenhove et al., 2022).



Behavior Research Methods	

1 3

Pretesting

Conventional software development normally involves pro-
grammatic automatized unit-testing that checks whether 
certain parts of the given software keep their intended 
behavior following each modification of the code. Web-
based interfaces are however not straightforward to unit test 
in the first place (though, for a popular software solution, 
see, e.g., Jasmine with Karma). Even so, in case of ExpApp 
creator frameworks, it might be useful to implement fully 
automatized testing that can in a uniform manner verify 
each newly created ExpApp to detect basic errors. De Leeuw 
et al. (2023) provide a comprehensive overview and practi-
cal demonstration of this approach as well as of the related 
technical possibilities.

However, regarding custom-made ExpApps, in case of 
modifications from one experiment to another, the intended 
outcomes may differ to such an extent that it is more difficult 
to follow up on correcting the unit tests (let alone writing 
them in the first place; see De Leeuw et al. 2023, p. 1864) 
rather than to simply manually test it all again – which in 
any case seems necessary as unit tests cannot be fully relied 
upon. Therefore, in most cases, it probably makes more 
sense to just thoroughly manually pretest the app for each 
new experiment via several browsers. For semi-manual 
testing however, user actions such as keypresses can be 
simulated via dedicated JS functions. This is particularly 
relevant to behavioral data collection, where a lengthy and 
strenuous examination, such as hundreds of trials measuring 
key responses, can be run with automatized simulations of 
keypresses.

For any ExpApp, a simplified, demo version may be cre-
ated, which can be more easily run than the full version. For 
instance, in our template, the changes compared to the full 
version are: (a) there are less trials per block (just one per 
each unique type); (b) none of the questions are obligatory 
in order to proceed to the next page (and there is no alert if 
questions are not answered); (c) no fullscreen is initiated 

automatically; (d) no data are saved on the server. This is, on 
the one hand, to serve as a demonstration for collaborators, 
reviewers, and the eventual readers of a published study. On 
the other hand, it may also serve to more easily pretest the 
main features of an ExpApp. As explained above, the demo 
version of the ExpApp can be indicated in the URL’s query 
string that is subsequently detected in JS.

Again, uniform behavior (based on the specifications by 
the World Wide Web Consortium) is essential for web apps, 
and very unlikely to be ignored by vendors of software and 
hardware. Even so, it has been repeatedly shown that differ-
ent combinations of operating systems and browsers may 
give slightly different results (e.g., Bridges et al., 2020), and 
browsers in particular differ in their implementation and sup-
port of JS methods. To prioritize pretesting, one may first 
off rely on market share statistics that also indicate the likely 
distribution of the types of the given software and hardware 
of eventual participants (Anwyl-Irvine et al., 2021). For one, 
the current browser market share is almost entirely (> 96%) 
covered by Google Chrome, Safari, Microsoft Edge, Mozilla 
Firefox, Samsung Internet, and Opera, with the first (Google 
Chrome) covering the majority (> 60%), and first four cover-
ing the vast majority (> 90%).14 However, it is also good to 
keep in mind that with the exception of Safari and Mozilla 
Firefox, all these browsers are based in a large part on the 
(itself alone infrequently used) Chromium browser. Further-
more, Chromium itself is partly based on Safari’s (WebKit) 
code. The implication is that, at least for desktop computers 
and laptops (see Fig. 2), the first browser to pretest is Google 
Chrome, since not only does this cover the majority, but it 
is also a likely indication of how other Chromium-based 
browsers (and, to a lesser degree, Safari) work. The next 

Fig. 2   Browser market share for desktop computers and for smartphones. Note. Estimated browser market share in October 2023. (Data from 
https://​gs.​statc​ounter.​com/​brows​er-​market-​share/; accessed on November 21, 2023)

14  Source: https://​gs.​statc​ounter.​com/​brows​er-​market-​share. However, 
for real experiments, location and device type should also be taken 
into account (see, e.g., https://​www.​simil​arweb.​com/​brows​ers/​world​
wide/​mobile-​phone/).

https://gs.statcounter.com/browser-market-share/;
https://gs.statcounter.com/browser-market-share
https://www.similarweb.com/browsers/worldwide/mobile-phone/
https://www.similarweb.com/browsers/worldwide/mobile-phone/


	 Behavior Research Methods

1 3

would be Mozilla Firefox, due to its standalone codebase; 
then, Safari, due to its relatively large coverage and rela-
tively independent codebase. Doing pretests on the rest of 
the major browsers as well may still be useful.

Finally, however, if uniform appearance and behavior is 
crucial, one may disallow participation using any browser 
except the desired one(s). Participants may be warned and 
prevented from continuing in case of the detection of any 
undesired browser.

Concluding notes

The present tutorial gave an overview of the main aspects of 
creating online psychological experiments via the HTML/
CSS/JS framework. We highlighted key considerations 
in respect of the latest technical developments and chal-
lenges, including some neglected aspects of online research. 
Although our recommendations and implementations pre-
sent one rather specific approach to creating ExpApps, they 
altogether also serve as a practical roadmap for leverag-
ing browser capabilities in online experiments efficiently. 
Regardless of one’s preferred methods, this tutorial provides 
a foundational understanding of the technical workflow 
necessary to develop versatile, robust, and customizable 
ExpApps. By equipping researchers with these technical 
insights, we aim to enhance the quality and expand the scope 
of online psychological experiments, also contributing to the 
broader scientific discourse.

This tutorial is by no means a definitive encyclopedia for 
all technical details. However, integrally connected to the 
present paper, a specific implementation is also given via 
the “living” open-source template project at https://​github.​
com/​gaspa​rl/​expapp, including an open-source tutorial in a 
Markdown file that contains more extensive and advanced 
technical details. The contents of this repository are all com-
pletely free to copy, modify, and use for any future experi-
ment or any other purpose. Both the scripts and the tutorial 
in the repository are intended to be continually improved 
by the community so that they will always follow the latest 
technological advancements and empirical findings.

Appendix

Advantages of custom coding for ExpApps

As briefly explained in the introduction, some GUI-based 
ExpApp creators have remarkable capabilities. Nonethe-
less, in general, knowledge of the HTML/CSS/JS framework 
can permit or facilitate a variety of important features and 
functionalities.

With CSS alone, one has easy control over the entire lay-
out. It is straightforward to dynamically set or change the 
size of any element and/or the color of any single pixel in 
any moment of the experiment via CSS, as well as to test 
and explore possibilities in real-time throughout the vari-
ous phases of the experiment (via browser developer tools, 
explained later in the tutorial). GUIs would typically require 
separately creating dedicated objects or images for each lay-
out change in each phase or trial of an experiment. Consider-
ing, for example, a complicated new experiment (with many 
complex stimuli) that still requires exploration and many 
changes while being created, this can be an extremely labori-
ous, repetitive, taxing procedure. Creating a great number of 
similar but in certain ways different stimuli (e.g., positioned 
in different parts of the screen) is particularly time-consum-
ing with GUIs, while it is minimal effort in programming 
(by, e.g., adding incremental modifications of the same ele-
ment base in a loop).

Custom JS makes possible any custom and complex 
interaction, such as, for example, dragging elements or 
clicking on moving and changing elements. GUIs normally 
only allow basic input such as keypresses or clicks on fixed 
objects.

JS also allows complex processing for conditional opera-
tions. For example, a specific A versus B follow-up task 
might be chosen depending on slower versus faster response 
times in an initial task. Another important example is when 
participants select their own stimuli in an initial task (e.g., 
choosing, out of 20 photos, the five most attractive ones), 
which are then to be presented to them in a follow-up task. 
Relatedly, one can restrict presentation order in any desired 
way. While frameworks typically offer some overall rand-
omization procedure for the order of presenting a group of 
stimuli, they do not offer more specific rules such as, for 
example, “item X must never follow item Y” or “follow-
ing every second presentation of item X, item Z should be 
presented next.”

One may introduce custom restriction of participation via 
JS (potentially complemented by some server-side code for 
more security). For example, one may allow participation 
only in a specific time frame (e.g., 10–12 AM in the par-
ticipant's time zone, or any given calendar days). This can 
be a vital, for example, for longitudinal studies, where the 
follow-up experiment can be programmatically restricted to 
the required time frame given participants’ times of comple-
tion of the preceding experiment.

Via JS, researchers may format the experiment’s outcome 
data exactly as they want, and as it is most convenient for 
their subsequent analysis. This may also include some pre-
processing and/or statistical calculations, especially when 
this is needed for providing feedback to the participant at 
the end of the examination (e.g., evaluation scores, etc.).

https://github.com/gasparl/expapp
https://github.com/gasparl/expapp


Behavior Research Methods	

1 3

Using code independent of GUIs straightforwardly allows 
version control (e.g., via git, using GitHub or GitLab), with 
which one can easily track changes in the web app and 
recombine parts of different versions (e.g., when just one 
specific part of the app turns out to be problematic/undesir-
able and should be reverted to an earlier version).

Finally, custom code allows unlimited integration with 
any third-party technologies and/or JS snippets or librar-
ies (e.g., game engines, psychophysiology tools), including 
frameworks for creating native applications for smartphone 
or desktop operating systems (which opens up possibili-
ties of native behavior, e.g., easy access to and control of 
hardware, push notifications, etc.; see, e.g., Singh & G, 
2021). Currently, experiment creators seem to lag behind 
in supporting portable devices and touchscreens. With a lit-
tle knowledge of the HTML/CSS/JS framework, ExpApps 
can be easily customized to accommodate smartphones and 
tablets.

Acknowledgements  Many thanks to John Caffier for his kind advice 
and input.

Authors’ contributions  Concept and design by GL; software by GL, 
revised by EH; manuscript by GL, revised by EH.

Funding  Open access funding provided by University of Vienna. The 
authors did not receive support from any organization for the submit-
ted work.

Data availability  All material is available via https://​github.​com/​gaspa​
rl/​expapp (https://​doi.​org/​10.​5281/​zenodo.​77500​17).

Declarations 

Conflicts of interest/Competing interests  The authors have no relevant 
financial or non-financial interests to disclose. The authors have no 
vested interests in or personal relations to any of the commercial web-
sites and software companies mentioned in the manuscript.

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

 References

Anwyl-Irvine, A., Dalmaijer, E. S., Hodges, N., & Evershed, J. K. 
(2021). Realistic precision and accuracy of online experiment plat-
forms, web browsers, and devices. Behavior Research Methods, 
53(4), 1407–1425. https://​doi.​org/​10.​3758/​s13428-​020-​01501-5

Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Ever-
shed, J. K. (2020). Gorilla in our midst: An online behavioral 
experiment builder. Behavior Research Methods, 52(1), 388–407. 
https://​doi.​org/​10.​3758/​s13428-​019-​01237-x

Baatard, G. (2012). A technical guide to effective and accessible web 
surveys. Electronic Journal of Business Research Methods, 10(2), 
101–109.

Barnhoorn, J. S., Haasnoot, E., Bocanegra, B. R., & van Steenbergen, 
H. (2015). QRTEngine: An easy solution for running online reac-
tion time experiments using Qualtrics. Behavior Research Meth-
ods, 47(4), 918–929. https://​doi.​org/​10.​3758/​s13428-​014-​0530-7

Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W. (2020). The 
timing mega-study: Comparing a range of experiment genera-
tors, both lab-based and online. PeerJ, 8, e9414. https://​doi.​org/​
10.​7717/​peerj.​9414

Clifford, S., & Jerit, J. (2016). Cheating on political knowledge ques-
tions in online surveys: An assessment of the problem and solu-
tions. Public Opinion Quarterly, 80(4), 858–887. https://​doi.​org/​
10.​1093/​poq/​nfw030

Curran, P. G. (2016). Methods for the detection of carelessly invalid 
responses in survey data. Journal of Experimental Social Psychol-
ogy, 66, 4–19. https://​doi.​org/​10.​1016/j.​jesp.​2015.​07.​006

De Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating 
behavioral experiments in a Web browser. Behavior Research 
Methods, 47(1), 1–12. https://​doi.​org/​10.​3758/​s13428-​014-​0458-y

De Leeuw, J. R., Gilbert, R. A., Petrov, N., & Luchterhandt, B. (2023). 
Simulating behavior to help researchers build experiments. Behav-
ior Research Methods, 55(4), 1863–1873. https://​doi.​org/​10.​3758/​
s13428-​022-​01899-0

Diedenhofen, B., & Musch, J. (2017). PageFocus: Using paradata to 
detect and prevent cheating on online achievement tests. Behav-
ior Research Methods, 49(4), 1444–1459. https://​doi.​org/​10.​3758/​
s13428-​016-​0800-7

Dinh, N. T., & Hoang, V. T. (2023). Recent advances of Captcha secu-
rity analysis: A short literature review. Procedia Computer Sci-
ence, 218, 2550–2562. https://​doi.​org/​10.​1016/j.​procs.​2023.​01.​
229

Domnich, A., Panatto, D., Signori, A., Bragazzi, N. L., Cristina, M. L., 
Amicizia, D., & Gasparini, R. (2015). Uncontrolled Web-based 
administration of surveys on factual health-related knowledge: A 
randomized study of untimed versus timed quizzing. Journal of 
Medical Internet Research, 17(4), e94. https://​doi.​org/​10.​2196/​
jmir.​3734

Finger, H., Goeke, C., Diekamp, D., Standvoß, K., & König, P. (2017). 
LabVanced: a unified JavaScript framework for online studies. 
International Conference on Computational Social Science 
(Cologne).

Gagné, N., & Franzen, L. (2023). How to run behavioural experiments 
online: Best practice suggestions for cognitive psychology and 
neuroscience. Swiss Psychology Open, 3(1), 1. https://​doi.​org/​10.​
5334/​spo.​34

Graham, M. H. (2023). Detecting and deterring information search in 
online surveys. American Journal of Political Science, ajps.12786. 
https://​doi.​org/​10.​1111/​ajps.​12786

Greene, T., Shmueli, G., Ray, S., & Fell, J. (2019). Adjusting to the 
GDPR: The impact on data scientists and behavioral researchers. 
Big Data, 7(3), 140–162. https://​doi.​org/​10.​1089/​big.​2018.​0176

https://github.com/gasparl/expapp
https://github.com/gasparl/expapp
https://doi.org/10.5281/zenodo.7750017
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3758/s13428-020-01501-5
https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.3758/s13428-014-0530-7
https://doi.org/10.7717/peerj.9414
https://doi.org/10.7717/peerj.9414
https://doi.org/10.1093/poq/nfw030
https://doi.org/10.1093/poq/nfw030
https://doi.org/10.1016/j.jesp.2015.07.006
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.3758/s13428-022-01899-0
https://doi.org/10.3758/s13428-022-01899-0
https://doi.org/10.3758/s13428-016-0800-7
https://doi.org/10.3758/s13428-016-0800-7
https://doi.org/10.1016/j.procs.2023.01.229
https://doi.org/10.1016/j.procs.2023.01.229
https://doi.org/10.2196/jmir.3734
https://doi.org/10.2196/jmir.3734
https://doi.org/10.5334/spo.34
https://doi.org/10.5334/spo.34
https://doi.org/10.1111/ajps.12786
https://doi.org/10.1089/big.2018.0176


	 Behavior Research Methods

1 3

Grootswagers, T. (2020). A primer on running human behavioural 
experiments online. Behavior Research Methods, 52(6), 2283–
2286. https://​doi.​org/​10.​3758/​s13428-​020-​01395-3

Henninger, F., Shevchenko, Y., Mertens, U. K., Kieslich, P. J., & Hil-
big, B. E. (2022). lab.js: A free, open, online study builder. Behav-
ior Research Methods, 54(2), 556–573. https://​doi.​org/​10.​3758/​
s13428-​019-​01283-5

Jamieson, T., & Salinas, G. (2018). Protecting human subjects in the 
digital age: Issues and best practices of data protection. Survey 
Practice, 11(2), 1–10. https://​doi.​org/​10.​29115/​SP-​2018-​0028

Kochari, A. R. (2019). Conducting web-based experiments for numeri-
cal cognition research. Journal of Cognition, 2(1), 39. https://​doi.​
org/​10.​5334/​joc.​85

Lange, K., Kühn, S., & Filevich, E. (2015). “Just Another Tool for 
Online Studies” (JATOS): An easy solution for setup and man-
agement of web servers supporting online studies. PLOS ONE, 
10(6), e0130834. https://​doi.​org/​10.​1371/​journ​al.​pone.​01308​34

Li, Q., Joo, S. J., Yeatman, J. D., & Reinecke, K. (2020). Controlling 
for participants’ viewing distance in large-scale, psychophysical 
online experiments using a virtual chinrest. Scientific Reports, 
10(1), 904. https://​doi.​org/​10.​1038/​s41598-​019-​57204-1

Lukács, G. (2021). Addressing selective attrition in the enhanced 
response time-based concealed information test: A within-sub-
ject replication. Applied Cognitive Psychology, 35(1), 243–250. 
https://​doi.​org/​10.​1002/​acp.​3759

MacLeod, C. M. (1991). Half a century of research on the Stroop effect: 
An integrative review. Psychological Bulletin, 109(2), 163–203. 
https://​doi.​org/​10.​1037/​0033-​2909.​109.2.​163

Mathôt, S., & March, J. (2022). Conducting linguistic experiments 
online with OpenSesame and OSWeb. Language Learning, 72(4), 
1017–1048. https://​doi.​org/​10.​1111/​lang.​12509

Nagin, D. S., & Pogarsky, G. (2003). An experimental investigation of 
deterrence: Cheating, self-serving bias, and impulsivity. Criminol-
ogy, 41(1), 167–194. https://​doi.​org/​10.​1111/j.​1745-​9125.​2003.​
tb009​85.x

National Commission for the Protection of Human Subjects of Bio-
medical and Behavioral Research. (1979). The Belmont report: 
Ethical principles and guidelines for the protection of human sub-
jects of research. U.S. Department of Health and Human Services. 
https://​www.​hhs.​gov/​ohrp/​regul​ations-​and-​policy/​belmo​nt-​report/​
read-​the-​belmo​nt-​report/​index.​html

Peer, E., Rothschild, D., Gordon, A., Evernden, Z., & Damer, E. 
(2021). Data quality of platforms and panels for online behavio-
ral research. Behavior Research Methods. https://​doi.​org/​10.​3758/​
s13428-​021-​01694-3

Peirce, J., MacAskill, M., & Hirst, B. (2022). Building experiments in 
PsychoPy (2nd ed.). SAGE Publishing.

Regulation (EU) 2016/679 of the European Parliament and of the 
Council. (2016). https://​data.​europa.​eu/​eli/​reg/​2016/​679/​oj

Singh, M., & G, S. (2021). Comparative analysis of hybrid mobile app 
development frameworks. International Journal of Soft Comput-
ing and Engineering, 10(6), 21–26. https://​doi.​org/​10.​35940/​ijsce.​
F3518.​07106​21

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. 
Journal of Experimental Psychology, 18(6), 643–662. https://​doi.​
org/​10.​1037/​h0054​651

Uittenhove, K., Jeanneret, S., & Vergauwe, E. (2022). From lab-based 
to web-based behavioural research: Who you test is more impor-
tant than how you test [Preprint]. PsyArXiv. https://​doi.​org/​10.​
31234/​osf.​io/​uy4kb

Wilms, L., & Oberfeld, D. (2018). Color and emotion: Effects of hue, 
saturation, and brightness. Psychological Research, 82(5), 896–
914. https://​doi.​org/​10.​1007/​s00426-​017-​0880-8

Woods, A. T., Velasco, C., Levitan, C. A., Wan, X., & Spence, C. 
(2015). Conducting perception research over the Internet: A tuto-
rial review. PeerJ, 3, e1058. https://​doi.​org/​10.​7717/​peerj.​1058

World Medical Association Declaration of Helsinki. (2013). Ethical 
principles for medical research involving human subjects. JAMA, 
310(20), 2191. https://​doi.​org/​10.​1001/​jama.​2013.​281053

Zhou, H., & Fishbach, A. (2016). The pitfall of experimenting on the 
web: How unattended selective attrition leads to surprising (yet 
false) research conclusions. Journal of Personality and Social 
Psychology, 111(4), 493–504. https://​doi.​org/​10.​1037/​pspa0​
000056

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3758/s13428-020-01395-3
https://doi.org/10.3758/s13428-019-01283-5
https://doi.org/10.3758/s13428-019-01283-5
https://doi.org/10.29115/SP-2018-0028
https://doi.org/10.5334/joc.85
https://doi.org/10.5334/joc.85
https://doi.org/10.1371/journal.pone.0130834
https://doi.org/10.1038/s41598-019-57204-1
https://doi.org/10.1002/acp.3759
https://doi.org/10.1037/0033-2909.109.2.163
https://doi.org/10.1111/lang.12509
https://doi.org/10.1111/j.1745-9125.2003.tb00985.x
https://doi.org/10.1111/j.1745-9125.2003.tb00985.x
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html
https://doi.org/10.3758/s13428-021-01694-3
https://doi.org/10.3758/s13428-021-01694-3
https://data.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.35940/ijsce.F3518.0710621
https://doi.org/10.35940/ijsce.F3518.0710621
https://doi.org/10.1037/h0054651
https://doi.org/10.1037/h0054651
https://doi.org/10.31234/osf.io/uy4kb
https://doi.org/10.31234/osf.io/uy4kb
https://doi.org/10.1007/s00426-017-0880-8
https://doi.org/10.7717/peerj.1058
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.1037/pspa0000056
https://doi.org/10.1037/pspa0000056

	Creating web applications for online psychological experiments: A hands-on technical guide including a template
	Abstract
	Material
	File structure and web hosting
	Basic layout (HTMLCSS) structure
	Size, color, and font
	Size
	Color
	Font


	Basic operational (JS) structure
	On document load
	Browser compatibility
	Query string
	Multilingual experiments


	Precautionary measures
	Unloading the web page
	Fullscreen
	Scaling

	Data storage
	Partial data
	Complete data
	Data format

	Data protection
	Collecting survey data
	Collecting behavioral data
	Undesired participant behavior
	Pretesting
	Concluding notes
	Appendix
	Advantages of custom coding for ExpApps

	Acknowledgements 
	References


